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Abstract A dynamic model for an inclined carbon fiber reinforced polymer (CFRP)
cable is established, and the linear and nonlinear dynamic behaviors are investigated in
detail. The partial differential equations for both the in-plane and out-of-plane dynamics
of the inclined CFRP cable are obtained by Hamilton’s principle. The linear eigenvalues
are explored theoretically. Then, the ordinary differential equations for analyzing the
dynamic behaviors are obtained by the Galerkin integral and dimensionless treatments.
The steady-state solutions of the nonlinear equations are obtained by the multiple scale
method (MSM) and the Newton-Raphson method. The frequency- and force-response
curves are used to investigate the dynamic behaviors of the inclined CFRP cable under
simultaneous internal (between the lowest in-plane and out-of-plane modes) and external
resonances, i.e., the primary resonances induced by the excitations of the in-plane mode,
the out-of-plane mode, and both the in-plane mode and the out-of-plane mode, respec-
tively. The effects of the key parameters, e.g., Young’s modulus, the excitation amplitude,
and the frequency on the dynamic behaviors, are discussed in detail. Some interesting
phenomena and results are observed and concluded.
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1 Introduction

Because of the advantages such as light weight, high strength, and flexibility, inclined cables
have been widely used in many engineering fields, e.g., tower cranes, stayed bridges, guyed
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masts, and suspended roofs. Meanwhile, the investigation into the nonlinear dynamics of an
inclined cable is a basic element for applied mechanics, and this long and rich history is doc-
umented in the classic monograph by Irvine[1] and summarized in Refs. [2]–[5]. Much work
on different models[6], methods (numerical, theoretical, and experimental), and deterministic
phenomena under external and/or internal resonances have been or are being conducted owing
to the dynamical importance of inclined cables in the fields of mathematics, mechanics, and
engineering. However, most existing studies focus on the traditional steel cables with in-plane
excitations or forced and parametric excitations[7]. There are also many studies on the external
and internal resonances of beams and plates[8–10]. Therefore, it is necessary to explore the
dynamic behaviors of inclined cables subject to external and internal resonances.

Carbon fiber-reinforced plastic (CFRP) (cable and sheet) is a lightweight material with high
strength and high corrosion resistance, and has been widely used in civil engineering, especially
bridge engineering[11], e.g., the Herning Footbridge in Denmark and the Laroin Footbridge in
France[12]. Kremidas[13], Kao et al.[14], Kou et al.[15], Fan et al.[16], and Xie et al.[17–18] studied
the structures and the mechanical properties of CFRP cables, and investigated their applications
in cable-stayed bridges. Although a significant amount of research on CFRP cables can be found
in the literature, the studies on their dynamic behaviors are few. Kang et al.[19–20] developed a
dynamic model for CFRP cables, and evaluated the nonlinear dynamic properties of stay cables
subject to parametric and forced excitations. They showed that CFRP cables could reduce the
large vibrations under subharmonic resonances because the variations in Young’s modulus could
change the softening or hardening characteristics of the CFRP cables. With the significant
advantages such as higher strength and corrosion resistance compared with traditional steel
cables, CFRP cables play a significant role in the construction of super-long span bridges.
Therefore, it is both meaningful and interesting for the further understanding of both the
linear and nonlinear dynamics of CFRP cables.

Considering both the linear and nonlinear dynamics of inclined CFRP cables under three
types of external excitations (in-plane, out-of-plane, and both in-plane and out-of-plane), a dy-
namic model that considers the bending stiffness, the shear stiffness, and the thermal changes is
established, and its eigenvalue issue and nonlinear dynamic behavior are investigated with the
multiple scale method (MSM). Hamilton’s principle is used to derive the nonlinear differential
equations governing the motion of the inclined CFRP cables. Then, the two-dimensional (2D)
model with the lowest in-plane and out-of-plane modes is obtained by the Galerkin integral,
and the free vibrations of both the in-plane mode and the out-of-plane mode are investigated
by parametric analyses. In order to roughly model the effect of wind loads on the dynamics of
CFRP cables, ideal in-plane harmonic excitations and lateral harmonic excitations are applied
respectively and simultaneously. The numerical technique is also used to obtain the frequency-
and force-response curves to determine the nonlinear dynamics of the system for different pa-
rameters under simultaneous one-to-one internal resonances between the lowest in-plane and
out-of-plane modes and the primary external resonances. In particular, Young’s modulus is
considered, which has an important effect on the spatial motion of the system. Lastly, some
meaningful conclusions are presented in the final section.

