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Abstract The two-dimensional (2D) Eshelby tensors are discussed. Based upon the
complex variable method, an integrity basis of ten isotropic invariants of the 2D Eshelby
tensors is obtained. Since an integrity basis is always a polynomial functional basis, these
ten isotropic invariants are further proven to form an irreducible polynomial functional
basis of the 2D Eshelby tensors.
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Nomenclature

M (2), two-dimensional (2D) Eshelby tensor;
O2, orthogonal group in the 2D physical

space;
R2, rotation group in the 2D physical space;
Q(θ), rotation of angle θ in the 2D physical

space;
eQ, special reflection in the 2D physical space;
Hm, mth-order irreducible tensor space in the

2D physical space;
ei, orthonormal base in the 2D physical

space;
R, real number field;
C

n, complex number field with the dimension
n;

Re(x), real part of a complex number x;
⊗, tensor product.

1 Introduction

The Eshelby problem of linear elasticity exists in the infinite region Ω induced by releasing
either the transformation strains or the eigenstrains in a subdomain ω, called an inclusion. To
describe this objection precisely, we could express the strain field εij(x) in a linear form as
follows:

εij(x) = Σω
ijkl(x)ε0kl,
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where ε0ij is a second-order constant eigenstrain tensor, and the fourth-order tensor Σω
ijkl(x)

is the Eshelby tensor field, corresponding to an inclusion ω. Eshelby[1–2] proved that the
Eshelby tensor field was uniform inside ω if the inclusion was elliptic and ellipsoidal in two-
dimensional (2D) and three-dimensional (3D) elasticities, respectively. In such a condition, the
Eshelby tensor field Σω is called the Eshelby tensor, and this significant property is called the
Eshelby uniformity. The Eshelby tensors and the Eshelby uniformity have wide applications in
engineering and physical fields, e.g., elliptical and non-elliptical inclusions[3–5], matrix-inclusion
composites[6–10], non-uniform Gaussian and exponential eigenstrains within ellipsoids[11], and
have become the subject of some extensive studies[12–15].

Moreover, the tensor function representation theory is well established and of prime impor-
tance in both theoretical and applied mechanics[16]. It was introduced to describe the general
consistent invariant forms of the nonlinear constitutive equations and to determine the number
and the type of the involved scalar variables. In the latter half of the twentieth century, the
representations in complete and irreducible forms of vectors, second-order symmetric tensors,
and second-order skew-symmetric tensors for both isotropic and hemitropic invariants were
thoroughly investigated by Zheng[16], Wang[17–19], Smith[20], and Boehler[21]. For higher order
tensors, Smith and Bao[22] presented the minimal integrity bases for the third- and fourth-
order symmetric and traceless tensors. In 2014, Olive and Auffray[23] presented an integrity
basis with thirteen isotropic invariants of a third-order 3D symmetric tensor, and showed that
the Olive-Auffray integrity basis was actually a minimal integrity basis. In 2017, Olive[24] and
Olive et al.[25] gave a minimal integrity basis for the elasticity tensors with 297 invariants. Very
recently, a number of new results appeared. Liu et al.[26] gave a minimal integrity basis and
an irreducible functional basis for the isotropic invariants of the Hall tensors. Chen et al.[27]

showed that any minimal integrity basis of a third-order 3D symmetric and traceless tensor was
indeed an irreducible functional basis of that tensor. Chen et al.[28] presented an eleven invari-
ant irreducible functional basis for a third-order 3D symmetric tensor. This eleven invariant
irreducible functional basis is a proper subset of the Olive-Auffray minimal integrity basis of
the tensor.

Even though the Eshelby tensor has wide applications in mechanics, its minimal integrity
basis and irreducible functional basis have not been decided yet. Because the Eshelby tensor
has a weaker symmetry than the elasticity tensor, i.e., M

(2)
ijkl �= M

(2)
klij in general, the Eshelby

tensor owns more independent elements. Moreover, in the 3D physical space, as a conclusion
previously introduced, the elasticity tensor has a minimal integrity basis with 297 invariants.
For these two reasons, it may need a large number of invariants to form a minimal integrity
basis for 3D Eshelby tensors. Consequently, in this article, we only study the invariants of
Eshelby tensors in the 2D physical space.

