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Abstract The effects of rotation and gravity on an electro-magneto-thermoelastic
medium with diffusion and voids in a generalized thermoplastic half-space are studied by
using the Lord-Shulman (L-S) model and the dual-phase-lag (DPL) model. The analytical
solutions for the displacements, stresses, temperature, diffusion concentration, and volume
fraction field with different values of the magnetic field, the rotation, the gravity, and the
initial stress are obtained and portrayed graphically. The results indicate that the effects
of gravity, rotation, voids, diffusion, initial stress, and electromagnetic field are very
pronounced on the physical properties of the material.
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Nomenclature

a, wave number;
ac, bc, magnitudes of thermoelastic diffu-

sion;
B, magnetic induction vector;
C, strength of diffusion;
CE, specialized heat per unit mass;
d, thermoelastic diffusion constant;
eij , component of the strain tensor;
E, electric intensity vector;
Fi, Lorentz’s body force vector;
g, gravity field;
g∗, intrinsic equilibrated body force;

h, perturbed magnetic field vector;
H0, primary constant magnetic field

vector;
H , magnetic field vector;
J , electric current density vector;
K, thermal conductivity;
m, thermo-void coefficient;
P, initial stress;
qi, heat flux vector;
t, time of wave;
T0, reference temperature;
χ, equilibrated inertia;
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Si, component of the equilibrated stress
vector;

T, temperature;
α, b, ω0, ζ, void material parameters;
αt, coefficient of linear thermal exten-

sion;
αc, coefficient of linear diffusion exten-

sion;
δij , Kronecker delta;
ε0, electric permeability;
η, entropy per unit mass;
λ, μ, Lame’s constants;

μr, magnetic permeability,
ρ, density;
σij , component of the stress tensor;
λij , Maxwell’s stress tensor;
τ1, phase-lag of the heat flux;
τΘ, phase-lag of the temperature gradi-

ent;
ω, complex frequency;
τ2, τη, diffusion relaxation time;
Φv, change in the volume fraction field;
Ω, angular velocity.

1 Introduction

In the last five decades, wide spread attention has been paid to the theory of elasticity in
the thermal field, where waves propagate only under the thermal effect without considering
the mechanical stress at a finite speed. Conventional elastic theories are based on parabolic-
type heat equations, and are referred to as generalized theories. For heat wave propagation,
generalized thermoelastic theories are more realistic than conventional thermoelastic theories
in dealing with practical problems involving very short time intervals and high heat fluxes,
e.g., laser units, energy channels, and nuclear reactors. During the 19th century, the interac-
tions between the thermomechanical behaviors and the magnetic behaviors of materials have
been widely studied. Biot[1] studied the mechanical properties of porous materials with the
consolidation theory of fluid-saturated porous solids. The theory considered the formal argu-
ments of continuum mechanics, in which the concept of distributed body was introduced and
a continuum model was represented for granular materials, e.g., sand and powder, and porous
materials, e.g., rock and soil. The basic concept underlying this theory is that the bulk density
of the material can be written as the product of the density field of the matrix material and the
volume fraction field (the ratio of the volume occupied by grains to the bulk volume at a point
of the material). The theories of classical and coupled thermoelasticity have been extensively
developed due to their applications in structural design.

Recently, there have been many studies on the effect of diffusion. Lord and Shulman[2]