2 Static responses

Static response (profile) is one of the key factors affecting the dynamics of a cable. In
order to investigate the dynamic characteristics of the inclined CFRP cable, we derive its static
configuration in this section.

The shear force is considered for an inclined CFRP cable since its shear rigidity is relatively
low compared with that of a steel cable. Therefore, the safety of large-scale structures is also
considered. In the present study, we consider not only the shear rigidity and the flexural rigidity
but also the thermal effects on the nondimensional model of the static response of inclined CFRP
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cables. Temperature changes will affect the dynamic behavior since the static configuration is
sensitive to temperature[21].

Figure 1(a) displays an inclined CFRP cable with an arbitrary inclination angle θ in a
fixed Cartesian coordinate (x, y) system, where l denotes the length without gravity, and s
represents the curvilinear coordinate. A free-body diagram of an infinitesimal element of the
inclined CFRP cable is shown in Fig. 1(b), where H, M , and Q denote the tension (axial) force,
the bending moment, and the shear force, respectively. Here, the sag of the inclined CFRP
cable is very small because its density is less than one-fifth that of the steel cable. Hence, the
directions of the tension force and the shear force are set along the axial directions of x and y,
respectively.

Figure 1(b) shows the static equilibrium equation in the x-direction as follows:

dH
dx

= −mg sin θ, (1)

where ds ≈ dx.

 

Fig. 1 Static configuration of the inclined CFRP cable

Integrating Eq. (1), we have
H = −mgx sin θ +H0,

where H0 denotes the initial tension force. Generally, we have

−mgL sin θ � H0.

Therefore, we ignore the errors between H and H0, i.e., H = H0.
Similarly, the equilibrium equation in the y-direction is

dQ
dx

= −mg cos θ. (2)

The moment balance equation of the infinitesimal element in Fig. 1(b) can be expressed as
follows:

H
dy
dx

+
dM
dx

−Q = 0. (3)
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Differentiating the above equation once yields

H
d2y

dx2
+

d2M

dx2
− dQ

dx
= 0. (4)

Substitute Eq. (2) into Eq. (4). Since

M = −EI d2y

dx2
, (5)

we have

EI
d4y

dx4
−H

d2y

dx2
−mg cos θ = 0, (6)

where E is Young’s modulus, and I is the second moment of the area of the cross-section.
Equation (6) is the differential equation indicating the static profile of the inclined CFRP
cable. It should be noted that Eq. (6) represents the static profile of a suspended CFRP cable
with two horizontal ends when θ = 0.

The dimensionless variables are defined as follows:

ȳ =
y

l
, x̄ =

x

l
. (7)

Substituting Eq. (7) into Eq. (6) gives

d4y

dx4
− a

d2y

dx2
− b = 0, (8)

where, for brevity, the overbar is deleted, and

a =
Hl2

EI
, b =

mgl3

EI
cos θ. (9)

The solution that we are interested in is the one satisfying the boundary conditions of zero
translational and angle displacements at each end, suggesting that the bending stiffness of the
inclined CFRP cable is considered. The boundary conditions of zero displacement and bending
moment at each end are obtained in Ref. [1].

In dimensionless form, the solution for the clamped-clamped ends is

y =
b

2a
(x− x2) − b

2a
√
a

(
coth

√
a

2
+ csch

√
a

2
cosh

(√
a

2
(1 − 2x)

))
. (10)

The solution for the hinged-hinged ends is

y =
b

2a
(x− x2) − b

a2

(
1 − sech

√
a

2
cosh

(√
a

2
(1 − 2x)

))
. (11)

The physical parameters of the inclined CFRP cable are given as follows:

E = 195 GPa, A = 12.4 cm2, θ = 60◦.

