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Abstract In this paper, multi-scale modeling for nanobeams with large deflection is

conducted in the framework of the nonlocal strain gradient theory and the Euler-Bernoulli

beam theory with exact bending curvature. The proposed size-dependent nonlinear beam

model incorporates structure-foundation interaction along with two small scale param-

eters which describe the stiffness-softening and stiffness-hardening size effects of nano-

materials, respectively. By applying Hamilton’s principle, the motion equation and the

associated boundary condition are derived. A two-step perturbation method is intro-

duced to handle the deep postbuckling and nonlinear bending problems of nanobeams

analytically. Afterwards, the influence of geometrical, material, and elastic foundation

parameters on the nonlinear mechanical behaviors of nanobeams is discussed. Numerical

results show that the stability and precision of the perturbation solutions can be guaran-

teed, and the two types of size effects become increasingly important as the slenderness

ratio increases. Moreover, the in-plane conditions and the high-order nonlinear terms

appearing in the bending curvature expression play an important role in the nonlinear

behaviors of nanobeams as the maximum deflection increases.
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1 Introduction

Nanotechnology pioneered a new path for the synthesis and characterization of advanced
multifunctional materials and inspired enormous attention in fundamental research and en-
gineering application[1–2]. Nanomaterials with different compositions and geometric shapes
have been discovered and fabricated during the past two decades and widely used as build-
ing blocks of micro/nano-electro-mechanical system (MEMS/NEMS) to accomplish adjustable
performances[1,3–6]. Lots of experimental and numerical studies reported that nanostructures
possess unique mechanical, chemical, electrical, and optical properties as compared with atom/
molecule clusters and their bulk composites[7]. The further developments of MEMS/NEMS are
directly correlated with a deep understanding of their mechanical properties. The correlation
research indicated that there are two different mechanical characteristics exhibited in nanos-
tructures, namely, stiffness-softening[8–11] and stiffness-hardening effects[12–17]. As an example,
Treacy et al.[14] observed a trend for higher modulus with smaller tube diameters in the first
measurement of Young’s modulus of carbon nanotubes (CNTs). In contrast, Natsuki et al.[16]

reported that Young’s modulus of single-walled carbon nanotubes (SWCNTs) decreases with
an increase in the tube diameter by using a universal force field for C-C bonds to study CNTs
based on a structural mechanical approach. In the micro-bending test of epoxy polymeric
micro-cantilevers, Lam et al.[12] found that the bending rigidity increases about 2.4 times as
the beam thickness is reduced from 115 µm to 20 µm, while the deformation is still in the linear
elastic region.

It is well known that the stress at a given material point in a body depends on the strain,
strain rate, and strain history at that point in the classical continuum theory. It can be re-
garded as a scale-free continuum theory due to the absence of interatomic interactions among
neighboring material points in the constitutive relation. Although classical continuum-based
models are able to predict the mechanical behaviors of nanostructures to a certain extent[18–20],
they are inadequate to capture the size effects accurately when the microscopic length scale is
comparable with the macroscopic one. It is naturally believed that the interatomic spacing be-
tween individual atoms plays an increasingly important role at small scales, which leads that the
discrete nature of nanostructures can no longer be homogenized into a continuum medium[1].
Taking size effects into consideration is therefore of prime importance for the reliable and op-
timal design of nanodevices. Several size-dependent continuum theories have been proposed to
overcome the shortcomings of classical theory through tireless efforts and arduous exploration,
among which are the nonlocal elasticity theory[21–22], the strain gradient theory[23–24], the cou-
ple stress theory[25–26], and their improved versions[12,27–29]. The following briefly introduces
the background and basic idea of some typical nonclassical theories.

The nonlocal elasticity theory assumes that the stress at a reference point is a function
of strains at all points in the continuum. Its systematic and rational framework was initi-
ated by Eringen[21] in the study of long-range phenomena in extended atomic systems. The
original nonlocal constitutive relations involve an integral with weighted average of the local
stress contribution from all points in the body, and are often termed the strong or integral
nonlocal model. Given the mathematical difficulties in solving integral-differential governing
equations, Eringen[22] transformed the constitutive relations from an integral type to an ap-
proximate equivalent differential type and proved its feasibility. The practical importance and
potential benefits of the differential nonlocal model have aroused continuing research interest
until Peddieson et al.[30] applied it in the modeling of the static bending problem of CNTs
based on the Euler-Bernoulli beam theory. Since then, a series of research work has sprung up
in authoritative journals of applied mechanics in the past decade and a half. We limit ourselves
to mention the works of Wang et al.[31], Lim and Wang[32], Hu et al.[33], Reddy[34], Shen and
Zhang[35–36], Peng et al.[37], Ghorbanpour-Arani[38], and so on. Excellent overviews of vari-
ous nonlocal continuum-based models and their applications in nanostructures can be found in
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Ref. [1]. The corresponding results revealed the stiffness-softening size effect in nonlocal elastic
models.

Although nonlocal continuum-based modeling of nanostructures has now reached a mature
stage, it seems powerless to identify the mechanical characteristics with the stiffness-hardening
size effect[12–13,15–17]. In view of this, some researchers suggested that introducing additional
high-order strain gradient terms into the framework of classical continuum theory may resolve
the above problem, which is the basic idea of the gradient elasticity theory. The gradient elas-
ticity theory argues that the materials should be viewed as atoms with high-order deformation
mechanism at small scale rather than just modelled as collections of points. In existing ver-
sions of the gradient theory, Yang’s couple stress theory[28] and Lam’s strain gradient elasticity
theory[12] are the two most widely applied in the modeling and analysis of micro/nanostructures.
The former introduces the strain tensor and the symmetric part of the rotation gradient tensor
in the strain energy density function, while the latter is more extensive and applicable because it
contains the symmetric part of rotation gradient tensor as well as the dilatation and deviatoric
stretch gradient tensors. The two theories have attracted considerable attention in the filed of
micro/nanomechanics in the past decade. A large number of linear or nonlinear size-dependent
beam, plate, and shell continuum models have been proposed for investigating various mechan-
ical problems of micro/nanostructures. This topic is covered extensively in the literature, but
here we just mention the typical studies of Park and Gao[39], Ma et al.[40], Şmşk and Reddy[41],
Reddy and Kim[42], Komijani et al.[43], Kong et al.[44], Wang et al.[45–46], Mohammadimehr et
al.[47], and Zhang et al.[48], in which the stiffness-hardening phenomena can be observed.

The above-mentioned two types of continuum theories manifested that the nonlocal and
the strain gradient continuum-based models characterize two entirely different size-dependent
behaviors of small scale materials. To predict the effects of long-range force and high-order
deformation mechanism of microstructure reasonably, it is necessary and urgent to bring both
nonlocal and strain gradient length scale parameters into a unified framework. To this end,
Lim et al.[2] successfully extended the theoretical framework of classical nonlocal theory by
combining the nonlocality of high-order stress field into the stored energy function, and pro-
posed a comprehensive theory named the nonlocal strain gradient theory. Accocrding to the
generalized differential constitutive equation, Lim et al.[2] presented the Euler-Bernoulli and
Timoshenko beam models and illustrated their application values by taking the wave propaga-
tion problem of CNTs as an example. After that, nonlocal strain gradient-based modeling and
simulation have come into a stage of booming development. Li and his partner performed a
series of work in applying the one-dimensional nonlocal strain gradient models to investigate
the mechanical problems of nanostructures, including buckling and postbuckling[49–51], linear
and nonlinear static bending[51–52], linear and nonlinear flexural vibration[51–53], and flexural
wave propagation[54]. Sahmani and Fattahi[55] developed an axially loaded functionally graded
nonlocal strain gradient nanoshell model and conducted buckling and postbuckling analysis by
a two-stepped perturbation technique. Lu et al.[56–58] studied the size-dependent mechanical
behaviors of Kirchhoff and Mindlin plates and higher-order shear deformable beams by using the
nonlocal strain gradient theory and obtained Navier solutions for simply supported boundary
conditions.

Micro/nanobeams are the core structures in MEMS/NEMS and are frequently used as
nanosensors and nanoactuators for sensing and energy harvesting. Besides, nanostructures such
as nanowires and CNTs are shaped like slender tubular structures with high length-to-diameter
ratio, in which their motion and deformation behaviors can be simulated by an elastic beam un-
der external loads. Many studies showed that the geometric nonlinearity, mainly coming from
the nonlinear moment-curvature relationship and midplane stretching, cannot be neglected as
the beams deflect at the order of its thickness and remain elastic and the linear beam theory will
lose its validity. To describe the deformation and motion behaviors of beams more accurately,
Shen[59] proposed an exact bending curvature model for the nonlinear analysis of macroscopic
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beams with movable/immovable end conditions, and then solved three typical kinds of nonlinear
mechanical problems by a two-step perturbation technique. Accordingly, Shen and Zhang[36]

established a nonlocal beam model for large deflected SWCNTs in thermal environments. Li
and Qiao[60] conducted geometrically nonlinear free vibration investigation of anisotropic lami-
nated composite beams based on a Reddy’s shear deformation theory with a von Kármán-type
of kinematic nonlinearity and an exact bending curvature model. It is worth reminding that
the relevant studies[36,59–60] used the same bending curvature expression for both kinds of end
conditions, but actually this treatment way is unacceptable for the immovable end conditions.