obtained a wave-type heat equation by postulating a new law of heat conduction to replace
the classical Fourier’s law by a new formula containing the heat flux vector, its time derivative,
and a new constant for the relaxation time. Since the heat equation of this theory is of the
wave type, it automatically ensures the finite speeds of the propagation of heat and elastic
waves. The remaining governing equations for this theory, i.e., the equations of motion and
constitutive relations, remain the same as those for coupled and uncoupled theories. Coin and
Nunziato[3] studied the effects of linear elastic materials with voids and the change of the void
volume, and showed that the void volume was a physical property of the medium independent
of the deformation, stress, and temperature. Aouadi[4–5] studied the equations of generalized
thermoelastic diffusion based on the Lord-Shulman (L-S) model, proved the uniqueness of the
solution of the initial boundary value problem, and derived the dynamic reciprocity theorem
for the given model. Aouadi[6] investigated a problem of one-dimensional generalized thermoe-
lastic diffusion in an infinite medium with a spherical cavity under the internal boundary of
time-dependent thermal shock. Singh[7–8] studied the reflection of longitudinal and secondary
vertical waves on the free surface of an elastic solid with generalized thermodiffusion under
the boundary conditions including a system of four non-homogeneous equations for reflection
coefficients depending upon the angle of incidence. Nowacki[9–11] depicted the fundamental
theorems for the dynamic problem of diffusion in a solid body. Olesiak and Pyryev[12] dis-
cussed the cross effects arising from the couplings of the temperature, mass diffusion, and
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strain in an elastic cylinder. Sherief and Saleh[13] studied the thermoelastic half-space with a
permeating substance in contact with the bounding plane with the theory of generalized ther-
moelastic diffusion, where the bounding surface of the half-space was traction-free and subject
to a time-dependent thermal shock. Ram et al.[14] studied the thermomechanical response of the
generalized thermo-diffusion elastic theory under one relaxation time due to the time harmonic
sources. Bayones[15] studied the viscosity and diffusion effects on the generalized magneto-
thermoelastic interactions in an isotropic spherical cavity. Abo-Dahab and Singh[16] studied
the interaction between the magnetic field and the elastic field in a solid half-space under ther-
moelastic diffusion. Xia et al.[17] studied the dynamic response of an infinite elastic body with
a cylindrical cavity, and showed the effects of diffusion on the radical displacement, the axial
displacement, the radical stress, and the axial stress distribution in an elastic body. Allam et
al.[18] studied the interactions among the magnetic field, the electric field, and the initial stress
in an elastic solid half-space under thermoelastic diffusion with the Green-Lindsay (GL) model.
Abouelregal and Abo-Dahab[19] studied the electro-magneto-thermoelastic problem along an
infinite solid cylinder with the dual-phase-lag (DPL) diffusion model considering the modified
Ohm’s law and the generalized Fourier’s law with the consideration of the interactions between
the deformation and the magnetic field vector. Abo-Dahab[20] illustrated the effects of the
anisotropy, the magnetic field, the gravity field, the non-homogeneity of the medium, the ini-
tial stress, the rotation, the incidence direction, and the depth in the phase velocity and the
attenuation coefficient of the propagation of S-waves. Kumar and Kumar[21] illustrated the
wave propagation and the fundamental solution of thermoelastic diffusion. For more details
about the wave propagation considering the interactions among thermal, diffusion, stress, and
volume fraction, one can refer to Refs. [22]–[24]. Kumar and Gupta[25–26] represented a gener-
alized form for the classical Fick’s diffusion law, and discussed the reflection and transmission
of an obliquely incident elastic wave at the interface between an inviscid fluid half-space and
a thermoelastic diffusion solid half-space with phase-lag models. Sur and Kanoria[27] studied
the interactions among the elastic field, the thermal field, and the diffusion in a homogeneous
and isotropic half-space with the three-phase-lag model and the Green-Naghdi models II and
III of generalized thermoelasticity. Othman and Abd-Elaziz[28] studied the effects of thermal
loading due to the laser pulse in a generalized thermoelastic homogeneous isotropic elastic half-
space heated by a non-Gaussian laser beam with voids by using the DPL model. Kumar et
al.[29] depicted the effects of thermal and diffusion with two phase lags because of axisymmetric
heat supply for a disc by using the DPL model and the DPL diffusion model. The upper and
lower surfaces of the disc were traction-free, and were subject to an axisymmetric heat supply.
Abouelregal[30] proposed a DPL thermoelastic model for a semi-infinite homogeneous isotropic
medium at an exponential heating situation. Kumar and Kansal[31] studied the propagation
of longitudinal waves, and obtained the fundamental solution as a function of diffusion and
voids. Xiong and Tian[32] studied the transient thermoelastic responses in a fiber-reinforced
anisotropic thermoelastic half-space with the consideration of the generalized thermoelasticity
without energy dissipation and the effect of a thermal shock. Xiong and Tian[33] showed that
the thermal shock and rotation had no effects on the temperature and mass but significant ef-
fects on the transient magneto-thermo-elasto-diffusion of rotating porous media without energy
dissipation. Xiong et al.[34] studied the reinforcement half-space with diffusion by using the L-S
model, the Green-Lord model, and the Green-Naghdi models of types II and III in combination
with the DPL model. Abo-Dahab[35] and Abo-Dahab et al.[36] studied the gravity field, the
magnetic field, and the rotation of the primary wave.

In this paper, the effects of voids, electromagnetic field, gravity field, rotation, and the
initial stress on the diffusion in the generalized thermoplastic half-space are studied by using
the L-S and DPL models. Numerical calculations are performed, and the resulting quantities
are displayed graphically. The results obtained with different values of the external parameters
are compared, and significant effects are observed.
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2 Formulation of the problem

Let us consider a homogeneous generalized thermoelastic half-space rotating with an angular
velocity vector Ω = Ω n, where n is the unit vector and represents the direction of the axis
of rotation. The rectangular Cartesian coordinate system (x, y, z) is adopted, where the y-
axis vertically points into the medium (see Fig. 1). The displacement equation of motion with
rotation has two additional terms, i.e., the centripetal force with the angular velocity Ω×(Ω×u)
and Corioli’s acceleration 2Ω× u̇, where u = (u, 0, w) is the dynamic displacement vector and
Ω = (0, Ω, 0) is the angular velocity. The normal origin is located at the plane surface of the
generalized thermoelastic half-space.