The complex variable method is our fundamental tool for recovering the Eshelby tensor
from a set of isotropic invariants, i.e., the integrity basis. It was established by Pierce[29], and
further applied to plane elasticity by Vianello[30]. In particular, Olive et al.[25] gave a summary
of this method from an algebraic viewpoint. We denote 2D Eshelby tensors as M (2). By the
orthogonal irreducible decomposition[31], M (2) could be split into six parts, i.e., three scalars
(λ, μ, and υ), two second-order irreducible (symmetric and traceless) tensors (D1 and D2), and
one fourth-order irreducible tensor D. Therefore, we only need to study the actions on D1,
D2, and D of the 2D orthogonal group O2. It is a familiar conclusion in the invariant theory
that, for any fixed positive integer m, the dimension of an mth-order 2D irreducible tensor
space is two, which helps us to construct a one-to-one correspondence between an irreducible
tensor and a complex number. Moreover, there exists an isomorphism between the action of
O2 on a second-order irreducible tensor and the action of the same group on the products of
the complex planes. Based on these two elementary facts, complexifying the problem becomes
a useful approach to study the action of O2 on the second-order irreducible tensor space.
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The structure of this paper is as follows. To make our statement as self-contained as possible,
we first give some notations and briefly review some basic definitions in the representation theory
for the tensor functions in Section 2. In Section 3, starting from the irreducible decomposition
of M (2), we further review the complex variable method, and propose a set of ten polynomial
isotropic invariants of M (2). In Section 4, we prove that these ten invariants are functionally
irreducible. Consequently, we obtain an irreducible polynomial functional basis of M (2), which
is the main goal of this paper.

2 Preliminaries

In this paper, we denote Hm as the mth-order irreducible tensor space in the 2D physical
space. As a classical terminology, O2 is the group of orthogonal transformations in the 2D
physical space, and R2 is the rotation subgroup of O2. e1 := (1, 0)T and e2 := (0, 1)T are a
pair of orthonormal bases in the 2D physical space. Q̃ is the reflection transformation such that

Q̃e1 = e1, Q̃e2 = −e2.

Obviously, O2 is generated by R2 and Q̃.
Let T be an mth-order tensor represented by Ti1i2···im under some orthonormal coordinates.

A scalar-valued polynomial function f(Ti1i2···im) is called a polynomial isotropic invariant of T
if the function value is independent of the selection of the coordinate system, i.e.,

f(Ti1i2···im) = f(Qi1j1Qi2j2 · · ·QimjmTj1j2···jm). (1)

We could rewrite Eq. (1) in a short form as follows:

f(T ) = f(Q ∗ T ),

where Q is an arbitrary orthogonal matrix. ∗ is called the O2-action and defined as the right-side
in Eq. (1). Moreover, a set of tensors

O2 ∗ T = {g ∗ T : g ∈ O2}

is called the O2-orbit of T .
Once we have one polynomial invariant, we could easily construct an infinite number of

polynomial invariants from it. For this reason, our main goal is to find a finite set of polynomial
invariants separating the O2-orbits. Therefore, we introduce the definitions of the integrity basis
and the polynomial functional basis as follows.

Definition 1 Let {f1, f2, · · · , fn} be a finite set of polynomial isotropic invariants of T . If
any polynomial isotropic invariant of T is polynomial of f1, f2, · · · , fn, we call {f1, f2, · · · , fn}
a set of integrity basis of T . In addition, an integrity basis is minimal if no proper subset of it
is an integrity basis.

Similarly, we give the definition for the polynomial functional basis (hereinafter called the
functional basis).