The above literature review demonstrates that there are no published works concerning non-
linear bending and postbuckling of nonlocal strain gradient nanobeams with large deflection
resting on an elastic foundation. The present work fills this gap in the literature by considering
nanobeams with two types of in-plane boundary conditions, namely, movable and immovable.
For the postbuckling problem, one end of the beam is assumed to be movable, and for the non-
linear bending problem, movable and immovable end conditions are considered. The nonlinear
motion equation and related boundary conditions including the foundation-structure interac-
tion are derived by using the variational principle. Using the two-step perturbation method,
the nonlinear bending load-deflection curves and postbuckling equilibrium paths are obtained.
Extensive parametric studies are performed to establish the convergence and accuracy of the
perturbation solutions and to probe into the nonlinear bending and postbuckling behaviors.

2 Nonlocal strain gradient theory

In the framework of nonlocal strain gradient theory, the stored strain energy U0 for isotropic
linear elastic materials occupying the region Ω is expressed as[2]

U0(x) =
1

2
εij(x)Cijkl

∫

Ω

α0(|x − x̂|, e0a)εkl(x̂)dΩ

+
1

2
l2εij,m(x)Cijkl

∫

Ω

α1(|x − x̂|, e1a)εkl,m(x̂)dΩ, (1)

where x and x̂ are the field and source points, respectively, εij and εij,m are the strain and
strain gradient tensors, respectively, Cijkl is the fourth-order elasticity tensor, e0 and e1 are the
low- and high-order nonlocal parameters obtained from a comparison of the wave dispersion
relation and the experimental data or atomic lattice dynamics, respectively, a is an internal
characteristic length, α0 and α1 are the attenuation kernel functions describing the nonlocality
of strain and strain gradient fields, respectively, l is a material length scale parameter indicating
the significance of the strain gradient field, and a comma followed by a subscript denotes
differentiation with respect to the subscript.

Using Eq. (1), the constitutive equations can be readily obtained,

σ
[l]
ij = Cijkl

∫

Ω

α0(|x − x̂|, e0a)εkl(x̂)dΩ, (2a)

σ
[h]
ijm = l2Cijkl

∫

Ω

α1(|x − x̂|, e1a)εkl,m(x̂)dΩ, (2b)

in which σ
[l]
ij and σ

[h]
ijm are the low- and high-order nonlocal stress tensors, respectively. One

can see that the two tensors at a specific point rely on the strain along with its gradient not

only at that point, but also at all the other points of the body. The total stress tensor σ
[t]
ij is

defined by
σ

[t]
ij = σ

[l]
ij − σ

[h]
ijm,m. (3)

Obviously, the nonlocal strain gradient theory can degenerate into the pure strain gradi-
ent theory without stress nonlocality by setting both e0a and e1a to be zero. The nonlocal
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attenuation kernel functions should satisfy the following relations:

lim
e0→∞

α0(|x − x̂|, e0a) = δ(|x − x̂|), lim
e1→∞

α1(|x − x̂|, e1a) = δ(|x − x̂|). (4)

From Eqs. (2a) and (2b), it is obvious that the low-order and high-order nonlocal stress fields
are expressed in the convolution form of strain and strain gradient fields, respectively, which
will bring some difficulties into the continuum-based modeling and analytical/numerical-based
solving. On account of this, Lim et al.[2] proposed a differential form of constitutive equation
following a procedure stemmed from Eringen[22], that is

(1 − (e1a)2∇2)(1 − (e0a)2∇2)σ
[t]
ij = Cijkl(1 − (e1a)2∇2)εkl − l2Cijkl(1 − (e0a)2∇2)∇2εkl, (5)

in which ∇2 is the Laplacian operator. Equation (5) realizes the combination of the classical
nonlocal theory and the pure strain gradient theory, and can recover the constitutive equation
of one of the two under certain conditions.

3 Description of geometric deformation of large deflected nanobeams

Figures 1(a) and 1(b) illustrate the schematic diagram of a simply supported nanobeam with
movable and immovable end conditions, respectively, in which the Cartesian coordinate system
with its origin coinciding with the midplane is introduced to describe the configuration. The
symbols dX and dS denote the lengths of infinitesimal element before and after deformation, re-
spectively. The X-, Y -, and Z-coordinate axes are taken along the length, width, and thickness
directions, respectively. The capital L,A,J ,E,P , and Q denote the length, cross-sectional area,
inertia moment, elasticity modulus, constant axial force applied to the two ends, and transverse
force distributed along the X-axis, respectively. The elastic foundation is assumed to be an
adhering Pasternak-type in line with routine, which means that the nanobeam always keeps
contact with the elastic foundation before and after large deflection. The relationship between

the additional load and the displacement of foundation is described by Pef = K1W −K2
∂2W
∂X2 ,

where Pef is the force per unit area, and K1 and K2 are the Winkler and Pasternak stiff-
nesses, respectively[59]. The nanobeam is modeled based on the nonlocal strain gradient theory
and Kirchhoff’s deformation hypothesis, which supposes that the straight line perpendicular
to the midplane initially remains straight line perpendicular to the midplane henceforth. For
the beams with large deflection, one needs to pay special attention to the adopted physical
assumption and the truncation order of exact bending curvature expression. In other words,

'

'

Fig. 1 Coordinate system and deformation kinematics of simply supported nanobeam resting on
two-parameter elastic foundation
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the sufficient high-order nonlinear terms are needed to examine the moderate rotational range
of beam deformation as the truncation order strongly affects the results. For buckling analysis,
at least one end of the beam should be movable, or else the physically incorrect results will be
led to, as pointed out by Shen[59] and Li and Qiao[60].

For a nanobeam with a freely movable end condition, the nonlinear moment-curvature re-
lationship becomes prominent as the inextensibility condition is considered. The length of line
element dX in the neutral axis keeps unchanged before and after deformation, i.e.,

(dX)2 = (dX − d∆)2 + (dW )2, (6)

where d∆ and dW are, respectively, the infinitesimal horizontal and vertical displacements of
the material point (X + dX, 0, 0) with respect to its neighbouring point (X, 0, 0). According to
Fig. 1(a), the horizontal displacement of a material point located at (X, 0, 0) is

∆ = −

∫ X

0

(
1 −

√

1 −
(∂W

∂X̂

)2)
dX̂. (7)

The cross-section rotation angle θ relative to the Y -axis and the midplane bending curvature
κ are

θ = arcsin
(∂W

∂X

)
, (8)

κ =
∂θ

∂X
=

∂2W

∂X2

/√
1 −

(∂W

∂X

)2

. (9)

In view of Eqs. (7)–(9) and recalling Kirchhoff’s assumption, the horizontal and transverse
displacements UX and UZ at any off-midplane point (X, 0, Z) are presented in the following
forms:

UX =−

∫ X

0

(
1−

√

1−
(∂W

∂ξ

)2)
dξ−Z

∂W

∂X
, UY = 0, UZ = W −Z

(
1−

√
1−

(∂W

∂X

)2)
. (10)

For a nanobeam with a fully immovable end condition, the midplane stretching may occur. The
length of line element dX in the neutral axis before deformation and that after deformation
need to meet the following relationship:

(dX + d∆)2 = (dX)2 + (dW )2, (11)

in which d∆ and dW are, respectively, the infinitesimal elongation of line element and the
vertical displacement of the material point (X + dX, 0, 0) with respect to its neighbouring
point (X, 0, 0).

In this case, the cross-section rotation angle and the midplane bending curvature are

θ = arctan
(∂W

∂X

)
, (12)

κ =
∂θ

∂X
=

∂2W

∂X2

/(
1 +

(∂W

∂X

)2)
. (13)

Comparing Eqs. (12) and (13) with Eqs. (8) and (9), we can see that the movable end con-
dition and immovable one lead to different forms of the expressions of cross-section rotation
angle and midplane bending curvature. However, the previous literature[36,59–60] adopted the
same bending curvature expression for both movable and immovable nanobeams.
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Taking into account Eqs. (12) and (13), the displacement field for the immovable end con-
dition is given as






UX = −Z
∂W

∂X

/√
1 +

(∂W

∂X

)2

≈ −Z
∂W

∂X

(
1 −

1

2

(∂W

∂X

)2)
, UY = 0,

UZ = W − Z
(
1 − 1

/√
1 +

(∂W

∂X

)2)
≈ W −

1

2
Z

(∂W

∂X

)2

,

(14)

in which the maximum deflection needs to be limited to a relatively small range since the necking
phenomenon appearing in the deformation process cannot be neglected when the deflection has
a relatively large value.