 
 

 

 

ε

Ω

Fig. 1 Formulation of the problem

3 Basic equations

The governing equations for a homogeneous generalized thermoelastic half-space with the
diffusion flux, voids, and Lorentz’s body forces at the reference temperature T0 are as follows:

σij = (λe − γT − P + bΦv − β1C)δij + 2μeij − Pωij , (1)

pc = −β1e + bcC − acT − b∗2Φv, (2)

ρη = γe + αT + mΦv + acC, (3)

g∗ = −be − ξ Φv + mT − ω0Φ̇v + b∗2C, (4)

eij =
1
2
(ui,j + uj,i), (5)

ωij =
1
2
(uj,i − ui,j), (6)

Si = αΦv,i. (7)

The Maxwell’s equation of electromagnetism is

λij = μr(Hihj + Hjhi − (H�h�) δij). (8)

The equation of motion is

σij,j + Fi = ρ(üi + (Ω × Ω× u)i + (2Ω × u̇)i), (9)

which tends to
(
μ − P

2

)
ui,jj +

(
λ + μ +

P

2

)
uj,ij − γT,i + bΦv,i − β1C,i + Fi + Gi

= ρ(üi + (Ω × Ω × u) i + (2Ω× u̇)i), (10)
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where

Fi = (J × B)i, G = ρg
(∂w

∂x
, 0,−∂u

∂x

)
. (11)

The Maxwell’s equations of the variance magnetic field and the electric field are

⎧⎪⎪⎨
⎪⎪⎩

curlh = J + ε0
∂E

∂t
, −μr

∂h

∂t
= curlE, div h = 0, div E = 0,

E = −μr

(∂u

∂t
× H0

)
, h = curl(u × H0), Fi = μr(J × H0)i,

(12)

where

H = H0 + h(x, z, t), H0 = (0, H0, 0). (13)

With Eq. (12), we have

Fx = μrH
2
0

(∂ e

∂x
− ε0μr

∂2u

∂t2

)
, (14)

Fz = μrH
2
0

(∂ e

∂z
− ε0μr

∂2w

∂t2

)
, (15)

Fy = 0. (16)

The heat conduction equation of the DPL model is

K
(
1 + τΘ

∂

∂t

)
T,ii =

(
1 + τ1

∂

∂t

)(
ρCE

∂T

∂t
+ γT0

∂e

∂t
+ acT0

∂C

∂t
+ mT0

∂Φv

∂t

)
. (17)

If τΘ = 0 and τ1 = τ (the first relaxation time), Eq. (17) leads to the L-S model, where
0 � τΘ < τ1.

The equation of voids is

αΦv,ii − bui, i − ζΦv − ω0Φ̇v + mT + b∗2C = ρχΦ̈v. (18)

The equation of diffusion is

(
1 + τ2

∂

∂t

)
(dβ1e,ii − dbcC,ii + dacT,ii + db∗2Φv,ii) +

(
1 + τη

∂

∂t

)
Ċ = 0. (19)

When τ2 = 0, the L-S model holds.

4 Solution of the problem

From Eqs. (10) and (17)–(19), we have

(
μ − P

2

)
∇2u +

(
λ + μ +

P

2

) ∂e

∂x
− γ

∂T

∂x
+ b

∂Φv

∂x
− β1

∂C

∂x
+ Fx + ρg

∂w

∂x

= ρ
(∂2u

∂t2
+ 2Ω

∂w

∂t
− Ω2u

)
, (20)
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(
μ − P

2

)
∇2w +

(
λ + μ +

P

2

)∂e

∂z
− γ

∂T

∂z
+ b

∂Φv

∂z
− β1

∂C

∂z
+ Fz − ρg

∂u

∂x

= ρ
(∂2w

∂t2
− 2Ω

∂u

∂t
− Ω2w

)
, (21)

K
(
1 + τΘ

∂

∂t

)
T,ii =

(
1 + τ1

∂

∂t

)(
ρ CE

∂T

∂t
+ γT0

∂e

∂t
+ acT0

∂C

∂t
+ mT0

∂Φv

∂t

)
, (22)

α
(∂2Φv

∂x2
+

∂2Φv

∂z2

)
− b

(∂u

∂x
+

∂w

∂z

)
− ζΦv − ω0

∂Φv

∂t
+ mT + b∗2C = ρχ

∂2Φv

∂t2
, (23)

(
1 + τ2

∂

∂t

)(
dβ1

( ∂2e

∂x2
+

∂2e

∂z2

)
− dbc

(∂2C

∂x2
+

∂2C

∂z2

)
+ dac

(∂2T

∂x2
+

∂2T

∂z2

)

+ db∗2
(∂2Φv

∂x2
+

∂2Φv

∂z2

))
+

(
1 + τη

∂

∂t

)
Ċ = 0. (24)

The constitutive relations are

σxx = (λ + 2μ)
∂u

∂x
+ λ

∂w

∂z
− γT − P + bΦv − β1C, (25)

σyy = λe − γT − P + bΦv − β1C, (26)

σzz = (λ + 2μ)
∂w

∂z
+ λ

∂u

∂x
− γT − P + bΦv − β1C, (27)

σxz = μ
(∂u

∂z
+

∂w

∂x

)
− P

2

(∂w

∂x
− ∂u

∂z

)
, (28)

σzx = μ
(∂w

∂x
+

∂u

∂z

)
− P

2

(∂u

∂z
− ∂w

∂x

)
, (29)

σxy = σyz = 0. (30)

For assembly, we shall use the following non-dimensional parameters:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x′
i =

ω∗

c0
xi, u′

i =
ρc0ω

∗

γT0
ui, Ω′ =

Ω
ω∗ , θ =

T

T0
,

σ′
ij =

σij

γT0
, Φ′

v =
χ

γT0
Φv, C′ =

β1

γT0
C, g′ =

g

c0ω∗ ,

(t′, τ ′, τ ′
1, τ

′
Θ, τ ′

2, τ
′
η) = ω∗(t, τ, τ1, τΘ, τ2, τη), b∗ =

b

χ
, λ′

ij =
λij

γT0
.