Definition 2 Let {f1, f2, · · · , fn} be a finite set of polynomial isotropic invariants of
T . If any isotropic invariant of T is expressible by a function of {f1, f2, · · · , fn}, we call
{f1, f2, · · · , fn} a set of functional basis of T . In addition, a functional basis is minimal (or
irreducible) if no proper subset of it is a functional basis.

It is known in the invariant theory that, the algebra of invariant polynomials on the finite-
dimensional representation V of O2 is finitely generated[32]. In other words, it claims the
existence of a set of integrity basis of M (2). Since the integrity bases are also functional bases
(but not vice versa), both the integrity bases and the functional bases could separate orbits.
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3 Orthogonal transformations and ten isotropic invariants of M (2)

3.1 Orthogonal irreducible decomposition of M (2)

Due to the minor index symmetry of M (2), we have

M
(2)
ijkl = M

(2)
jikl = M

(2)
ijlk.

The irreducible decomposition of M (2) takes the form[33]:

M
(2)
ijkl = λδijδkl + 2μδik̂δjl̂ + v(δik̂εjl̂ + δjk̂εil̂) + δijD

1
kl + δklD

2
ij + Dijkl , (2)

where
λ =

3
8
M

(2)
iikk − 1

4
M

(2)
ikik, μ =

1
4
M

(2)
ikik − 1

8
M

(2)
iikk, v =

1
4
εijM

(2)
ikjk (3)

are three scalars,

D1
ij =

1
2
M

(2)
kkij −

1
4
M

(2)
kkllδij , D2

ij =
1
2
M

(2)
ijkk − 1

4
M

(2)
kkllδij (4)

are two second-order irreducible tensors (denoted as D1 and D2, respectively), and D (= Dijkl)
is a fourth-order irreducible tensor deduced by Eqs. (2), (3), and (4). Here, the symbol ·̂ in the
subscripts means calculating the average of the circulant symmetric monomials, e.g.,

δik̂δjl̂ =
1
2
(δikδjl + δilδjk).

3.2 Orthonormal bases of H2 and H4 and orthogonal transformations
It is known that, for any fixed positive integer m, the dimension of Hm is two. Inspired

by Vilanello[30], we could find two appropriate pairs of orthonormal bases in H2 and H4,
respectively. In particular, we choose

E1 =
√

2
2

(e1 ⊗ e1 − e2 ⊗ e2), E2 =
√

2
2

(e1 ⊗ e2 + e2 ⊗ e1)

as a pair of orthonormal bases in H2 and

F1 =
√

8
8

(e1 ⊗ e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2 ⊗ e2 − e1 ⊗ e1 ⊗ e2 ⊗ e2 − e1 ⊗ e2 ⊗ e1 ⊗ e2

− e2 ⊗ e1 ⊗ e1 ⊗ e2 − e2 ⊗ e1 ⊗ e2 ⊗ e1 − e1 ⊗ e2 ⊗ e2 ⊗ e1 − e2 ⊗ e2 ⊗ e1 ⊗ e1),

F2 =
√

8
8

(e1 ⊗ e1 ⊗ e1 ⊗ e2 + e1 ⊗ e1 ⊗ e2 ⊗ e1 + e1 ⊗ e2 ⊗ e1 ⊗ e1 + e2 ⊗ e1 ⊗ e1 ⊗ e1

− e2 ⊗ e2 ⊗ e2 ⊗ e1 − e2 ⊗ e2 ⊗ e1 ⊗ e2 − e2 ⊗ e1 ⊗ e2 ⊗ e2 − e1 ⊗ e2 ⊗ e2 ⊗ e2)

as a pair of orthonormal bases in H4. Here, ⊗ stands for the tensor product. Similar to the
representation of a vector in the 2D Cartesian coordinates, let θ1, θ2, and θ3 be the angles
between D1 and E1, D2 and E1, and D and F1, respectively. Besides, some definitions are
necessary:

H1 := |D1| cos θ1 = D1 · E1, H2 := |D1| sin θ1 = D1 · E2,

L1 := |D2| cos θ2 = D2 · E1, L2 := |D2| sin θ2 = D2 · E2,

K1 := |D| cos θ3 = D · F1, K2 := |D| sin θ3 = D · F2.
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With some calculations, a rotation Q(θ) ∈ R2 could satisfy the following identities:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Q(θ) ∗ E1 = cos(2θ)E1 + sin(2θ)E2,

Q(θ) ∗ E2 = − sin(2θ)E1 + cos(2θ)E2,

Q(θ) ∗ F1 = cos(4θ)F1 + sin(4θ)F2,

Q(θ) ∗ F2 = − sin(4θ)F1 + cos(4θ)F2.

(5)

Moreover, for Q̃, we have

Q̃ ∗ E1 = E1, Q̃ ∗ E2 = −E2, Q̃ ∗ F1 = F1, Q̃ ∗ F2 = −F2. (6)

Therefore, each Q(θ) ∈ R2 acts on H2 or H4 as a rotation of 2θ or 4θ, respectively. Under
the reflection transformation Q̃, E1 and F1 are unchanged, while E2 and F2 are turned to the
opposite ones. In view of this conclusion, a one-to-one mapping from an irreducible tensor
in H2 or H4 to a complex number could be constructed. More precisely, D1, D2, and D are
related to the complex numbers z1, z2, and z3 in sequence. The relations could be described as
follows:

z1 = H1 + iH2 = |D1| · eiθ1 ,

z2 = L1 + iL2 = |D2| · eiθ2 ,

z3 = K1 + iK2 = |D| · eiθ3 ,

where i is the imaginary unit. In other words, we regard the component of the “horizontal”
axis as the real part of z, and the component of the “vertical” axis as the imaginary part of z.
Moreover, the action of Q(θ) or Q̃ on the spaces H2 and H4 could be seen as an action on the
complex plane C. More precisely, according to Eqs. (5) and (6), we have

Q(θ) ∗ (z1, z2, z3) = (z1 · ei(2θ), z2 · ei(2θ), z3 · ei(4θ)) ∈ C
3, (7)

Q̃ ∗ (z1, z2, z3) = (z̄1, z̄2, z̄3) ∈ C
3 (8)

for any θ ∈ [0, 2π).
3.3 Polynomial invariants of M (2)

Now, we take our aim at the polynomial invariants of M (2). For any polynomial function p
of M (2), we can rewrite p(M (2)) as follows:

p(M (2)) =
∑

Cabcdefgjkλaμbvczd
1 z̄e

1z
f
2 z̄g

2zj
3z̄

k
3 , (9)

where a, b, c, d, e, f , g, j, and k are nine nonnegative integers. Cabcdefgjk ∈ C is the coefficient
of each monomial. Since p(M (2)) is a real-valued polynomial, we have

Cabcdefgjk = Cabcedgfkj .

In addition, because O2 is generated by R2 and Q̃, p(M (2)) should be invariant under any
rotation Q(θ) and the reflection Q̃, which yields

p(M (2)) = p(Q(θ) ∗ M (2)) and p(M (2)) = p(Q̃ ∗ M (2)), (10)

where θ is an arbitrary angle. In a viewpoint of complex field, the action of Q(θ) takes the form

p(Q(θ) ∗ M (2)) =
∑

Cabcdefgjkλaμbvczd
1 z̄e

1z
f
2 z̄g

2zj
3z̄

k
3eiθ(2(d−e)+2(f−g)+4(j−k)),



1174 Zhenyu MING, Liping ZHANG, and Yannan CHEN

while the action of Q̃ takes the form

p(Q̃ ∗ M (2)) =
∑

Cabcdefgjkλaμbvcze
1 z̄

d
1zg

2 z̄f
2 zk

3 z̄j
3.