Figure 2 shows the effects of the length and the tension force of the inclined CFRP cable
on its sag errors of the midspan with two different boundary conditions. The sag error is
evident when the tension force is small for both short and long cables. It rapidly decreases
when the tension force increases. The error is negligible when the tension force is greater than
60 kN. Figure 3 shows that the static profiles with different boundary conditions are different,
especially near the two ends. An obviously bending deformation exists when the boundary
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D

Fig. 2 Effects of the length and the tension
force of the inclined cable on its sag
errors of the midspan with different
boundary conditions

-
-

Fig. 3 Static profiles of an inclined cable with
different boundary conditions, where
L = 50 m, and H = 15.6 kN

condition is clamped-clamped, but no bending deformation occurs in the other case. Therefore,
it is more adaptive if the two ends are modeled under the clamped-clamped conditions since
the steel cable almost cracks near the two ends in practice.

In order to consider the effect of the thermal change of the inclined CFRP cable or steel
cable on its dynamic behavior, it is assumed that the ambient temperature is constant when
vibrations occur. This is because the change of temperature is a gradual process but vibrations
occur suddenly under certain conditions. The thermal expansion coefficient α is introduced
in the initial tension force H0, i.e., H0 = ExA(ε0 − αΔTint), where ΔTint is the increment of
temperature. The effects of the thermal change on the static profile and the dynamics of the
inclined CFRP cable are important, and will be discussed in the following section.

3 Governing equations of the inclined CFRP cable

In this section, we consider the inclined CFRP cable whose geometry can be described by
three different configurations (see Fig. 4). The three configurations are (i) a natural state So

with the initial tension, which can be described through the Cartesian abscissa x1; (ii) a static
deformed shape SI under the dead load and temperature variation, which can be illustrated by
the curvilinear abscissa sI; (iii) a dynamic configuration SV due to the motion of the inclined
CFRP cable, which can be depicted by the curvilinear abscissa sV and denoted by εV of the total
Lagrangian strain. Note that the static deformation component SI starting from the natural
shape So has been discussed in the previous section. Here, ui (u1 = u; u2 = v; u3 = w) is
used to describe the dynamic displacement of the inclined CFRP cable starting from the static
deformed shape SI. A Cartesian reference system O-x1x2x3 is used to depict the positions for
the static shape xI

i and the dynamic shape xV
i . θ is the inclined angle of the inclined CFRP

cable versus the horizontal plane.
The strain energy of the inclined CFRP cable can be written as follows:

Π = ΠI +
∫ lc

0

(
H0ε+

1
2
ExAε

2
)
dsI +

1
2
ExI

∫ lc

0

(∂θi
∂sI

)2

dsI

+
1
2

∫ lc

0

κGAγ2
i ds

I +
∫ lc

0

(mgu2 cos θ +mgu1 sin θ)dsI, (12)
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θ

Fig. 4 Inclined CFRP cable configuration, where So is the natural state, SI is the static deformed

shape, and SV is the dynamic deformed shape

where

ε =
∂ui
∂sI

∂xI
i

∂sI
+

1
2
∂ui
∂sI

∂ui
∂sI

=
∂u

∂sI
∂x

∂sI
+
∂v

∂sI
∂y

∂sI
+

1
2

( ∂v
∂sI

)2

+
1
2

(∂w
∂sI

)2

, (13)

and ExA, ExI, andGA denote the axial stiffness, the bending stiffness, and the shearing rigidity,
respectively. κ represents a reduced area coefficient of the cross-section corresponding to the
shear force, and κ = 1 is the reduced area coefficient of the circle cross-section. γi (i = 2, 3) are
the shear angles, i.e.,

γi = θi − ∂ui
∂sI

, i = 2, 3.