(31)

In terms of the non-dimensional quantities defined in Eq. (31), we have

2μ − P

2ρc2
0

∇2u +
(2λ + 2μ + P

2ρc2
0

+ RH

) ∂e

∂x
− ∂θ

∂x
+ b∗

∂Φv

∂x
− ∂C

∂x
+ g

∂w

∂x

=
(
β2 ∂2u

∂t2
+ 2Ω

∂w

∂t
− Ω2u

)
, (32)

(2μ − P

2ρc2
0

)
∇2w +

(2λ + 2μ + P

2ρc2
0

+ RH

)∂e

∂z
− ∂θ

∂z
+ b∗

∂Φv

∂z
− ∂C

∂ z
− g

∂u

∂x

=
(
β2 ∂2w

∂t2
− 2Ω

∂u

∂t
− Ω2w

)
, (33)

(
1 + τΘ

∂

∂t

)
∇2θ =

(
1 + τ1

∂

∂t

)
(θ̇ + ζ1ė + ζ2Φ̇v + ζ3Ċ), (34)

∇2Φv − a1

(∂u

∂x
+

∂w

∂z

)
− a2Φv − a3

∂Φv

∂t
+ a4θ + a′′

4C = a5
∂2Φv

∂t2
, (35)

(
1 + τ2

∂

∂t

)
(∇2e + a6∇2θ − a8∇2C + a9∇2Φv) + a7(Ċ + τηC̈) = 0, (36)
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where

a1 =
bχ

ραω∗2 , a2 =
ζc2

0

αω∗2 , a3 =
ω0c

2
0

αω∗ , a4 =
mc2

0χ

γαω∗2 , a′′
4 =

b∗2c
2
0χ

β1αω∗2 ,

a5 =
ρc2

0χ

α
, a6 =

acρc2
0

β1γ
, a7 =

c2
0K

dβ2
1CE

, a8 =
bcρc2

0

β2
1

, a9 =
b∗2ρc2

0

χβ1
,

β2 = 1 +
ε0μ

2
rH

2
0

ρ
, ζ1 =

γ2T0

ρKω∗ , ζ2 =
mT0γ

ρCEχ
, ζ3 =

acT0γ

ρCEβ1
.

With the Helmholtz representation, we write the displacement vector u as follows:

u = gradΦ + curlΨ, Ψ = (0, Ψ, 0), (37)

where Φ(x, z, t) and Ψ(x, z, t) are the displacement potentials. This reduces to

(u, w) =
(∂Φ

∂x
+

∂Ψ
∂z

,
∂Φ
∂z

− ∂Ψ
∂x

)
,

∂2Φ
∂x2

+
∂2Φ
∂z2

= ∇2Φ,
∂u

∂z
− ∂w

∂x
= ∇2Ψ. (38)

Substituting Eq. (38) into Eqs. (32)–(36) yields
(
a11∇2 − β2 ∂2

∂t2
+ Ω2

)
Φ −

(
g

∂

∂x
− 2Ω

∂

∂t

)
Ψ − θ + b∗Φv − C = 0, (39)

(
g

∂

∂x
− 2Ω

∂

∂t

)
Φ +

(
a12∇2 − β2 ∂2

∂t2
+ Ω2

)
Ψ = 0, (40)

(
1 + τΘ

∂

∂t

)
∇2θ =

(
1 + τ1

∂

∂ t

)( .

θ +ζ1∇2 ∂Φ
∂t

+ ζ2
∂Φv

∂t
+ ζ3

.

C
)
, (41)

(
∇2 − a2 − a3

∂

∂t
− a5

∂2

∂t2

)
Φv − a1∇2Φ + a4θ + a′′

4C = 0, (42)
(
1 + τ2

∂

∂t

)
(∇2(∇2Φ) + a6∇2θ − a8∇2C + a9∇2Φv) +

(
a7

∂

∂t
+ a7τη

∂2

∂t2

)
C = 0. (43)

The constitutive relations are

σxx = b0u,x + b1w,z − θ − P

γT0
+ b∗Φv − C, (44)

σyy = b1∇2Φ − θ − P

γT0
+ b∗Φv − C, (45)

σzz = b0w,z + b1u,x − θ − P

γT0
+ b∗Φv − C, (46)

σxz = b2(u,z + w,x) − b3(w,x − u,z), (47)
σzx = b2(u,z + w,x) − b3(u,z − w,x), (48)
σxy = σyz = 0, (49)

where

(b0, b1, b2, b3) =
1

ρc2
0

(
λ + 2μ, λ, μ,

P

2

)
, a11 =

λ + 2μ

ρ c2
0

+ RH , a12 =
2μ − P

2ρc2
0

.

5 Normal mode analysis

The solution of the considered physical variable decomposed in terms of the normal modes
has the following form:

(u, w, e, θ, Φ, Ψ, h, E, σij , Φv, C)(x, z, t)

= (u∗, w∗, e∗, θ∗, Φ∗, Ψ∗, h∗, E∗, σ∗
ij , Φ∗

v, C∗)(z)eωt+iax, (50)
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where ω and a are in the x-direction, and u∗(z), w∗(z), e∗(z), θ∗(z), Φ∗(z), Ψ∗(z), h∗(z), E∗(z),
σ∗

ij(z), Φ∗
v(z), and C∗(z) are the maximum field quantities.