Combining with Eq. (10), we conclude that the degrees of each monomial in Eq. (9) satisfy the
Diophantine equation as follows:

d − e + f − g + 2(j − k) = 0, (11)

and the coefficients are restricted to

Cabcdefgjk = Cabcedgfkj . (12)

From Eqs. (10) and (12), we know that each coefficient Cabcdefgjk is a real number. Furthermore,
each monomial Cabcdefgjkλaμbvczd

1 z̄e
1z

f
2 z̄g

2zj
3z̄

k
3 should obey the Diophantine equation (11).

A solution of the Diophantine equation is irreducible if it is not the sum of two or more
nonnegative and nontrivial solutions. The following proposition gives a maximal irreducible
solution of Eq. (11). It can deduce that any nonnegative solution of Eq. (11) is a sum of these
irreducible solutions. For convenience, we denote w = (d, e, f, g, j, k) as a vector of six compo-
nents.

Proposition 1 Let

w1 = (1, 1, 0, 0, 0, 0), w2 = (0, 0, 1, 1, 0, 0), w3 = (0, 0, 0, 0, 1, 1),

w4 = (2, 0, 0, 0, 0, 1), w5 = (0, 0, 2, 0, 0, 1), w6 = (1, 0, 0, 1, 0, 0),

w7 = (1, 0, 1, 0, 0, 1), w8 = (0, 1, 1, 0, 0, 0), w9 = (0, 1, 0, 1, 1, 0),

w10 = (0, 2, 0, 0, 1, 0), w11 = (0, 0, 0, 2, 1, 0).

Then, (i) w1, w2, · · · , w11 are eleven irreducible solutions of Eq. (11); (ii) each non-negative
solution of Eq. (11) is a sum of these irreducible solutions.

Proof Property (i) can be easily verified. In order to prove Property 1 (ii), we denote
Γ = d + e + f + g + j + k and complete the proof by mathematical induction.

When Γ = 2, 3, it is easy to testify that w1, w2, · · · , w11 form the whole feasible solutions
of Eq. (11) in these two cases. To take a further step, we assume that if the sum of the six com-
ponents of a solution is not more than Γ (� 3), this solution could be a sum of w1, w2, · · · , w11.
Now, we consider a new feasible solution w = (d, e, f, g, j, k) satisfying

d + e + f + g + j + k = Γ + 1, d − e + f − g + 2(j − k) = 0.

We finish the proof within two cases.
Case 1 If j = k, we have d − e + f − g = 0.
In this case, if d = e, we have

f = g, j + k = Γ + 1 � 4,

which implies j, k � 1. Therefore, (d, e, f, g, j−1, k−1) with the sum Γ−1 is also a solution.
By the assumption, (d, e, f, g, j − 1, k− 1) can be represented as the sum of w1, w2, · · · , w11.
Combined with (d, e, f, g, j, k) = (d, e, f, g, j − 1, k − 1) + w3, the conclusion is valid.

If d �= e, without loss of generality, let d > e. Then, g > f . Similarly, we have d, g � 1 and
(d − 1, e, f, g − 1, j, k) can be represented as the sum of w1, w2, · · · , w11, indicating that the
conclusion is valid.
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Case 2 If j �= k, we could assume j > k. Then, e + g � 2 + d + f � 2. Since

(d, e, f, g, j, k) = (d, e − 1, f, g − 1, j − 1, k) + w9 := u1 + w9,

(d, e, f, g, j, k) = (d, e − 2, f, g, j − 1, k) + w10 := u2 + w10,

(d, e, f, g, j, k) = (d, e, f, g − 2, j − 1, k) + w11 := u3 + w11,

at least one of u1, u2, and u3 is a non-negative solution when e + g � 2, which completes the
proof.