θi (i = 2, 3) are the cross-sectional rotation angles due to bending. The torsional angle is
ignored since the twist is generally negligible for the stay cables in bridges when the wind is
regarded as an ideal harmonic load. On the right-hand side of Eq. (12), the first term ΠI is the
elastic potential energy of the inclined CFRP cable corresponding to the static deformed shape,
the second term represents the work done by the initial tension force and dynamic axial force,
the third term denotes the work done by the bending moment, the fourth term indicates the
work done by the shearing force introduced in bending deformation, and the last term indicates
the potential energy of gravity.

The kinetic energy Ek and the virtual work W of the inclined CFRP cable should be con-
sidered to obtain the governing equation. In what follows, the cable will be used to replace
the inclined CFRP cable. Considering the rotational inertia, the kinetic energy and the virtual
work can be expressed as follows:

Ek =
1
2

∫ lc

0

mu̇iu̇idsI +
1
2

∫ lc

0

ρIθ̇iθ̇idsI, (14)

δW =
∫ lc

0

(piδui − μiu̇iδui)dsI, (15)

where m is the mass density per unit length of the cable, μi is the viscous damping, ρ is the
volume density of mass, and pi is the distributed external load in the x-, y-, or z-direction.
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In Eq. (15), the first term represents the virtual work done by the forced excitation, and the
second term denotes the virtual work done by the damping force.

The extended Hamilton’s principle can be stated as follows:

∫ t2

t1

(δEk − δΠ + δW )dt = 0. (16)

Considering the boundary conditions, we have

θi|xi=0,xi=lc = 0, ui|xi=0,xi=lc = 0. (17)

Substituting Eqs. (12), (14), and (15) into Eq. (16), the following equations of motion for the
cable can be obtained while accounting for bending and shearing the rigidity and thermal
variations:

− ρIθ̈2 + ExI
∂

∂x

(∂θ2
∂x

)
− κGA

(
θ2 − ∂v

∂x

)
= 0, (18)

− ρIθ̈3 + ExI
∂

∂x

(∂θ3
∂x

)
− κGA

(
θ3 − ∂w

∂x

)
= 0, (19)

−mü+ pu − μuu̇+ ExA
∂ε

∂x
= 0, (20)

−mv̈ + pv − μvv̈ +H0
∂

∂x

(∂v
∂x

)
+ ExA

∂

∂x

(
ε
(dy

dx
+
∂v

∂x

))
− κGA

∂

∂x

(
θ2 − ∂v

∂x

)
= 0, (21)

−mẅ + pw − μwẇ +H0
∂

∂x

(∂w
∂x

)
+ ExA

∂

∂x

(
ε
∂w

∂x

)
− κGA

∂

∂x

(
θ3 − ∂w

∂x

)
= 0. (22)

The hypothesis dsI ≈ dx is used in the derivation process. Note that Eq. (20) will yield an
additional strain expression if we ignore the terms representing the inertial forces, the damping
forces, and the external forces along the x-direction[22]. If the rotational inertia and shear
stiffness terms are ignored, Eqs. (18)–(22) can be simplified into the equations obtained by
Ricciardi and Saitta[23]. According to the boundary conditions and recalling Eq. (13), we can
rewrite Eq. (20) as follows:

ε(t) =
∂u

∂x
+

dy
dx

∂v

∂x
+

1
2

((∂v
∂x

)2

+
(∂w
∂x

)2)

=
1
lc

∫ lc

0

(dy
dx

∂v

∂x
+

1
2

(∂v
∂x

)2

+
1
2

(∂w
∂x

)2)
dx. (23)

The 2D integral differential equations can be obtained from Eqs. (18)–(23) as follows:

mv̈ + μv v̇ − pv −H0
∂

∂x

(∂v
∂x

)
− ExAε

∂

∂x

(dy
dx

+
∂v

∂x

)
+ ExI

∂4v

∂x4

+
ExI

GA

∂2

∂x2

(
−mv̈ + pv − μvv̇ +H0

∂

∂x

(∂v
∂x

)
+ ExAε

∂

∂x

(dy
dx

+
∂v

∂x

))
= 0, (24)