Substituting Eq. (50) into Eqs. (39)–(49) yields

(a 11D
2 − Λ1)Φ∗ − Λ2Ψ∗ − θ∗ + b∗Φ∗

v − C∗ = 0, (51)

Λ2Φ∗ + (a 12D
2 − Λ3)Ψ∗ = 0, (52)

− Λ5(D2 − a2)Φ∗ + (D2 − Λ4)θ∗ + Λ6Φ∗
v + Λ8C

∗ = 0, (53)

(D2 − Λ7)Φ∗
v + (−a 1D

2 + a1a
2)Φ∗ + a4θ

∗ + a′′
4C∗ = 0, (54)

(D4 − 2a2D2 + a4)Φ∗ + a6(D2 − a2)θ∗ + (Λ9 − a8D
2)C∗ + a9(D2 − a2)Φ∗

v = 0, (55)

σ∗
xx = iab0u

∗ + b1Dw∗ − θ∗ − P

γT0
+ b∗Φ∗

v − C∗, (56)

σ∗
yy = b1(D2 − a2)Φ∗ − θ∗ − P

γT0
+ b∗Φ∗

v − C∗, (57)

σ∗
zz = b0Dw∗ + iab1u

∗ − θ∗ − P

γT0
+ b∗Φ∗

v − C∗, (58)

σ∗
xz = (b2 + b3)Du∗ + (b2 − b3)iaw∗, (59)

σ∗
zx = (b2 − b3)Du∗ + (b2 + b3)iaw∗, (60)

σ∗
xy = σ∗

yz = 0, (61)

where

Λ1 = a11a
2 + β2ω2 − Ω2, Λ2 = iag − 2Ωω, Λ3 = a12a

2 + β2ω2 − Ω2,

Λ4 = a2 +
ωω2

ω1
, Λ5 =

ζ1ωω2

ω1
, Λ6 = −ζ2ωω2

ω1
, Λ7 = a2 + a2 + a3ω + a 5ω

2,

Λ8 = −ζ3ωω2

ω1
, Λ9 = a7

ωω∗
2

ω∗
1

+ a8a
2, ω1 = 1 + τΘω,

ω2 = 1 + τ1ω, ω∗
1 = 1 + τ2ω, ω∗

2 = 1 + τηω.

Eliminating Ψ∗(z), Φ∗
v(z), C∗(z), and θ∗(z) in Eqs. (51)–(55), we get the differential equation

for Φ∗(z) as follows:

(D10 − AD8 + BD6 − CD4 + ED2 − L)(Φ∗(z)) = 0. (62)

Similarly, we have

(D10 − AD8 + BD6 − CD4 + ED2 − L)(Ψ∗(z), θ∗(z), Φ∗
v(z), C∗(z)) = 0, (63)

where

A = − 1
F

(a12(r4 − r1r2 − Λ8r3 + Λ5r6 + r′5) − Λ3r1),

B =
1
F

(a12(L1 + L2) + a12L12 + L13 − r7 + Λ3(r1r2 + Λ8r3 − r4 + Λ5r6)),

C = − 1
F

(a2(a2r10 + L10) + L11 + r12r2 + Λ3L19 + r8r11 + Λ3Λ7(Λ5r6 − Λ8r3 − Λ4r1)

+ r′5(1 + 2a2a12Λ4) + a′′
4b∗L7 + L14),

E =
1
F

(Λ3L20 + L7(Λ7r9 − L17) + Λ1Λ9L9 − r8(L15 + a2a9a
′′
4 − L3)

+ a2(L15(a 12(Λ1 − a12L9) + a 11Λ3 + L4 − a2L18))),

L = − 1
F

(a4Λ3(L9 + r13 + L16) + a2(Λ3r14 − a6Λ2
2Λ7Λ8 − r8L15) − Λ9r8L9).
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Since

F = a12r1, r1 = 1 − a8a11, r2 = Λ4 + Λ7, r3 = 1 + a6a11, r6 = a6 + a8,

r′5 = a1a9 + a′′
4b∗ − a9a11a

′′
4 , r7 = a8Λ2

2, r4 = a11Λ9 − a1a8b
∗ − 2a2 + a8Λ1,

r5 = a1(Λ9 + a8Λ4 − a6Λ8 + a2a8) − a4Λ8 + a4a8Λ5, L9 = a4Λ6 − Λ4Λ7,

L1 = −r1L9 + b∗r5 + Λ7Λ8r3 + r2(2a2 − a8Λ1 − a11Λ9), r8 = Λ1Λ3 + Λ2
2,

L2 = a4 + a2Λ8(1 + r3) + a6Λ1Λ8 − r6(Λ5Λ7 + a2Λ5 + a1Λ6) − a2a6Λ5 − Λ9(Λ1 + Λ5),

r9 = Λ4 + Λ8, L7 = a4a12 + 2a2Λ3, L3 = a8L9 − Λ4Λ9 + a6Λ7Λ8 + a2a6Λ8,

r10 = Λ3 + a12(r2 + Λ8 − a6Λ5),

L5 = a4a11Λ6 + a1Λ4b
∗ + a4Λ5b

∗ − Λ1Λ7 − a1Λ6 − a11Λ4Λ7 − a2Λ5,

r14 = a12Λ5Λ7 + Λ3Λ5 + a1a12Λ6,

L8 = a4Λ6 + a4Λ8b
∗ + a6(Λ5Λ7 + a1Λ6 + a1Λ8b

∗),
r11 = Λ9 + a8r2 − a6Λ8, r12 = Λ9(a11Λ3 + a12Λ1),
L4 = a6a11Λ4Λ7Λ8 − a12(Λ9(Λ5Λ7 − a1Λ4b