4 Nonlinear governing equations for size-dependent nanobeams

4.1 Movable end condition

To make the subsequent derived formulae more compact, different orders of partial deriva-
tives of deflection with respect to the coordinate X or time t are abbreviated as

∂iW

∂X i
= Wi,

∂W

∂t
= Wt,

∂2W

∂t2
= Wtt. (15)

Using Eq. (10), the nonzero component of the Green strain tensor is obtained as

εXX=

√(
1+

∂UX

∂X

)2

+
(∂UZ

∂X

)2

− 1 = −
ZW2√
1 − W 2

1

, (16)

from which it is obvious that the movable model has no midplane stretching effect.
Based on Eq. (16), the first- and second-order strain gradients can be obtained as

εXXX =
∂εXX

∂X
= −

Z√
1 − W 2

1

(
W3 +

W 2
2 W1

1 − W 2
1

)
, (17a)

εXXXX=
∂2εXX

∂X2
= −

Z√
1 − W 2

1

(
W4 +

3W1W2W3 + W 3
2

1 − W 2
1

+
3W 2

1 W 3
2

(1 − W 2
1 )2

)
. (17b)

For the beam-like structure, its size-dependent behavior in both the width and thickness di-
rections can be neglected[2]. Equation (5) degenerates to the following one-dimensional nonlocal
strain gradient constitutive relation:

(1 − (e1a)2∇2)(1 − (e0a)2∇2)σ
[t]
XX = E(1 − (e1a)2∇2)εXX − El2(1 − (e0a)2∇2)∇2εXX . (18)

In accordance with the assumption adopted by Lim et al.[2], i.e., retaining terms up to the
order of O(∇2) and forcing e0a = e1a = η, Eq. (18) is simplified as

σ
[t]
XX − η2 ∂2σ

[t]
XX

∂X2
= E

(
εXX − l2

∂2εXX

∂X2

)
. (19)

Integrating Eq. (19) through the cross-section, the nonlocal force-deflection and moment-
deflection are as follows:

Nc − η2 ∂2Nc

∂X2
= EAϕ(X), (20a)

Mc − η2 ∂2Mc

∂X2
= EJφ(X), (20b)



522 Bo ZHANG, Huoming SHEN, Juan LIU, Yuxing WANG, and Yingrong ZHANG

in which

Nc =

∫

A

σ
[t]
XXdA, Mc =

∫

A

Zσ
[t]
XXdA, (21)

ϕ(X) = 0, φ(X) =
1√

1 − W 2
1

(
l2

(
W4 + 3

W3W1W2

1 − W 2
1

+ 3
W 3

2 W 2
1

(1 − W 2
1 )2

+
W 3

2

1 − W 2
1

)
− W2

)
. (22)

Equations (20a) and (20b) are the second-order differential equations. Their explicit solu-
tions are obtained by the asymptotic expansion method employed by Lim and Wang[32], i.e.,

Nc =

∞∑

n=0

an
d2nϕ

dX2n
= a0ϕ + a1

d2ϕ

dX2
+ a2

d4ϕ

dX4
+ · · · , (23a)

Mc =
∞∑

n=0

bn
d2nφ

dX2n
= b0φ + b1

d2φ

dX2
+ b2

d4φ

dX4
+ · · · , (23b)

where an = EAη2n, and bn = EJη2n. For simplicity, the asymptotic solutions to Eqs. (23a)
and (23b) are taken up to the second-order terms, i.e., O(d2ϕ/dX2).

The motion equation and related boundary conditions are derived by Hamilton’s principle.
The dynamic form of this principle is stated as

δ

∫ t1

t1

(K0 − (U0 + Uad − We))dt = 0, (24)

where U0 is the strain energy, We is the work done by the external loads, K0 is the kinetic
energy, and Uad is the additional strain energy induced by elastic foundation.

The first variation of the strain energy is given by

δU0 =

∫

V

(σ
[l]
XXδεXX + σ

[h]
XX∇δεXX)dV

=

∫

V

σ
[t]
XXδεXXdV +

(∫

A

σ
[h]
XXδεXXdA

)X=L

X=0

=

∫ L

0

(N̂cδW1 − M̂cδW2)dX + (N̂ncδW1 − M̂ncδW2)
X=L

X=0

= (N̂cδW )X=L
X=0 −

(
M̂cδW1 −

∂M̂c

∂X
δW

)X=L

X=0
+ (N̂ncδW1 − M̂ncδW2)

X=L
X=0

−

∫ L

0

(∂N̂c

∂X
+

∂2M̂c

∂X2

)
δWdX, (25)

in which

N̂c =
NcW1√
1 − W 2

1

−
McW2W1

(1 − W 2
1 )3/2

, M̂c =
Mc√

1 − W 2
1

, (26a)

N̂nc =
NncW1√
1 − W 2

1

−
MncW2W1

(1 − W 2
1 )3/2

, M̂nc =
Mnc√
1 − W 2

1

, (26b)

where

Nnc =

∫

A

σ
[h]
XXdA, Mnc =

∫

A

Zσ
[h]
XXdA. (27)

The external work done by the applied loads and its first variation are expressed as

We=

∫ L

0

(QW + P (1 −
√

1 − W 2
1 ))dX, δWe =

∫ L

0

(
Q −

∂P̂

∂X

)
δWdX + (P̂ δW )x=L

x=0 , (28)
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in which P̂ = PW1/
√

1 − W 2
1 .

The first variation of the deformation energy of elastic foundation can be written as

δUad =

∫ L

0

(K1W − K2W2)δWdX + (K2W1δW )X=L
X=0 . (29)

Substituting Eqs. (25), (27), (28), and (29) into Eq. (24), integrating by parts, and then
setting the coefficient of δW to zero, the following equation of motion can be obtained:

∂N̂c

∂X
+

∂2M̂c

∂X2
− K1W + K2W2 + Q −

∂P̂

∂X
= 0 (30)

together with the boundary conditions

W = 0 or N̂c +
∂M̂c

∂X
+ K2W1 − P̂ = 0, (31a)

W1 = 0 or M̂c − N̂nc = 0, (31b)

W2 = 0 or M̂nc = 0. (31c)

Substituting the second-order asymptotic solutions of Eqs. (23a) and (23b) into Eq. (30)
yields the motion equation in terms of the deflection, i.e.,

−PW2Λ(1 + Λ2W 2
1 ) + Q + K2W2 − K1W0 + EJ

14∑

0

a
(i)
EJΛi = 0, (32)

in which





Λ=1/
√

1 − W 2
1 , a

(1)
EJ = a

(3)
EJ = a

(5)
EJ = a

(7)
EJ = a

(9)
EJ = a

(11)
EJ = a

(13)
EJ = 0,

a
(2)
EJ =η2l2W8 + W6(l

2 − η2) − W4,

a
(4)
EJ =(21W3(W1W6 + 5W2W5) + 35W4(W1W5 + 3W 2

3 )

+ W2(21W2W6 + 70W 2
4 + 8W1W7))l

2η2 + (10W4(W
2
2 + W1W3)

+ 3W2(5W 2
3 + 2W1W5))(l

2 − η2) − W2(4W1W3 + W 2
2 ),

a
(6)
EJ =(315(W 4

2 W4 + W 2
1 W 2

3 W4 + 3W 3
2 W 2

3 ) + 110W1W2(3W 2
2 W5

+ 3W1W5W3 + 2W1W
2
4 ) + 3W1W2(320W 3

3 + 23W1W2W6 + 650W2W4W3))l
2η2

− 4W 2
1 W 3

2 + (48W1W2W3(2W 2
2 + W1W3) + W 2

2 (9W 3
2 + 34W 2

1 W4))(l
2 − η2),

a
(8)
EJ =(1 620W1W2W3(W

2
1 W 2

3 + 3W 4
2 ) + 30W 2

1 W 2
2 (19W1W2W5

+ 111W 2
2 W4 + 111W1W3W4)+45W 3

2 (5W 4
2 + 219W 2

1 W 2
3 ))l2η2

+ 3W 2
1 W 3

2 (33W 2
2 + 56W1W3)(l

2 − η2),

a
(10)
EJ =75(W 2

1 W 4
2 (66W 3

2 + 53W 2
1 W4)+156W 3

1 W 3
2 W3(2W 2

2 +W1W3))l
2η2

+ 120W 4
1 W 5

2 (l2−η2),

a
(12)
EJ =105W 4

1 W 5
2 (145W 2

2 + 204W1W3)l
2η2, a

(14)
EJ = 11 340W 6

1 W 7
2 η2l2.

(33)

Setting l = η = 0, Eq. (32) reduces to the following form:

EJW4

1 − W 2
1

+
4EJW1W2W3

(1 − W 2
1 )2

+
EJW 3

2 (1 + 3W 2
1 )

(1 − W 2
1 )3

+
PW2

(1 − W 2
1 )3/2

−Q−K2W2 + K1W0 = 0, (34)
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which is the motion equation of classical exact bending curvature beam model developed by
Shen[59].

Conducting the Taylor expansion for Λ=1/
√

1 − W 2
1 with respect to W1 around the origin,

retaining the first four order terms, i.e., Λ ≈ 1+W 2
1 /2+3W 4

1 /8+5W 6
1 /16, and then substituting

it into Eq. (32), we can obtain

−
1

16
PW2(24W 2

1 + 30W 4
1 + 35W 6

1 + 16) + Q + K2W2 − K1W0 − ρAWtt

+ EJ(A
(8)
EJW8+A

(7)
EJW7 + A

(6)
EJW6 + A

(5)
EJW5 + A

(42)
EJ W 2

4 + A
(41)
EJ W4

+ A
(33)
EJ W 3

3 + A
(32)
EJ W 2

3 + A
(31)
EJ W3 + A

(27)
EJ W 7

2 + A
(25)
EJ W 5

2 + A
(23)
EJ W 3

2 ) = 0, (35)

where





A
(8)
EJ =(W 6

1 + W 4
1 + W 2

1 + 1)η2l2, A
(7)
EJ = 8W1W2(1 + 2W 2

1 + 3W 4
1 + 4W 6

1 )l2η2,

A
(6)
EJ =3((37 + 90W 2

1 + 166W 4
1 )W 2

1 W 2
2 + 7(4W 6

1 + 3W 4
1 + 2W 2

1 + 1)W1W3

+ 7W 2
2 )l2η2 + (W 6

1 + W 4
1 + W 2

1 + 1)(l2 − η2),

A
(5)
EJ =5(3(160W 6

1 + 87W 4
1 + 36W 2

1 + 7)W2W3 + 6(11 + 52W 2
1 + 142W 4

1

+ 300W 6
1 )W1W

3
2 +7(4W 6

1 + 3W 4
1 + 2W 2

1 + 35)W1W4)l
2η2

+ 6W1W2(1 + 2W 2
1 + 3W 4

1 + 4W 6
1 )(l2 − η2),

A
(42)
EJ =10W2(160W 6

1 + 87W 4
1 + 36W 2

1 + 7)l2η2,

A
(41)
EJ =15(2(65+306W 2

1+834W 4
1 +1 760W 6

1 )W1W
2
2 W3+(21+285W 2

1

+1 279W 4
1 +3 755W 6

1 )W 4
2 + 7(1 + 5W 2

1 + 12W 4
1 + 22W 6

1 )W 2
3 )l2η2

+(2(5 + 27W 2
1 + 66W 4

1 + 122W 6
1 )W 2

2 +10(1+2W 2
1 + 3W 4

1 + 4W 6
1 )W1W3)