ExI

GA

∂2

∂x2

(
−mẅ + pw − μwẇ +H0

∂

∂x

(∂w
∂x

)
+ ExA

∂

∂x

(
ε
∂w

∂x

)
+GA

∂2w

∂x2

)

−
(
−mẅ + pw − μwẇ +H0

∂

∂x

(∂w
∂x

)
+ ExA

∂

∂x

(
ε
∂w

∂x

))
= 0, (25)
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where the rotational inertia term and the joint term of the rotational inertia and the shear
stiffness are negligible. These two equations govern the motion of the cable, and are identical
to those of a suspended CFRP cable except under the static state.

Introduce the following nondimensional quantities:

x̄ =
x

l
, ȳ =

y

l
, v̄ =

v

l
, λ̄ =

1
ε0 − αΔTint

=
ExA

H0
,

ξ̄ =
Ex
G
, p̄v =

pvl

ExA
, p̄w =

pwl

ExA
, t̄ =

√
ExA

ml2
t, r =

√
I

A
,

β̄ =
r

l
, μ̄v = μvl

√
1

mExA
, μ̄w = μwl

√
1

mExA
.

Then, Eqs. (24) and (25) can be rewritten as follows:

∂2v

∂t2
+ μv

∂v

∂t
− pv − 1

λ

∂

∂x

(∂v
∂x

)
− ε

∂

∂x

(dy
dx

+
∂v

∂x

)
+ β2 ∂

4v

∂x4

− ξβ2 ∂4v

∂t2∂x2
− ξβ2μv

∂3v

∂t∂x2
+
ξβ2

λ

∂4v

∂x4
+ εξβ2 ∂

3

∂x3

(dy
dx

+
∂v

∂x

)
= 0, (26)

∂2w

∂t2
+ μw

∂w

∂t
− pw − 1

λ

∂

∂x

(∂w
∂x

)
− ∂

∂x

(
ε
∂w

∂x

)
+ β2 ∂

2w

∂x2

+ ξβ2 ∂
2

∂x2

(
−∂

2w

∂t2
− μw

∂w

∂t
+

1
λ

∂

∂x

(∂w
∂x

)
+

∂

∂x

(
ε
∂w

∂x

))
= 0. (27)

Similarly, Eq. (23) can be rewritten as follows:

ε(t) =
∫ 1

0

(dy
dx

∂v

∂x
+

1
2

(∂v
∂x

)2

+
1
2

(∂w
∂x

)2)
dx. (28)

Let

v = φ(x)g(t), (29)

w = ϕ(x)q(t). (30)

Substituting Eqs. (29) and (30) into Eq. (28), we have

ε(t) = C1g(t) + C2g
2(t) + C3q

2(t), (31)

where

C1 =
∫ 1

0

y′φ′(x)dx, C2 =
1
2

∫ 1

0

φ′(x)φ′(x)dx, C3 =
1
2

∫ 1

0

ϕ′(x)ϕ′(x)dx.

Substituting Eqs. (29) and (30) into Eqs. (26) and (27) and then applying the Galerkin integral
yield

g̈(t) + μ1ġ(t) + p1 + b11g(t) + b12g
2(t) + b13q

2(t) + b14g
3(t) + b15g(t)q2(t) = 0, (32)

q̈(t) + μ2q̇(t) + p2 + b21q(t) + b22q(t)g(t) + b23q(t)g2(t) + b24q
3(t) = 0, (33)
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where