∗ − a4Λ5b
∗ + Λ6) − a6Λ1Λ7Λ8)

+ b∗Λ3(a1(Λ9 + a8Λ4 − 2a6Λ8) + a4a8Λ5),

L6 = a4Λ8 − a2(2a4Λ6 − a2a6Λ5 − 2a1a6Λ6 − a1a8Λ6 − a8Λ5Λ7 − 2a6Λ5Λ7 − 2a4Λ8b
∗),

L10 = a12r13 + (a6 + r6)r14 − (1 + r3)(Λ3Λ8 + a12Λ7Λ8) − 2Λ3Λ7,

L11 = a12(Λ9(a11Λ4Λ7 − a4Λ3b
∗ − a1Λ4b

∗ − a4a11Λ6 + Λ5Λ7 + a1Λ6)
− Λ1(a8L9 + a6Λ7Λ8)) + a1Λ3(a8Λ7 + a6Λ6),

r13 = 2L9 + b∗(2a4Λ8 − a1a8Λ4 − a4a8Λ5 + 2a1a4Λ8 − a1Λ9) + Λ5Λ9 − a6Λ1Λ8,

L12 = −a9(a1Λ8 + a4Λ5 + 2a2a1) + a′′
4 (a9(Λ1 + aΛ5 + a11Λ8 + a2a11) + a6Λ5b

∗ + r3Λ6),

L13 = −2a2a11a
′′
4b∗ − r′5(Λ3 + a11Λ4),

L14 = a2(a9(a′′
4a11Λ4 − a12(2a′′

4Λ5 + a′′
4Λ1 + a4a11Λ8 − 2a1Λ8 − 2a4Λ5 − a2a1)

− a6a
′′
4a12(a11Λ6 + 2Λ5b

∗) − 2a′′
4a12Λ6)

− a9(a′′
4Λ2

2 + a4a12Λ1Λ8 + a′′
4a12Λ1Λ5) − a6a

′′
4a12Λ1Λ6,

L15 = a4a9Λ8 + a6a
′′
4Λ6 + a9a

′′
4Λ4,

L16 = a1a9r9Λ3 + a4a9Λ3Λ5 − a′′
4Λ3Λ6 + a′′

4Λ3Λ4b
∗ − a9a

′′
4Λ3Λ5 − a6a

′′
4Λ3Λ5b

∗,

L17 = a1a9Λ8 − a′′
4Λ6 + a4a9Λ5 − a9a

′′
4Λ5 − L15,

L18 = a1a9Λ3 + a′′
4Λ3b

∗ + a1a9a12Λ4 + a12a
′′
4Λ4b

∗, L19 = a4r1Λ6 − r5b
∗ − L12,

L20 = a4r2 + Λ9L5 + L6 − 2Λ4r
′
5,

Eq. (62) can be factorized as follows:

(D2 − Υ2
1)(D

2 − Υ2
2)(D

2 − Υ2
3)(D

2 − Υ2
4)(D

2 − Υ2
5)Φ

∗(z) = 0, (64)

where Υ2
j (j = 1, 2, 3, 4, 5) are the roots of the characteristic equation (64).

The solution of Eq. (64) when z → ∞ is

Φ∗(z) =
5∑

j=1

Rje−Υjz, (65)

Ψ∗(z) =
5∑

j=1

RjH1je−Υjz, (66)
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Φ∗
v(z) =

5∑
j=1

RjH2je−Υjz, (67)

C∗(z) =
5∑

j=1

RjH3je−Υjz, (68)

θ∗(z) =
5∑

j=1

RjH4je−Υjz, (69)

u∗(z) =
5∑

j=1

M1jRje−Υjz, (70)

w∗(z) =
5∑

j=1

M2jRje−Υjz, (71)

σ∗
xx =

5∑
j=1

M3jRje−Υjz , (72)

σ∗
yy =

5∑
j=1

M4jRje−Υjz, (73)

σ∗
zz =

5∑
j=1

M5jRje−Υjz, (74)

σ∗
xz = −

5∑
j=1

M6jRje−Υjz, (75)

where

H1j =
Λ2

Λ3 − a12k2
j

,

H2j =
(Γ2Γ4−Λ5Γ1)(a′′

4a6Γ1−a4Γ6)+(a1a6Γ2
1+a4Γ7)(Λ8−Γ2)−Λ2Γ2(a′′

4a6Γ1 − a4Γ6)H1j

(Λ8 − Γ2)(a6Γ1Γ3 − a4a9Γ1) − (a′′
4a6Γ1 − a4Γ6)(b∗Γ2 + Λ6)