· (l2 − η2) − (1 + W 2
1 + W 4

1 + W 6
1 ),

A
(33)
EJ =60W1W2(16 + 75W 2

1 + 204W 4
1 + 430W 6

1 )l2η2,

A
(32)
EJ =3W2(15W 2

2 (282W 2
1 + 1 262W 4

1 + 3 700W 6
1 + 21)l2η2

+ (5 + 26W 2
1 + 63W 4

1 + 116W 6
1 )(l2 − η2)),

A
(31)
EJ = 180W1W

5
2 (3 204W 6

1 + 1 039W 4
1 + 238W 2

1 + 27)l2η2

+ 24W1W
3
2 (110W 6

1 + 52W 4
1 + 19W 2

1 + 4)l2

− 24W1W
3
2 (110W 6

1 + 52W 4
1 + 19W 2

1 + 4)η2

− 4W1W2(4W 6
1 + 3W 4

1 + 2W 2
1 + 1),

A
(27)
EJ = (181 440W 6

1 + 42 225W 4
1 + 5 850W 2

1 + 225)l2η2,

A
(25)
EJ = (1 680W 6

1 + 570W 4
1 + 126W 2

1 + 9)(l2 − η2),

A
(23)
EJ = −(4W 2

1 + 1)(7W 4
1 + 2W 2

1 + 1).

(36)

It is noticeable that the asymptotic expansion form of the classical exact bending curvature
beam model developed in the literature[59] can be readily recovered by setting l = η = 0, i.e.,

−
1

16
PW2(24W 2

1 + 30W 4
1 + 35W 6

1 + 16) − EJ(4W1W2(1 + 2W 2
1 + 3W 4

1 + 4W 6
1 )W3

+ (1+ W 2
1 + W 4

1 + W 6
1 )W4+ (28W 6

1 + 15W 4
1 + 6W 2

1 + 1)W 3
2 ) + Q + K2W2 − K1W0 = 0. (37)

Before carrying out the solution process, the following dimensionless quantities are intro-
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duced:





x =
πX

L
, w =

W

L
,

∂iw

∂xi
= wi,

∂W

∂X
= πw1,

∂iW

∂X i
=

πiwi

Li−1
, k1 =

K1L
4

π4EJ
,

k2 =
K2L

2

π2EJ
, λp =

PL2

π2EJ
, λq =

QL3

π4EJ
,

d1=
Aη2l2

JL2
, d2 =

A(l2 − η2)

J
, d3 =

AL2

π2J
, d4 =

η2l2

L4
, d5 =

l2 − η2

L2
.

(38)

Using the above dimensionless quantities, Eq. (35) can be rewritten as

−
1

16
λpw2(16 + 24π2w2

1 + 30w4
1π

4 + 35π6w6
1) + λq + k2w2 − k1w0 + A

(8)

EJw8

+ A
(7)

EJw7 + A
(6)

EJw6 + A
(5)

EJw5 + A
(42)

EJ w2
4 + A

(41)

EJ w4 + A
(33)

EJ w3
3 + A

(32)

EJ w2
3

+ A
(31)

EJ w3 + A
(27)

EJ w7
2 + A

(25)

EJ w5
2 + A

(23)

EJ w3
2 = 0, (39)

in which





A
(8)

EJ = d4π
4(π6w6

1 + π2w2
1 + π4w4

1 + 1),

A
(7)

EJ = 8d4π
6w1w2(1 + 4π6w6

1 + 3π4w4
1 + 2π2w2

1),

A
(6)

EJ = 3d4π
6(7w1w3(1 + 2π2w2

1 + 3π4w4
1 + 4π6w6

1) + w2
2(166π6w6

1 + 90π4w4
1

+ 37π2w2
1 + 7)) + d5π

2(π6w6
1 + π2w2

1 + π4w4
1 + 1),

A
(5)

EJ = 5d4π
6(3(160π6w6

1+87π4w4
1+36π2w2

1+7)w2w3+7w1w4(1+2π2w2
1

+3π4w4
1+4π6w6

1) + 6π2w1w
3
2(300π6w6

1 + 142π4w4
1 + 52π2w2

1 + 11))

+ 6d5π
4w1w2(1 + 4π6w6

1 + 3π4w4
1 + 2π2w2

1),

A
(42)

EJ = 10d4π
6w2(87π4w4

1 + 160π6w6
1 + 36π2w2

1 + 7),

A
(41)

EJ = 15d4π
6(π2w4

2(21 + 285π2w2
1 + 1 279π4w4

1 + 3 755π6w6
1)

+ 2π2w1w
2
2w3(306π2w2

1 + 65 + 834π4w4
1 + 1 760π6w6

1) + 7w2
3(1 + 5π2w2

1

+ 12π4w4
1 + 22π6w6

1)) + 2d5π
4(w2

2(5 + 27π2w2
1 + 66π4w4

1 + 122π6w6
1)

+ 5w1w3(1 + 2π2w2
1 + 3π4w4

1 + 4π6w6
1)) − (π6w6

1 + π2w2
1 + π4w4

1 + 1),

A
(33)

EJ = 60d4π
8w1w2(430π6w6

1 + 204π4w4
1 + 16 + 75π2w2

1),

A
(32)

EJ = 45d4π
8w3

2(21 + 3 700π6w6
1 + 1 262π4w4

1 + 282π2w2
1)

+ 3d5π
4w2(5 + 116π6w6

1 + 63π4w4
1 + 26π2w2

1),

A
(31)

EJ = 180d4π
10w1w

5
2(27 + 1 039π4w4

1 + 238π2w2
1 + 3 204π6w6

1)

+ 24d5π
6w1w

3
2(4+19π2w2

1+110π6w6
1+ 52π4w4

1)

−4π2w1w2(1+4π6w6
1+3π4w4

1+ 2π2w2
1),

A
(27)

EJ = 15 d4π
10(390 π2w2

1 + 2 815 π4w4
1 + 12 096 π6w6

1 + 15),

A
(25)

EJ = 3 d5π
6(3 + 560 π6w6

1 + 190 π4w4
1 + 42 π2w2

1),

A
(23)

EJ = −π2(28 π6w6
1 + 15 π4w4

1 + 6 π2w2
1 + 1).

(40)
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4.2 Immovable end condition

For a nanobeam with a fully immovable end condition, the axial compressive load cannot
be applied. From Eq. (14), the expression of geometrically nonlinear strain is obtained as

εXX=

√(
1+

∂UX

∂X

)2

+
(∂UZ

∂X

)2

− 1 ≈
1

2
W 2

1 − ZW2, (41)

where ZW2 and W 2
1 /2 denote the pure bending and midplane stretching deformation, respec-

tively. It should be pointed out that the hypothesis of Wickert[61] is widely used in the nonlinear
analysis of beam structures with the immovable end condition. Thereinto, the midplane stretch-
ing is viewed as a result of imposing on an approximate but equivalent axial force to prevent
the edges motion[60]. This indicates that the midplane stretching and bending components of
deformation are independent of each other.

Under Wickert’s hypothesis[61], the pure axial tensile strain ε
[s]
XX is expressed by the volume

averaging of geometrically nonlinear strain, i.e.,

ε
[s]
XX =

1

Ω

∫

Ω

εXXdΩ =
1

2L

∫ L

0

W 2
1 dX, (42)

where Ω = AL is the occupied space of the elastic beam.
The axial force induced by the midplane stretching is given by

N0 = EAε
[s]
XX =

EA

2L

∫ L

0

W 2
1 dX. (43)

The pure bending strain ε
[b]
XX induced by the cross-section moderate rotation is

ε
[b]
XX = −ZW2. (44)

Obviously, the pure stretching strain no longer generates the strain gradient in the current
circumstance, and the gradient of axial force N0 equals zero. Therefore, the strain gradient is
only sourced from the pure bending strain. Applying Eq. (44), the first- and second-order strain
gradients are given as

ε
[b]
XXX =

∂ε
[b]
XX

∂X
= −ZW3, ε

[b]
XXXX=

∂2ε
[b]
XX

∂X2
= −ZW4. (45)

Equation (19) should be improved as the following form in terms of pure bending strain

gradient ε
[b]
XX and its corresponding stress gradient σ

[tb]
XX , i.e.,

σ
[tb]
XX − η2 ∂2σ

[tb]
XX

∂X2
= E

(
ε
[b]
XX − l2

∂2ε
[b]
XX

∂X2

)
. (46)

The nonlocal axial force-deflection and bending moment-deflection relationships can be calcu-
lated by integrating Eq. (46) through the cross-section area, i.e.,

N [tb]
c − η2 ∂2N

[tb]
c

∂X2
= EAϕ(X), M [tb]

c − η2 ∂2M
[tb]
c

∂X2
= EJφ(X), (47)

in which
ϕ(X) = 0, φ(X) = l2W4. (48)