Then, we relate each solution (d, e, f, g, j, k) to a complex monomial zd
1 z̄e

1z
f
2 z̄g

2zj
3z̄

k
3 , so that

the eleven solutions w1, w2, · · · , w11 could correspond to eleven complex monomials. Since the
invariants are real-valued functions, we only need to consider the real parts of these complex
monomials. Hence, we obtain seven different polynomial invariants J1, J2, · · · , J7 of M (2).
Their relations to D1, D2, and D are presented concurrently as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1 → J1 := Re(z1z̄1) = |z1|2 = H2
1 + H2

2 = D1
ij · D1

ij ,

w2 → J2 := Re(z2z̄2) = |z2|2 = L2
1 + L2

2 = D2
ij · D2

ij ,

w3 → J3 := Re(z3z̄3) = |z3|2 = K2
1 + K2

2 = Dijkl · Dijkl,

w4, w10 → J4 := Re(z2
1 z̄3) = (H2

1 − H2
2 )K1 + 2H1H2K2 = D1

ij · Dijkl · D1
kl,

w5, w11 → J5 := Re(z2
2 z̄3) = (L2

1 − L2
2)K1 + 2L1L2K2 = D2

ij · Dijkl · D2
kl,

w6, w8 → J6 := Re(z1z̄2) = H1L1 + H2L2 = D1
ij · D2

ij ,

w7, w9 → J7 :=Re(z1z2z̄3)=H1K1L1+H1K2L2−H2K1L2+H2K2L1

= D1
ij · Dijkl · D2

kl.

(13)

In addition, we denote
J8 := λ, J9 := μ, J10 := v.

As a result of the above discussion, we finally obtain a set of ten polynomial isotropic invariants
{J1, J2, · · · , J10} of M (2). In the next section, we will prove that these ten isotropic invariants
are both minimal integrity bases and irreducible function bases of M (2).

4 Minimal integrity bases and irreducible functional bases of M (2)

Now, our aim is to prove that J1, J2, · · · , J10 are both minimal integrity bases and irre-
ducible function bases of M (2). We first confirm that any isotropic polynomial invariant is a
polynomial of J1, J2, · · · , J10, i.e., J1, J2, · · · , J10 are integrity bases. As we have mentioned,
an integrity basis is always a functional basis. Therefore, J1, J2, · · · , J10 also form a set of
function basis of M (2). Next, we claim that J1, J2, · · · , J10 are functionally irreducible. Con-
sequently, they are proven to be a set of irreducible functional basis of M (2), which is the main
goal of this paper.

First, we give the following proposition to show that J1, J2, · · · , J10 form a set of integrity
basis of M (2).

Proposition 2 Any isotropic polynomial invariant of M (2) is a polynomial of

J1, J2, · · · , J10.

Proof In the beginning, we rewrite the forms of J1, J2, · · · , J7 in Eq. (13) by using

H := |D1|, L := |D2|, K := |D|



1176 Zhenyu MING, Liping ZHANG, and Yannan CHEN

as three norms of D1, D2, D and θ1, θ2, θ3 as three angles defined as in Subsection 3.2. More
explicitly, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J1 := H2
1 + H2

2 = H2, J2 := L2
1 + L2

2 = L2, J3 := K2
1 + K2

2 = K2,

J4 := (H2
1 − H2

2 )K1 + 2H1H2K2 = H2K · cos(2θ1 − θ3),

J5 := (L2
1 − L2

2)K1 + 2L1L2K2 = L2K · cos(2θ2 − θ3),

J6 := H1L1 + H2L2 = HL · cos(θ1 − θ2),

J7 := H1K1L1 + H1K2L2 − H2K1L2 + H2K2L1

= HKL · cos(θ1 + θ2 − θ3),

(14)

where H, L, K, θ1, θ2, and θ3 are independent of each other. Moreover, we introduce six
scalar-valued functions of H, L, K, θ1, θ2, and θ3 as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J11 := H2L2K2 sin(2θ1 − θ3) sin(2θ2 − θ3),

J12 := H3LK sin(2θ1 − θ3) sin(θ1 − θ2),

J13 := H3LK2 sin(2θ1 − θ3) sin(θ1 + θ2 − θ3),

J14 := HL3K sin(2θ2 − θ3) sin(θ1 − θ2),

J15 := HL3K2 sin(2θ2 − θ3) sin(θ1 + θ2 − θ3),

J16 := H2L2K sin(θ1 − θ2) sin(θ1 + θ2 − θ3).