k1 =
∫ 1

0

φ(x)φ(x)dx − ξβ2

∫ 1

0

φ′′(x)φ(x)dx,

k2 =
∫ 1

0

ϕ(x)ϕ(x)dx − ξβ2

∫ 1

0

ϕ′′(x)ϕ(x)dx,

μ1 =
μv
k1

∫ 1

0

φ(x)φ(x)dx − ξβ2μv
k1

∫ 1

0

φ′′(x)φ(x)dx,

μ2 =
μw
k2

∫ 1

0

ϕ(x)ϕ(x)dx − μwξβ
2

k2

∫ 1

0

ϕ′′(x)ϕ(x)dx,

p1 = −pv
k1

∫ 1

0

φ(x)dx, p2 = −pw
k2

∫ 1

0

ϕ(x)dx,

b11 =
β2

k1

∫ 1

0

φ(4)(x)φ(x)dx +
ξβ2

λk1

∫ 1

0

φ(4)(x)φ(x)dx

− 1
λk1

∫ 1

0

φ′′(x)φ(x)dx − C1

k1

∫ 1

0

y′′φ(x)dx,

b12 =
C1ξβ

2

k1

∫ 1

0

φ(4)(x)φ(x)dx − C2

k1

∫ 1

0

y′′φ(x)dx − C1

k1

∫ 1

0

φ′′(x)φ(x)dx,

b13 = −C3

k1

∫ 1

0

y′′φ(x)dx, b14 =
C2ξβ

2

k1

∫ 1

0

φ(4)(x)φ(x)dx − C2

k1

∫ 1

0

φ′′(x)φ(x)dx,

b15 =
C3ξβ

2

k1

∫ 1

0

φ(4)(x)φ(x)dx − C3

k1

∫ 1

0

φ′′(x)φ(x)dx,

b21 =
1
λk2

ξβ2

∫ 1

0

ϕ(x)ϕ(4)(x)dx +
β2

k2

∫ 1

0

ϕ(x)ϕ′′(x)dx − 1
λk2

∫ 1

0

ϕ(x)ϕ′′(x)dx,

b22 =
C1ξβ

2

k2

∫ 1

0

ϕ(x)ϕ(4)(x)dx − C1

k2

∫ 1

0

ϕ(x)ϕ′′(x)dx,

b23 =
C2

k2
ξβ2

∫ 1

0

ϕ(x)ϕ(4)(x)dx − C2

k2

∫ 1

0

ϕ(x)ϕ′′(x)dx,

b24 =
C3ξβ

2

k2

∫ 1

0

ϕ(x)ϕ(4)(x)dx − C3

k2

∫ 1

0

ϕ(x)ϕ′′(x)dx.

The in-plane and out-of-plane differential equations are coupled through the quadratic and
cubic nonlinear terms arising from the stretching of the cable centerline (see Eq. (31)). In the
following section, we will focus on the eigenvalues of the system.

4 Free vibrations

4.1 In-plane vibrations
In this section, the in-plane free vibrations including the frequencies and the modal shapes

of the considered cable are discussed. The following terms are ignored: the out-of-plane dis-
placement w, the external force, the damping force, the rotational inertia term, and the joint



658 Houjun KANG, Tieding GUO, Weidong ZHU, Junyi SU, and Bingyu ZHAO

term of the rotational inertia and the shear stiffness on the free vibrations of the cable. Then,
Eq. (26) leads to

∂2v

∂t2
− ζτ

λ

∂4v

∂x2∂t2
+ τ

(
1 +

ζ

λ
− ζαΔTint

)∂4v

∂x4

− (1 − λαΔTint)
∂2v

∂x2
+ ε(t)

(
ζτ

d4y

dx4
− λ

d2y

dx2

)
= 0, (34)

where the temperature term is considered, and τ = ExI
H0l2

.
Similarly, Eq. (11) can be rewritten as follows:

y =
K

2
x(1 − x), (35)

where

K =
λη

1 − λαΔTint
.

The second term in Eq. (11) is ignored because it is a higher-order term but is smaller than the
first one[1]. Therefore, the initial static configuration of the cable is assumed as Eq. (35).