The solutions to Eq. (47) can be asymptotically expressed in terms of ϕ and φ with the
similar forms as Eqs. (23a) and (23b) and are truncated up to second-order terms.
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The first variation of the strain energy of immovable nanobeam is given by

δU0 =

∫

V

(σ
[l]
XXδεXX + σ

[h]
XX∇δεXX)dV

=

∫

V

σ
[t]
XXδεXXdV +

(∫

A

σ
[h]
XXδεXXdA

)X=L

X=0

=

∫ L

0

(N̂cδW1 − M̂cδW2)dX + ((N̂ncδW1 − M̂ncδW2))
X=L
X=0

= (N̂cδW )X=L
X=0 −

(
M̂cδW1 −

∂M̂c

∂X
δW

)X=L

X=0
+ (N̂ncδW1 − M̂ncδW2)

X=L
X=0

−

∫ L

0

(∂N̂c

∂X
+

∂2M̂c

∂X2

)
δWdX, (49)

in which

N̂c = N0W1 + 2McW1W2, M̂c = Mc, (50a)

N̂nc = NncW1 + 2MncW1W2, M̂nc = Mnc. (50b)

The first variation of external work done by the transverse load is expressed as

We =

∫ L

0

QδWdX. (51)

Similarly, we obtain the motion equation

∂N̂c

∂X
+

∂2M̂c

∂X2
− K1W + K2W2 + Q = 0, (52)

and the boundary conditions

W = 0 or N̂c +
∂M̂c

∂X
+ K2W1 = 0, (53a)

W1 = 0 or M̂c − N̂nc = 0, (53b)

W2 = 0 or M̂nc = 0. (53c)

Substituting Eq. (47) into Eq. (52) yields

EA

2L

∫ L

0

W 2
1 dX · W2 − EJ(2W 3

2 + 4 W1W2W3 + W4) + Q − K1W0

+ K2W2EJ( 2W 2
2 W6 + 2 W1W3W6 + 2W1W2W7 + W8)l

2η2

· EJ(2 W 2
2 W4 + 2W1W3W4 + 2W1W2W5 + W6)(l

2 − η2) = 0. (54)

Neglecting the high-order small quantities and stiffness-softening/hardening size effects,
Eq. (54) reduces to the motion equation adopted in the majority of previous literature,

Q+K2W2 − K1W0 +
EA

2L

∫ L

0

W 2
1 dX · W2 − EJW4 = 0. (55)

Using Eq. (38), Eq. (55) can be normalized as

1

2
d3π

∫ 1

0

w2
1dx · w2 − (2 π2(w3

2 + 2w1w2w3) + w4) + λq + k2w2 − k1w0

+ d5π
2(2 π2(w2

2w4 + w1w3w4 + w1w2w5) + w6)π
4d4

+ (2 π2(w2
2w6 + w1w3w6 + w1w2w7) + w8) = 0. (56)
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5 Solution procedure

It is well-known that the perturbation method is considered to be one of the most effective
ways to deal with boundary-value problems of elastic structures. The main advantage is that the
perturbation solutions can accurately satisfy the motion equation and boundary condition in the
asymptotic sense. Its reliability and accuracy largely hinge on the choice of small parameter ε
which requires to be far smaller than 1 in traditional situation. For a beam with large deflection
or deep postbuckling, however, the ratio between the maximum deflection Wm and the thickness
h may no longer be a small parameter, which leads to the invalidity of the traditional method.

Given the above consideration, Shen and Zhang[62] proposed a two-step perturbation method
aming to address the large deformation problems of elastic structures. Its basic solution pro-
cedure can be briefly stated as follows. The first step is to introduce a small perturbation
parameter ε that may have no physical meaning. The second step takes B11ε as the second
perturbation parameter associated with the dimensionless maximum deflection that may be
large in the deflection region or deep postbuckling region, where B11 is the amplitude of the
first-order term in the perturbation expansion of beam deflection. This approach is successfully
used in the nonlinear bending, postbuckling, and nonlinear vibration problems of beams, plates,
shells, and even nano-enhanced composites structures[63–65].

In this section, two types of nonlinear problems of nonlocal strain gradient nanobeams are
analytically solved by the two-step perturbation method. Taking a simply supported nanobeam
with the freely movable end condition as an example, we demonstrate the detailed solution
process.
5.1 Nonlinear bending

In this subsection, the static load-maximum deflection relationship is determined. Assume
the static load uniformly distributed along the axial direction, i.e., Q(X, t) = Q0. Hence, the
governing equation can be rewritten as

−
1

16
λpw2(16 + 24π2w2

1 + 30π4w4
1 + 35π6w6

1) + λq + k2w2 − k1w0 + A
(8)

EJw8 + A
(7)

EJw7

+ A
(6)

EJw6 + A
(5)

EJw5 + A
(42)

EJ w2
4 + A

(41)

EJ w4 + A
(33)

EJ w3
3 + A

(32)

EJ w2
3 + A

(31)

EJ w3 + A
(27)

EJ w7
2

+ A
(25)

EJ w5
2 + A

(23)

EJ w3
2 = 0. (57)

We assume

w(x, ε) =

n∑

j=1

εjϕj(x), λq =

n∑

j=1

εjλj , (58)

where ε is a small perturbation parameter with no physical meaning. Substituting Eq. (58)
into Eq. (57) and equating the coefficients of like powers of ε, we obtain a set of perturbation
equations which can be solved step by step.

The first-order perturbation equation is given by

d4ϕ1

dx4
+ λp

d2ϕ1

dx2
+ k1ϕ1 − k2

d2ϕ1

dx2
− π2

(
d5

d6ϕ1

dx6
+ d4π

2 d8ϕ1

dx8

)
− λ1 = 0. (59)

With consideration of the simply supported boundary conditions, the solution to Eq. (59)
may be expressed as

ϕ1 = B11 sin(mx). (60)

Substituting Eq. (60) into Eq. (59) and applying the Galerkin procedure, one has

λ1 = −
1

4
B11mπ(π2m6(d4π

2m2 − d5) + λpm
2 − (k1 + k2m

2 + m4)). (61)
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Using Eqs. (60) and (61), the simplified second-order perturbation equation is

d4ϕ2

dx4
+ λp

d2ϕ2

dx2
+ k1ϕ2 − k2

d2ϕ2

dx2
− π2

(
d5

d6ϕ2

dx6
+ d4π

2 d8ϕ2

dx8

)
− λ2 = 0. (62)

Accordingly, ϕ2 is taken as the following form:

ϕ2 = B22 sin(2mx). (63)

Substituting Eq. (63) into Eq. (62) yields

λ2 = 0, B22 = 0. (64)

Using the first two order solutions, the reduced form of the third-order equation is

d4ϕ3

dx4
+ λp

d2ϕ3

dx2
+ k1ϕ3 − k2

d2ϕ3

dx2
− π2

(
d5

d6ϕ3

dx6
+ d4π

2 d8ϕ3

dx8

)

+ (f31 sin(mx) + f33 sin(3mx))B3
11 − λ3 = 0, (65)

where

f31 = −
1

8
π2m4(4m2(m4π4d4 − m2π2d5 − 1) + 3λp), (66a)

f33 = −
3

8
π2m4(4m2(61m4π4d4 − 7m2π2d5 − 1) + λp). (66b)

The right-hand side of Eq. (65) suggests seeking ϕ3 in the form of

ϕ3 = B31 sin(mx) + B33 sin(3mx). (67)

Substituting Eq. (67) into Eq. (65) yields

B31 = 0, B33 = B3
11γ33, λ3 =

1

4
mπf31B

3
11, (68)

where

γ33 =
f33

729π2m6(9π2m2d4 − d5) − (81m4 + 9m2k2 − 9m2λp + k1)
. (69)

Similar to the previous steps, the fourth-order equation after simplification is

d4ϕ4

dx4
+ λp

d2ϕ4

dx2
+ k1ϕ4 − k2

d2ϕ4

dx2
− π2

(
d5

d6ϕ4

dx6
+ d4π

2 d8ϕ4

dx8

)
− λ4 = 0. (70)

Obviously, ϕ4 is taken to be the following form:

ϕ4 = B44 sin(4mx). (71)

Substituting Eq. (71) into Eq. (70) leads to

B44 = 0, λ4 = 0. (72)

The fifth-order equation through properly manipulation is given by

d4ϕ5

dx4
+ λp

d2ϕ5

dx2
+ k1ϕ5 − k2

d2ϕ5

dx2
− π2

(
d5

d6ϕ5

dx6
+ d4π

2 d8ϕ5

dx8

)

+ (f51 sin(mx) + f53 sin(3mx) + f55 sin(5mx))B5
11 − λ5 = 0, (73)
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in which

f51 = −
9

8
π2m4γ33(4m2(61m4π4d4 − 7m2π2d5 − 1) + λp)

+
3

64
m6π4(8m2(11π4m4d4 − 2π2m2d5 − 1) + 5λp), (74a)

f53 =
9

4
π2m4(4m2(5 − 365π4m4d4 + 41π2m2d5) − 3λp)γ33

−
3

128
π4m6(8m2(397π4m4d4 − 46π2m2d5 − 7) + 15λp), (74b)

f55 = −
45

8
π2m4(4m2(1 363m4π4d4 − 59m2π2d5 − 3) + λp)γ33

−
15

128
π4m6(8m2(411m4π4d4 − 16m2π2d5 − 1) + λp). (74c)

The form of the terms on the right-hand side of Eq. (73) suggests seeking ϕ5 as

ϕ5 = B51 sin(mx) + B53 sin(3mx) + B55 sin(5mx). (75)