(15)

By some calculations, we have

J11 = J2
6 · J3 − J2

7 , J12 = J1 · J7 − J4 · J6, J13 = J1 · J3 · J6 − J4 · J7,

J14 = J5 · J6 − J2 · J7, J15 = J2 · J3 · J6 − J5 · J7, J16 =
1
2
(J1 · J5 − J2 · J4).

Thus, J11, J12, · · · , J16 are polynomials of J1, J2, · · · , J7. In view of this, they are also
polynomial invariants of M (2), and we only need to testify that any polynomial invariant of
M (2) is polynomial of J1, J2, · · · , J16.

Recall that each non-zero monomial

Cabcdefgjkλaμbvczd
1 z̄e

1z
f
2 z̄g

2zj
3z̄

k
3

should satisfy Cabcdefgjk = Cabcedgfkj ∈ R and the Diophantine equation (11). Then, the
remaining work is to prove that any sum of two conjugated monomials

W := Cabcdefgjk { λaμbvczd
1 z̄e

1z
f
2 z̄g

2zj
3z̄

k
3 + λaμbvcze

1z̄
d
1zg

2 z̄f
2 zk

3 z̄j
3 }

with the degrees satisfying that Eq. (11) is a polynomial of J1, J2, · · · , J16. Omitting the
scalars, we denote

Ŵ : = zd
1 z̄e

1z
f
2 z̄g

2zj
3z̄

k
3 + ze

1 z̄
d
1zg

2 z̄f
2 zk

3 z̄j
3

= 2Re{zd
1 z̄e

1z
f
2 z̄g

2zj
3z̄

k
3}

= 2Hd+eLf+gKj+k · cos((d − e)θ1 + (f − g)θ2 + 2(j − k)θ3),
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and further define eight angles β1, β2, · · · , β8 as follows:

β1 = 2θ1 − θ3, β2 = 2θ2 − θ3, β3 = 2θ1 − θ2, β4 = θ1 + θ2 − θ3,

β5 = −θ1 + θ2, β6 = −θ1 − θ2 + θ3, β7 = −2θ1 + θ3, β8 = −2θ2 + θ3.

Similar to the proof of Proposition 1, if

d − e + f − g + 2(j − k) = 0,

the linear combination (d− e)θ1 +(f − g)θ2 +2(j−k)θ3 of θ1, θ2, and θ3 would also be a linear
combination of β1, β2, · · · , β8, i.e.,

(d − e)θ1 + (f − g)θ2 + 2(j − k)θ3 = α1β1 + · · · + α8β8,

where α1, α2, · · · , α8 are all natural numbers.
With some simple calculations, cos(α1β1 + · · · + α8β8) is a polynomial of

cosβ1, cosβ2, · · · , cosβ8 and sin βi · sin βj (i, j ∈ {1, 2, · · · , 8}).
Considering the forms of J1, J2, · · · , J16 in Eqs. (14) and (15), we claim that each sum of two
conjugated monomials W is a polynomial of J1, J2, · · · , J16. Thus, we finish the proof.

To take a further step, we need to prove that J1, J2, · · · , J10 are functionally irreducible
(then also polynomially irreducible). The method to prove the functionally irreducibility of
invariants was first introduced by Pennisi and Trovato[34], with which we can prove the following
proposition.

Proposition 3 J1, J2, · · · , J10 are functionally irreducible.
Proof Due to the orthogonal irreducible decompositions (2), it is clear that the three

scalars J8, J9, J10 are functionally irreducible. Therefore, we only need to consider about
J1, J2, · · · , J7. Our goal is to change one of Js (s = 1, 2, · · · , 7) while keep the other six
invariants unchanged.