,

H3j =
(a6Γ1Γ3 − a4a9Γ1)(Λ2Γ2H1j + (Γ2Γ4 − Λ5Γ1)) + (a1a6Γ2

1 + a4Γ7)(b∗Γ2 + Λ6)
(a′′

4a6Γ1 − a4Γ6)(b∗Γ2 + Λ6) − (Λ8 − Γ2)(a6Γ1Γ3 − a4a9Γ1)
,

H4j = −Γ7 + Γ6H3j + a9Γ1H2j

a6Γ1
, M1j = ia − ΥjH1j , M2j = Υj + iaH1j ,

M3j = iab0M1j + b1ΥjM2j − H4j − P

γT0
+ b∗H2j − H3j ,

M4j = b1Γ1 − H4j − P

γT0
+ b∗H2j − H3j ,

M5j = iab1M1j + b0ΥjM2j − H4j − P

γT0
+ b∗H2j − H3j ,

M6j = (b2 + b3)ΥjM1j + iaM2j(b2 − b3).

In the above equations,

Γ1 = Υ2
j − a2, Γ2 = Υ2

j − Λ4, Γ3 = Υ2
j − Λ7, Γ4 = a11Υ2

j − Λ1,

Γ5 = (Λ6 + Λ8b
∗), Γ6 = (Λ9 − Υ2

ja8), Γ7 = (Υ4
j − 2a2Υ2

j + a4).
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6 Applications

We take the boundary conditions at z = 0 as follows:
⎧⎪⎪⎨
⎪⎪⎩

θ(x, 0, t) = f(x, 0, t) = f∗eωt+iax, (σxx + λxx)(x, 0, t) = − P

γT0
,

(σxz + λxz)(x, 0, t) = 0,
∂C

∂z
= 0,

∂Φv

∂z
= 0,

(76)

where f(x, t) is an arbitrary function, f∗ is a constant, λxx = μeH
2
0e, λxz = 0, and e = ∇2Φ.

With the help of Eqs. (65)–(67), considering the boundary conditions in Eq. (76), we can
obtain the following equations:

5∑
j=1

H4jRj = f∗, (77)

5∑
j=1

(M3j + RHΓ1)Rj = 0, (78)

5∑
j=1

M6jRj = 0, (79)

5∑
j=1

ΥjH2jRj = 0, (80)

5∑
j=1

ΥjH3jRj = 0, (81)

where the parameters R1, R2, · · · , R5 can be determined by Eqs. (77)–(81). Therefore, we obtain
the expressions of the displacement components, the force stress, the temperature, the volume
fraction field, and the concentration of diffusion.

7 Numerical results and discussion

We take the values of the physical parameters for copper as follows[13]:

λ = 7.76 × 1010 N · m−2, μ = 3.86 × 1010 kg · m−1 · s−2, CE = 383.1 J · kg−1 · K−1,

K = 386 W · m−1 · K−1, αt = 1.78 × 10−5 K−1, ρ = 8 954 kg · m−3,

T0 = 293 K, f∗ = 1, ω = ω0 + iξ, ω0 = 4, ξ = −4.1, a = 0.77,

τ1 = 0.95, τΘ = 0.05, t = 0.001, x = 1.5, 0 � z � 5.

The void parameters are

b = 1.138 49× 1010, ω0 = 0.078× 10−3, χ = 1.756× 10−15,

α = 3.688 × 10−5, m = 2 × 106, ζ = 1.475× 1010.

The diffusion parameters are

bc = 0.9 × 106, ac = 1.2 × 104, τ2 = 0.5, τη = 0.9,

αc = 1.98 × 10−4, d = 0.85 × 10−8, b∗2 = 2.9 × 1012.
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A MATLAB package is used for the calculations.
Figures 2–8 show the calculation results predicted by two different generalized thermoelas-

ticity models, i.e., the L-S model and the DPL model. In these figures, the solid curves represent
the results of the DPL model, the dashed curves represent the results of the L-S model, and
all variables are non-dimensional. Due to the boundary conditions, the stress components σxx

and σxz based on both the L-S model and the DPL model start from zero. The values of u, w,
θ, σxx, σxz , Φv, and C converge to zero. When β2 = 1, i.e., ε0 = 1, μr = 1, and H0 = 0, the
effects are without the electromagnetic field. When β2 = 1.3, i.e., ε0 = 1, μr = 1, and H0 = 50,
and β2 = 1.7, i.e., ε0 = 1, μr = 1, and H0 = 80, the effects are with the electromagnetic field.