Substituting Eq. (75) into Eq. (73), we obtain

B51 = 0, B53 = B5
11γ53, B55 = B5

11γ55, λ5 =
1

4
B5

11f51mπ, (76)

where

γ53 =
f53

729π2m6(9π2m2d4 − d5) − (k1+9m2k2+81m4 − 9λpm2)
, (77a)

γ55 =
f55

15 625π2m6(25π2m2d4 − d5) − (k1 + 25m2k2 + 625m4 − 25λpm2)
. (77b)

Using the above solutions, the sixth-order perturbation equation is

d4ϕ6

dx4
+ λp

d2ϕ6

dx2
+ k1ϕ6 − k2

d2ϕ6

dx2
− π2

(
d5

d6ϕ6

dx6
+ d4π

2 d8ϕ6

dx8

)
− λ6 = 0. (78)

Similarly, ϕ6 is assumed to be

ϕ6 = B66 sin(6mx). (79)

Substituting Eq. (79) into Eq. (78) leads to

B66 = 0, λ6 = 0. (80)

The seventh-order equation is readily obtained as

d4ϕ7

dx4
+ λp

d2ϕ7

dx2
+ k1ϕ7 − k2

d2ϕ7

dx2
− π2

(
d5

d6ϕ7

dx6
+ d4π

2 d8ϕ7

dx8

)

+ (f71 sin(mx) + f73 sin(3mx) + f75 sin(5mx) + f77 sin(7mx))B7
11 − λ7 = 0, (81)
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where

f71 = −
9

4
π2m4(4m4π2(365m2π2d4 − 41d5) + 3λp − 20m2)γ2

33

−
15

128
π4m6(8π2m4(397m2π2d4 − 46d5) + (15λp − 56m2))γ33

−
1

1 024
π6m8(64π2m4(95π2m2d4 − 14d5) + 5(35λp − 64m2))

−
9

8
π2m4(4m4π2(61m2π2d4 − 7d5) + λp − 4m2)γ53, (82a)

f73 = −
27

64
π4m6(8π2m4(1 321π2m2d4 − 102d5) + (15λp − 88m2))γ33

−
9

4
π2m4(4π2m4(365π2m2d4 − 41d5) + (3λp − 20m2))γ53

−
45

8
π2m4(4m4π2(1 363m2π2d4 − 59d5) + λp − 12m2)γ55

−
9

1 024
π6m8(128π2m4(76π2m2d4 − 7d5) + (35λp − 128m2)), (82b)

f75 = −
45

8
π2m4( 4m4π2(4 271m6d4π

4 − 197d5) + 3λp − 44m2)γ2
33

−
15

32
π4m6(8π2m4(8 209π2m2d4 − 358d5) + (15λp − 152m2))γ33

−
45

8
π2m4(4m4π2(1 363m2π2d4 − 59d5) + λp − 12m2)γ53

−
25

4
π2m4(4π2m4(7 813π2m2d4 − 313d5) + (3λp − 52m2))γ55

−
5

1 024
π6m8(128π2m4(797π2m2d4 − 35d5) + (35λp − 256m2)), (82c)

f77 = −
63

8
π2m4(4m4π2(29 777m2π2d4 − 641d5) + 3λp − 68m2)γ2

33

−
21

128
m6π4(8m4π2(48 421m2π2d4 − 1 102d5) + 15λp − 248m2)γ33

−
35

8
π2m4(4m4π2(33 319m2π2d4 − 757d5) + 3λp − 76m2)γ55

−
7

1 024
π6m8( 64m4π2(1 471m2π2d4 − 34d5) + 5λp − 64m2). (82d)

The seventh-order perturbation solution ϕ7 takes the form of

ϕ7 = B71 sin(mx) + B73 sin(3mx) + B75 sin(5mx) + B77 sin(7mx). (83)

Substituting Eq. (83) into Eq. (81) yields

B71 = 0, B73 = B7
11γ73, B75 = B7

11γ75, B77 = B7
11γ77, λ7 =

1

4
B6

11f71mπ, (84)

where

γ73 =
f73

729π2m6(9π2m2d4 − d5) − (k1 + 9m2k2 + 81m4 − 9λpm2)
, (85a)

γ75 =
f75

15 625π2m6(25π2m2d4 − d5) − (k1 + 25m2k2 + 625m4 − 25λpm2)
, (85b)

γ77 =
f77

117 649π2m6(49π2m2d4 − d5) − (k1 + 49m2k2 + 2 401m4 − 49λpm2)
. (85c)
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Given the above, the asymptotic solutions of the deflection and static load are expressed as

w = εB11 sin(mx) + (εB11)
3γ33 sin(3mx) + (εB11)

5(γ53 sin(3mx) + γ55 sin(5mx))

+ (εB11)
7(γ73 sin(3mx) + γ75 sin(5mx) + γ77 sin(7mx)), (86a)

λq =
1

4
mπ(εB11(m

6π2(d5 − m2π2d4) + (k1 + k2m
2 + m4 − m2λp))

+ (εB11)
3f31 + (εB11)

5f51 + (εB11)
7f71). (86b)

In Eqs. (86a) and (86b), εB11 will be taken as the second perturbation parameter relating
to the dimensionless maximum deflection wm. Substituting x = π/(2m) into Eq. (86a) yields

wm = w
( π

2m

)
= εB11 − (εB11)

3γ33 − (εB11)
5(γ53 − γ55) − (εB11)

7(γ73 − γ75 + γ77). (87)

From Eq. (87), εB11 can be expressed in an explicit form as

εB11 = wm + w3
mh3 + h5w

5
m + h5w

7
m + O(w9

m), (88)

where

h3 = γ33, h5 = 3γ2
33 − γ55 + γ53, h7 = 12γ3

33 + 8γ33 (γ53 − γ55) + (γ73 − γ75 + γ77). (89)

Substituting Eq. (88) into Eq. (86b) yields the following static load-deflection relationship:

λq = (m6π2(d5 − m2π2d4) + (k1 + k2m
2 + m4 − m2λp))wm

· (f31 + m6π2h3(d5 − m2π2d4) + h3(k1 + m2k2 + m4 − m2λp))w
3
m

· (f51 + 3f31h3 + m6π2h5(d5 − m2π2d4) + h5(k1 + m2k2 + m4 − m2λp))w
5
m

· (f71 + 3f31(h5 + h2
3) + 5f51h3 + m6π2h7(d5 − m2π2d4)

+ h7(k1 + m2k2 + m4 − m2λp))w
7
m. (90)

5.2 Postbuckling

In this subsection, the postbuckling equilibrium path of a simply supported nanobeam sub-
ject to an axial compression is seeked by the two-step perturbation method. For the present
case, λq = 0, and w is only a function of x. Equation (39) is rewritten as

−
1

16
λpw2(16 + 24π2w2

1 + 30π4w4
1 + 35π6w6

1) + k2w2 − k1w0 + A
(8)

EJw8 + A
(7)

EJw7 + A
(6)

EJw6

+ A
(5)

EJw5 + A
(42)

EJ w2
4 + A

(41)

EJ w4 + A
(33)

EJ w3
3 + A

(32)

EJ w2
3 + A

(31)

EJ w3 + A
(27)

EJ w7
2 + A

(25)

EJ w5
2

+ A
(23)

EJ w3
2 = 0. (91)

Unlike the nonlinear bending, λp is now an unknown. The deflection and compression are
assumed as

w(x, ε) =

n∑

j=1

εjϕj(x), λp =

n∑

j=0

εjλj . (92)

Similar to the case of nonlinear bending, up to seventh-order perturbation equations are
solved as the postbuckling solution is needed. Substituting Eq. (92) into Eq. (91) and equating
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coefficients of such powers of ε, a set of perturbation equations can be obtained. The asymptotic
solutions to Eq. (91) may be expressed by

w = εB11 sin(mx) + (εB11)
3γ33 sin(3mx) + (εB11)

5(γ53 sin(3mx) + γ55 sin(5mx))

+ (εB11)
7(γ73 sin(3mx) + γ75 sin(5mx) + γ77 sin(7mx)), (93a)

λp = λ0 +
(εB11)

2f31

m2
+

(εB11)
4f51

m2
+

(εB11)
6f71

m2
, (93b)

where the terms λ0, f31, f51, f71, γ33, γ53, γ55, γ73, γ75, and γ77 are listed in detail in Appendix
A. Treating εB11 as the second perturbation parameter, we obtain the following postbuckling
equilibrium path:

λp = m2 +
k1

m2
+ k2 + m4π2(d5 − m2π2d4) +

f31w
2
m

m2
+

(f51 + 2f31h3)w
4
m

m2

+
(2f31h5 + f31h

2
3 + f71 + 4f51h3)w

6
m

m2
. (94)

For the case of fully immovable end condition, the perturbation solution of nonlinear bending
is presented in Appendix B.

6 Numerical results and discussion

6.1 Convergence study

The objective of this subsection is to verify the convergence of asymptotic solutions by taking
the nonlinear bending and postbuckling of nanobeams as examples. Accordingly, it is essential
to determine how many high-order terms of the maximum deflection wm need to be retained
in the static load-deflection curve and postbuckling equilibrium path.

Figure 2 displays the relationship between the postbuckling load versus the maximum de-
flection for a simply supported nanobeam without elastic foundation when different high-order
terms of maximum deflection are truncated. As demonstrated in this figure, the postbuckling
load nonlinearly increases with the increase in the maximum deflection, and this trend is espe-
cially noticeable for large values of the maximum deflection. In addition, the high-order terms
play an increasingly important role in the postbuckling equilibrium path while the maximum
deflection increases. To guarantee the convergence of the asymptotic solution of the postbuck-
ling equilibrium path, it needs to keep terms up to O(w2

m) when wm 6 0.15 and O(w6
m) when

wm increases up to 0.3.