Case 1 When s = 1, let L = K = 0, which leads to J2 = J3 = · · · = J7 = 0. However, J1

will change when H changes, so that J1 cannot be a function of the others.
Case 2 When s = 2, let H = K = 0, which leads to J1 = J3 = · · · = J7 = 0. However, J2

will change when L changes, so that J2 cannot be a function of the others.
Case 3 When s = 3, let H = L = 0, which leads to J1 = J2 = J4 = · · · = J7 = 0. However,

J3 will change when K changes, so that J3 cannot be a function of the others.
Case 4 When s = 4, let L = 0 and K and H be two fixed and non-zero numbers, which

leads to

J2 = J5 = J6 = J7 = 0, J1 = H2, J3 = K2.

However, J4 = H2K · cos(2θ1 − θ3) will change when 2θ1 − θ3 changes, so that J4 cannot be a
function of the others.

Case 5 When s = 5, let H = 0 and K and L be two fixed and non-zero numbers, which
leads to

J1 = J4 = J6 = J7 = 0, J2 = L2, J3 = K2.

However, J5 = L2K · cos(2θ2 − θ3) will change when 2θ2 − θ3 changes, so that J5 cannot be a
function of the others.

Case 6 When s = 6, let K = 0 and H and L be two fixed and non-zero numbers, which
leads to

J3 = J4 = J5 = J7 = 0, J1 = H2, J2 = L2.



1178 Zhenyu MING, Liping ZHANG, and Yannan CHEN

However, J6 = HL · cos(θ1 − θ2) will change when θ1 − θ2 changes, so that J6 cannot be a
function of the others.

Case 7 When s = 7, let K, H , and L be three fixed and non-zero numbers, which leads to

J1 = H2, J2 = L2, J3 = K2.

Now, let

θ1 =
π

2
, θ2 = 0, θ3 =

3π

4
.

Then, we have

J4 =
√

2
2

H2K, J5 = −
√

2
2

L2K, J6 = 0, J7 =
√

2
2

HKL.

However, when θ1 = 3π
2 , θ2 = 0, and θ3 = 11π

4 , we have

J4 =
√

2
2

H2K, J5 = −
√

2
2

L2K, J6 = 0, J7 = −
√

2
2

HKL.

Only the value of J7 changes, so that J7 cannot be a function of the others.
In conclusion, J1, J2, · · · , J10 are functionally irreducible.
As a result of Propositions 2 and 3, finally, we have the following theorem.
Theorem 1 Define

J1 := D1
ij · D1

ij , J2 := D2
ij · D2

ij , J3 := Dijkl · Dijkl,

J4 := D1
ij · Dijkl · D1

kl, J5 := D2
ij · Dijkl · D2

kl, J6 := D1
ij · D2

ij ,

J7 := D1
ij · Dijkl · D2

kl, J8 := λ, J9 := μ, J10 := v,

where λ, μ, v, D1, D2, and D are three scalars, two 2nd-order irreducible tensors, and one
4th-order irreducible tensor in the orthogonal irreducible decomposition (2), respectively. Then,
J1, J2, · · · , J10 are both a set of minimal integrity basis and a set of irreducible polynomial
functional basis of M (2).

5 Conclusions

We study the isotropic invariants of 2D Eshelby tensors M (2). The complex variable method
is our fundamental tool, which helps to construct a one-to-one mapping from an irreducible
tensor to a complex number. With this method, we obtain a set of integrity basis of ten
isotropic invariants {J1, J2, · · · , J10} of M (2), and then further prove that they are also a set
of irreducible functional basis of M (2), as in the previous sections. The contributions of this
article are as follows:

(i) {J1, J2, · · · , J10} is a minimal integrity basis of 2D Eshelby tensors M (2).
(ii) {J1, J2, · · · , J10} is also an irreducible polynomial functional basis of 2D Eshelby ten-

sors M (2).
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