-

  

  

-

-

Ω

Ω

Ω

-

Fig. 2 Variations of the horizontal displacement u with different values of the magnetic field H0, the
rotation Ω, the gravity g, and the initial stress P

Figure 2 shows the variations of the horizontal displacement u along the z-axis with various
values of the magnetic field H0, the rotation Ω, the gravity g, and the initial stress P by using
the L-S and DPL models. It can be seen that the horizontal displacement u increases when H0

and P increase, but decreases when Ω and g increase. Moreover, for the magnetic field H0, the
rotation Ω, and the initial stress P , the values of u obtained with the L-S model are larger than
those obtained with the DPL model, while for the gravity g, the values of u obtained with the
DPL model are larger than those with the L-S model. When z tends to infinity, the values of
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u approach zero.
Figure 3 shows the variations of the vertical displacement w with different values of the

magnetic field H0, the rotation Ω, the gravity g, and the initial stress P along the axial z by
using the L-S and DPL models. It is noticed that the vertical displacement w increases when
g increases, while decreases when H0, Ω, and P increase. Moreover, for the magnetic field H0,
the rotation Ω, and the initial stress P , the values of w obtained with the L-S model are larger
than those obtained with the DPL model, while for the gravity g, the values of w obtained with
the DPL model are larger than those with the L-S model. When z tends to infinity, the values
of w approach zero. Besides, the effects of the magnetic field and the initial stress are greater
than those of the rotation and the gravity on the vertical displacement w.

-

-

-

-

Ω  Ω  Ω  

      

Fig. 3 Variations of the vertical displacement w with different values of the magnetic field H0, the
rotation Ω, the gravity g, and the initial stress P

Figure 4 shows the variations of the temperature distribution θ with different values of the
magnetic field H0, the rotation Ω, the gravity g, and the initial stress P along the axial z by
using the L-S and DPL models. It is noticed that θ increases when g increases, while decreases
when H0, Ω, and P increase. Moreover, for the magnetic field H0, the rotation Ω, the gravity
g, and the initial stress P , the values of θ obtained with the L-S model are larger than those
obtained with the DPL model. When z tends to infinity, θ approaches zero.
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-

Fig. 4 Variations of the temperature θ with different values of the magnetic field H0, the rotation Ω,
the gravity g, and the initial stress P

Figure 5 shows the variations of the fraction field Φv with different values of the magnetic
field H0, the rotation Ω, the gravity g, and the initial stress P by using the L-S and DPL
models. It is noticed that Φv increases when H0, P , and Ω increase, while decreases when g
increases. Moreover, for the magnetic field H0, the rotation Ω, the gravity g, and the initial
stress P , the values of Φv obtained with the DPL model are larger than those obtained with
the L-S model.

Figure 6 shows the variations of the stress component σxx with different values of the mag-
netic field H0, the rotation Ω, the gravity g, and the initial stress P by using the L-S and DPL
models. It is noticed that σxx increases when H0 and P increase, while decreases when g in-
creases. When Ω increases, σxx first decreases, and then increases. Moreover, for the magnetic
field H0, the rotation Ω, the gravity g, and the initial stress P , the values of σxx obtained with
the DPL model are larger than those obtained with the L-S model.

Figure 7 displays the variations of the stress component σxz with different values of the
magnetic field H0, the rotation Ω, the gravity g, and the initial stress P by using the L-S and
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Ω
Ω
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-

Fig. 5 Variations of the fraction field Φv with different values of the magnetic field H0, the rotation
Ω, the gravity g, and the initial stress P

DPL models. It is noticed that σxz decreases when H0 and P increase, while increases when
Ω and g increase. Moreover, for the magnetic field H0, the rotation Ω, the gravity g, and the
initial stress P , the values of σxz obtained with the L-S model are larger than those obtained
with the DPL model. When z tends to infinity, σxz approaches zero.

Figure 8 shows the variations of the strength of diffusion C with different values of the
magnetic field H0, the rotation Ω, the gravity g, and the initial stress P by using the L-S and
the DPL models. It is noticed that C decreases when H0, Ω, g, and P increase. Moreover,
for the magnetic field H0, the rotation Ω, the gravity g, and the initial stress P , the values of
C obtained with the DPL model are larger than those obtained with the L-S model. When z
tends to infinity, C approaches zero.

8 Conclusions

In this paper, the effects of the electromagnetic field, the gravity field, the rotation, and
the initial stress on an electro-magneto-thermoelastic medium with diffusion and voids in a



1150 S. M. ABO-DAHAB, A. M. ABD-ALLA, and A. A. KILANY

  

-

-

-

-

Ω

Ω
Ω

Fig. 6 Variations of the stress component σxx with different values of the magnetic field H0, the
rotation Ω, the gravity g, and the initial stress P

generalized thermoelastic half-space are studied by using the L-S and DPL models. The analysis
indicates some conclusions as follows:

(i) The effects of diffusion and voids on the physical quantities are significant. The horizontal
displacement u increases when H0 and g increase, while decreases when Ω and g increase. The
vertical displacement w increases when g increases, while decreases when H0, Ω, and P increase.
Φv increases when H0, P , and Ω increase, while decreases when g increases. θ decreases when
H0, P , and Ω increase, while increases when g increases. σxz decreases when H0 and P increase,
while increases when Ω and g increase. σxx increases when H0 and P increase, while decreases
when Ω and g increase. When H0, Ω, g, and P increase, C decreases.

(ii) The solutions obtained with the L-S model and the DPL model have similar tendencies
along the z-direction. When z tends to infinity, the values of the studied physical quantities
approach zero.

(iii) The results are useful in the design of new materials, and the techniques applied in the
present article are applicable to a wide range of problems in thermodynamics and thermoelas-
ticity.
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Fig. 7 Variations of the stress component σxz with different values of the magnetic field H0, the
rotation Ω, the gravity g, and the initial stress P
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