Figure 3 illustrates the variation of the postbuckling load with the maximum deflection for
a simply supported nanobeam resting on an elastic foundation with truncating nonlinear terms
up to different orders. It should be pointed out that the buckling mode maybe jumps as the

elastic foundation stiffnesses increase to some certain values. The linear buckling load λ
(L)
p for

a nanobeam with a two-parameter elastic foundation is given as

λ(L)
p = min

{
m2 +

k1

m2
+ k2 +

π2m4

L2

(
(l2 − η2) −

m2π2l2η2

L2

)}
, m = 1, 2, 3, · · · , (95)

in which the foundation parameters (k1, k2) along with the nonlocal strain parameters (l, η)
have obvious influence on the buckling behavior of nanobeams. For a given positive number k1,
the linear buckling load is determined as
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Fig. 2 Convergence of postbuckling equilibrium path for simply supported nanobeam without any
elastic foundation (k1 = k2 = 0 and m = 1)

λ(L)
p =






m2+
k1

m2
+ k2+

π2m4

L2

(
(l2− η2)−

m2π2l2η2

L2

)
, m2(m − 1)2 <k1 <m2(m + 1)2,

m2 + (m + 1)2 + k2 +
π2m4

L2

(
(l2 − η2) −

m2π2l2η2

L2

)
, k1 = m2(m + 1)2.

(96)

Obviously, the beam without any foundation and size effect is buckled with m = 1. For the
current example, the buckling occurs at the second mode. One can observe that the postbuckling
equilibrium paths tend to be convergent by increasing the high-order term of the maximum
deflection, and acceptable results are obtained by keeping the terms up to O(w6

m) for the large
deflection regime (e.g., wm = 0.3).

Figures 4 and 5 investigate the convergence of two-step perturbation method in dealing
with the nonlinear bending problem of nanobeams for keeping up to different orders of nonlinear
terms. The ranges of values of the maximum deflection are set to be [0, 0.3] for the movable end
condition. Similar to the observations in Figs. 2 and 3, the transverse load nonlinearly increases
with the deflection. Meanwhile, the load-deflection curves tend to be stable with retaining
more high-order nonlinear terms in asymptotic solutions whether for movable or immovable
beam models. In addition, it can be observed that the asymptotic solution of load-deflection
relationship needs to keep terms up to O(w3

m) when wm 6 0.15, O(w7
m) when wm approaches

0.3 for movable nanobeams, and keep terms up to O(w3
m) for immovable nanobeams to ensure

good accuracy.
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Fig. 3 Convergence of postbuckling load for simply supported nanobeam with elastic foundation
(k1 = 10, k2 = 1, and m = 2)

      

Fig. 4 Convergence of load-deflection curves for movable nanobeam with or without elastic founda-
tion (m = 1)

      

-

Fig. 5 Convergence of load-deflection curves for immovable nanobeam with or without elastic foun-
dation (m = 1)
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To emphasize an important point, the maximum deflection should be limited in a relatively
small range when performing nonlinear bending analysis on the nanobeams with an immovable
end. The reason for this is that the influence of contraction of cross-section will become obvious
when the deflection has a relatively large value. In what follows, the maximum deflection is
assumed not to exceed 0.1 for this case.
6.2 Comparison study

In order to establish the authenticity of the present work, several numerical examples are
proposed for the nonlinear bending and postbuckling of beams at macro/micro-scopic. Direct
comparison is conducted between the present results and those in the literature[36,59,66–69].

Table 1 calculates the dimensionless buckling loads for a simply supported beam resting on
an elastic foundation and compares them with the results from Kien[66], Naidu and Rao[67],
and Shen[59]. The geometry, material, and foundation parameters used here are L = 5 m,
J = 1.0 × 10−5 m4, E = 210 GPa, k1 = K1L

4/(EJ), and k2 = K2L
2/(π2EJ). It is observed

that our results are consistent with those in the literature. Table 2 presents the postbuckling
loads for a simply supported beam without foundation under different values of the maximum
deflection, and the results reported by Timoshenko and Gere[68] and Shen[59] in which the
elliptic function and two-step perturbation methods were used, respectively. It can be seen that
the two-step perturbation solution of Shen[59] and the present one agree well with the elliptic
function solution when wm 6 0.3. The differences of the two methods increase gradually with
the increase in the maximum deflection, but it remains acceptable even when wm = 0.381 5
where the relative error is about 6.8%.

Table 1 Comparison of buckling loads for simply supported beam with elastic foundation

(k1, k2) Kien[66] Naidu and Rao[67] Shen[59] Present

(0, 0) 9.902 3 9.869 6 9.869 6 9.869 6

(1, 0) 10.003 4 9.970 9 9.970 9 9.970 9

(100, 0) 20.009 5 20.002 0 20.001 7 20.001 7

(100, 0.5) 24.933 1 24.937 0 24.936 5 24.936 5

(100, 2.5) 44.488 4 44.676 0 44.675 7 44.675 7

Table 2 Comparison of postbuckling load for simply supported beam without foundation

wm

λp

Exact solutions[68] Shen[59] Present

0.000 0 1.000 1.000 1.000 0

0.055 5 1.004 1.004 1.003 8

0.109 5 1.015 1.016 1.015 3

0.162 0 1.035 1.036 1.035 1

0.211 0 1.064 1.067 1.063 3

0.256 5 1.102 1.107 1.100 7

0.296 5 1.151 1.154 1.145 6

0.331 5 1.215 1.207 1.197 3

0.339 5 1.294 1.221 1.249 2

0.381 5 1.393 1.304 1.298 1

Figure 6 compares the present postbuckling load-deflection curves with those of Shen[59] for a
simply supported beam with or without elastic foundation. The finite depth elastic foundation
stiffnesses K1 and K2 are determined by the Vlasov formulae. The geometric and material
parameters used are K1 = 26.6 MPa/m and K2 = 5.8 MPa/m before nondimensionalizing or
k1= 9.49 and k2= 0.82 after nondimensionalizing. As stated before, the order of buckling mode
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depends on the Winkler foundation stiffness. In the present example, the beams with or without
foundation buckle with m = 2 and m = 1, respectively. It can be observed that our results
agree well with those reported in the literature.

Figure 7 conducts a comparison between the present load-deflection curves and those of
Shen[59] and Horibe and Asano[69], where R =

√
J/A is the radius of gyration of cross-section,

L/R = 100, k1 = K1L
4/(EJ), and k2 = K2L

2/(EJ). Excellent agreement is observed for both
movable and immovable beams.

Fig. 6 Comparison of postbuckling equilib-
rium paths for simply supported beam
with or without elastic foundation
(color online)

Fig. 7 Comparison of static load-deflection
curves for simply supported beam
with or without elastic foundation for
L/R = 100 (color online)

Note that the aforementioned comparison examples involve the macroscopic structures only.
However, there are few studies on large deflected size-dependent nanobeams. On account of
this, the present results are limited to compare with those of Shen and Zhang[36] who developed
a nonlocal beam model incorporating large deflection to analyze the nonlinear mechanical be-
haviors of SWCNTs on a finite depth elastomeric substrate. The effective material properties
of SWCNTs and substrate were given in Ref. [36]. Table 3 presents the linear buckling loads
for three kinds of SWCNTs under different temperatures and nonlocal parameters. The integer
numbers in the parentheses indicate the corresponding buckling mode. It can be observed that
the present model can achieve results consistent with those reported in the literature for the
smaller nonlocal parameter, while there may be obvious difference between the two for the
larger nonlocal parameter especially for the case of (17, 0)-CNT. Part of the reason may lie
in the fact that the present model neglects the nonlinear terms higher than second order in
the asymptotic expression of the nonlocal constitutive equation. It should be noted that the
buckling modes and critical buckling loads provided by Shen and Zhang[36] maybe have some
erroneous and the verification of this point is tagged with an underline.

Figure 8 displays the postbuckling load-deflection curves for a (12, 12)-SWCNT resting on
an elastic foundation under three kinds of temperature. It can be seen that the postbuckling
load is reduced and increases with the increase in the temperature and maximum deflection,
respectively, and there exhibits distinct difference between the present model and that proposed
by Shen and Zhang[36] although there is a similar variation tendency.
6.3 Postbuckling

In this and the next subsection, we take SWCNTs resting on an elastomeric substrate as
examples, and investigate their postbuckling and nonlinear bending behaviors.

Figure 9 exhibits the variation of critical buckling loads with the nonlocal and strain gradi-
ent parameters as well as the foundation stiffness parameters. As seen from this figure, as the
nonlocal parameter decreases or the strain gradient and elastic foundation parameters increase,
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the critical buckling loads increase. This indicates that the nonlocal effect weakens the post-
buckling resistance of small scale structures, while the strain gradient effect does the opposite.
The buckling stability is enhanced by increasing the foundation stiffnesses. Additionally, the
buckling mode is obviously affected by the Winkler foundation parameter K1 and jumps at
some special values (see also Eq. (96)).

Table 3 Comparison of linear buckling loads for SWCNTs resting on elastomeric substrate

T/K e0a
(12, 12)-tube (10, 10)-tube (17, 0)-tube

Shen and Zhang[36] Present Shen and Zhang[36] Present Shen and Zhang[36] Present

300

0 18.986(3) 19.017(3) 16.029(3) 16.064(3) 12.735(3) 12.790(3)

2 18.558(3) 18.566(3) 15.514(3) 15.509(3) 12.434(3) 12.463(3)

4 17.500(3) 17.211(3) 14.332(3) 13.842(3) 11.303(4) 11.484(4)

500

0 15.500(3) 15.528(3) 13.162(3) 13.196(3) 10.046(3) 10.087(3)

2 15.084(3) 15.089(3) 12.685(3) 12.652(3) 9.747(3) 9.762(3)

4 14.055(3) 13.771(3) 11.500(3) 11.019(3) 9.064(3) 8.787(3)

700

0 10.295(2) 10.309(2) 8.685(3) 8.704(2) 7.269(2) 7.297(2)

2 10.211(2) 10.223(2) 8.582(3) 8.598(2) 7.049(2) 7.233(2)

4 9.981(2) 9.965(2) 8.311(3) 8.279(2) 6.371(3) 6.085(3)

The number in parentheses denotes buckling mode (m) in X-direction

Fig. 8 Comparison of postbuckling equilibrium paths of SWCNTs resting on elastic foundation for
(12,12)-tube (color online)

Figure 10 demonstrates the two kinds of size effects on the postbuckling equilibrium paths of
SWCNTs on an elastomeric substrate at room temperature. Three different types of SWCNTs,
namely, armchair (12, 12) and (10, 10)-tubes and zigzag (17, 0)-tube, are considered. According
to Eq. (96), it can be concluded that the above SWCNTs resting on elastomeric substrates are
buckled with m = 3. This figure shows that the postbuckling loads take on the nonlinearly
increasing trend as the maximum deflections raise especially for the relatively large deflection.
Besides, the (17, 0)-CNT is more prone to be buckled, the (10, 10)-CNT does less, and the (12,
12)-CNT does least, which indicates that the bending rigidity of (17, 0)-CNT is the largest,
and (10, 10)-CNT and (12, 12)-CNT are followed. Comparing the three subfigures, it can also
be observed that the postbuckling equilibrium paths may be more affected by the nonlocal
parameter than the strain gradient one.
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Fig. 9 Critical buckling loads of nanobeam with two different types of small scale parameters when
wm = 0 (color online)

Figure 11 displays the size effects on the postbuckling configurations of nanobeams under
different elastic foundation parameters. It can be seen that the buckling mode will jump as
the elastic foundation parameters increase to some certain values, and the size effects are more
sensitive to the lower-order buckling mode than the higher-order one. The reason for this is
that the two small scale parameters and foundation parameters are the influencing factors on
the bending rigidity of nanobeams, in which the nonlocal parameter has a tendency to reduce
bending rigidity while the other two are just on the contrary. The increase in any one of
the three parameters will weaken the stiffness-hardening or stiffness-softing effects caused by
the other two. Consequently, the effects of strain gradient and nonlocal parameters on the
postbuckling behavior decrease as the elastic foundation parameters increase. For the second-
order and third-order buckling modes, their postbuckling configurations almost coincide with
each other. This illustrates that whether or not we consider the small scale effects, there is only
a minimal impact on nanobeams.

Figure 12 depicts the variation of postbuckling configuration of nanobeams with the max-
imum deflection. Three different sets of elastic foundation parameters (k1, k2) are considered
here, i.e., (0, 0) for the buckling mode m = 1, (10, 1) for the buckling mode m = 2, and
(50, 1) for the buckling mode m = 3. From this figure, it can be observed that the right end
of nanobeams produces remarkable horizontal displacement as the axial compression increases,
and therefore the postbuckling configurations of nanobeams undergo a distinct change. This re-
sult confirms that the postbuckling equilibrium paths are virtually stable for nanobeams resting
on elastic foundations.
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Fig. 10 Influence of two small scale parameters on postbucking behavior of SWCNTs at room tem-
perature for m = 3 and T = 300 K

Fig. 11 Postbuckling configuration of simply supported nanobeam under different material and elas-
tic foundation parameters (color online)

6.4 Nonlinear bending

Figure 13 investigates the influence of two kinds of small scale parameters on the nonlinear
bending behavior of SWCNTs. As expected, the static deflections of SWCNTs nonlinearly in-
crease with the increase in the nonlocal parameter or the decrease in the strain gradient param-
eter, and abnormal phenomenon in load-deflection curves is demonstrated when the nonlocal
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parameter has a sufficiently large value, i.e., the positive static load causes negative deflec-
tion. To avoid this abnormal phenomenon, the range of values of nonlocal parameter must be
restricted reasonably. The CNTs without foundation exhibit more obvious nonlinear charac-
teristics than the CNTs with foundation. Furthermore, the (17, 0)-CNT is more likely to be
deflected, the (10, 10)-CNT does less, and the (12, 12)-CNT does least.

Fig. 12 Variation of postbuckling configuration of simply supported nanobeam with maximum de-
flection under different orders of buckling modes for l = η = 0 (color online)
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Fig. 13 Influence of nonlocal and strain gradient parameters on nonlinear bending behavior of SWC-
NTs (color online)
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Figure 14 presents the static load-deflection curves for (12, 12)-CNTs with or without elastic
foundation under two kinds of end conditions. Obviously, CNTs with movable end condition
have larger deflections than the immovable case since the former is subject to less constraint.
In addition, there is an excellent linear relationship between the maximum deflection and the
applied transverse static load for the movable model when the elastomeric substrate is consid-
ered, while nonlinearity of the other model is still remarkable. It can be explained that the
proportion of nonlinear stiffness in the total bending rigidity of movable model decreases with
the increase in the elastic foundation stiffness.

-

Fig. 14 Influence of end conditions on nonlinear bending behavior of SWCNTs (color online)

Figure 15 displays the nonlinear bending configurations of (12, 12)-SWCNTs for different
amplitudes of distributed loads. As illustrated in this figure, the horizontal displacements
of the movable end increase nonlinearly with the applied loads, and in the meantime, the
bending configurations undergo pronounced changes. For the immovable model, however, the
end displacements are always zero, and the applied static load has effect on the maximum
deflection only. Besides, a similar trend can be observed that the immovable model has far less
deflection than the movable model under the same transverse static loading.

Figure 16 evaluates the effect of the axial compression on the nonlinear bending configura-
tions of (12, 12)-SWCNTs. It is clearly seen that the increase in the axial compression causes an
increase in the deflection of CNTs because the bending rigidity is weakened during the loading
process. Similar in the case of postbuckling, remarkable support-moving may be induced by
the axial compression.

Fig. 15 Variations of nonlinear bending configurations of SWCNTs with applied transverse loads
when l = 0, η = 0, λp = 0, and L = 100R for (12, 12)-CNT (color online)
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Fig. 16 Variations of nonlinear bending configurations of SWCNTs with axial compression loads
when l = 0, η = 0, λq = 5, and L = 100R for (12, 12)-CNT (color online)

7 Concluding remarks

Taking two kinds of size effects appearing in nanomaterials as background, we perform multi-
scale nonlinear modeling and two-step perturbation analysis for large deflected nanobeams
resting on an elastic foundation with movable and immovable ends. The Euler-Bernoulli beam
theory with exact bending curvature and microstructural-dependency in the framework of non-
local strain gradient elastic theory is adopted to formulate the nonlinear governing equations.
The load-deflection relationship and postbuckling equilibrium path are analytically determined
by a two-step perturbation method. Convergence and comparison studies are conducted to
establish the accuracy of perturbation solutions. Extensive numerical examples are presented
to investigate the influence of geometrical, foundation, and material parameters together with
the axial compression on the nonlinear behaviors of nanobeams. The general observations can
be summarized as follows. The two-step perturbation technique has a good convergence and
precision as long as the value of maximum deflection is in a reasonable range. By increasing
the strain gradient and foundation parameters or decreasing the nonlocal parameter, the post-
buckling resistance of small scale structures is enhanced. The postbuckling equilibrium path
may be more affected by the nonlocal parameter than the strain gradient parameter under the
same value. The buckling mode will jump at some prescribed values of the Winkler foundation
parameter. The increase in the foundation stiffnesses weakens the results from the nonlocal
and strain gradient parameters. The end condition and axial tension play an important role
in the nonlinear mechanical behaviors of nanobeams when the deflection tends to be large,
but the two factors can be neglectable when the value of deflection is sufficiently small. The
stiffness-hardening or stiffness-softing effects become increasingly important as the dimension-
less thickness decreases and can be negligible as the dimensionless thickness is sufficiently large.
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Appendix A

λ0 = m2 +
k1

m2
+ k2 + m4π2(d5 − m2π2d4),

γ33 = f33/(729π2m6(9π2m2d4 − d5) − (81m4 + 9m2k2 − 9m2λ0 + k1)),

γ53 = f53/(729π2m6(9π2m2d4 − d5) − (k1+9m2k2+81m4
− 9λ0m

2)),

γ55 = f55/(15 625π2m6(25π2m2d4 − d5) − (k1 + 25m2k2 + 625m4
− 25λ0m
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γ73 = f73/(729π2m6(9π2m2d4 − d5) − (k1 + 9m2k2 + 81m4
− 9λ0m
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γ75 = f75/(15 625π2m6(25π2m2d4 − d5) − (k1 + 25m2k2 + 625m4
− 25λ0m
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− 49λ0m

2)).

f31 = −
1

8
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Appendix B

The relationship between the uniformly distributed transverse load and the maximum deflection
can be written as

λq = −
1
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mπ(π2m6(d4π
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−
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3
m,

in which

γ33 =
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