The boundary conditions can be rewritten as follows:

v(x)|x=0,1 = 0, v′(x)|x=0,1 = 0. (36)

Let
v(x, t) = φ(x) exp(iωt),

where ω is the angular frequency. Then, substituting it and Eq. (35) into Eqs. (34) and (36)
yields

(D4 + 0D3 +BD2 + 0D +R)φ(x) +KΓZ = 0, (37)

φ|x=0,1 = 0, φ′|x=0,1 = 0, (38)

where

B = − Z

λ2
(λ− ζτω2 − αΔTintλ

2), R = −Z
λ
ω2, Z =

λ2

(λ+ ζ − λαζΔTint)τ
,

Γ is an unknown constant expressed by

Γ =
∫ 1

0

y′φ′(x)dx,

and D is the differential operator (D(·) = d(·)/dx).
(I) When Γ = 0, Eq. (37) is a homogeneous differential equation with the solution

φ(x) = C1 cos(ϑx) + C2 sin(ϑx) + C3 cosh(δx) + C4 sinh(δx), (39)

where Ci (i =1,2,3,4) are constants, and

δ =

√
−B +

√
B2 − 4R
2

, ϑ =

√
B +

√
B2 − 4R
2

. (40)
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In this case, φ(x) corresponds to the antisymmetrical mode of the cable. To simplify the
expression of frequencies and modal shapes, the coordinate origin is moved to the middle point
of the cable span. Hence, Eq. (38) has the following new form:

φ|x=± 1
2

= 0, φ′|x=± 1
2

= 0. (41)

According to the boundary conditions in Eq. (41) and the antisymmetrical modes of the cable,
we can get that the two constants C1 and C3 must be zero, and

C2 sinh(δ/2) + C4 sin(ϑ/2) = 0, (42)

C2δ cosh(δ/2) + C4ϑ cos(ϑ/2) = 0. (43)

The two unknown constants C2 and C4 are nontrivial only if the coefficient matrix of the above
two equations has a zero determinant, which leads to

ϑ cos(ϑ/2) sinh(δ/2) − δ cosh(δ/2) sin(ϑ/2) = 0. (44)

This is the nondimensional frequency equation of the in-plane antisymmetrical modes of the
cable with the consideration of the bending, shear stiffness, and thermal effects. Substitute
Eq. (42) into Eq. (39). Then, we obtain the nondimensional modal shape function as follows:

φ(x) = C2

(
sinh(δx) − sinh(δ/2)

sin(ϑ/2)
sin(ϑx)

)
. (45)

(II) When Γ �= 0, Eq. (37) is a nonhomogeneous differential equation with the solution

φ(x) = C1 cos(ϑx) + C2 sin(ϑx) + C3 cosh(δx) + C4 sinh(δx) − KZΓ
R

. (46)

This case corresponds to the symmetrical modes of the cable, i.e., C2 = 0 and C4 = 0 when the
coordinate origin is moved to the middle point of the cable span.

According to the boundary conditions shown in Eq. (41), we get

C1 cosh(δ/2) + C3 cos(ϑ/2) − KZΓ
R

= 0, (47)

C1δ sinh(δ/2) − C3ϑ sin(ϑ/2) = 0, (48)

where

Γ =
∫ 1

2

− 1
2

y′φ′(x)dx.

Substituting Eq. (46) and

y =
1
8
K(1 − 4x2)

into Γ yields

C1(δϑ cosh(δ/2) − 2ϑ sinh(δ/2)) + C3(δϑ cos(ϑ/2) − 2δ sin(ϑ/2)) +
δϑΓ
K

= 0. (49)

Substituting the solution of Eqs. (47) and (48) into Eq. (46), we can obtain the modal shape
function of the in-plane symmetrical modes as follows:

φ(x) =
KZΓ
R

(
1 − ϑ cosh(δx) sin(ϑ/2) + δ cos(ϑx) sinh(δ/2)

δ cos(ϑ/2) sinh(δ/2) + ϑ sin(ϑ/2) cosh(δ/2)

)
. (50)
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The unknown constants C1, C3, and Γ can be derived in a nontrivial manner only if the
coefficient matrix of Eqs. (47)–(49) has a zero determinant. Expand the determinant. Then,
we can obtain the nondimensional frequency equation as follows:

2(δ/ϑ+ ϑ/δ)
δ cot(ϑ/2) + ϑ coth(δ/2)

− R

ZK2
= 1. (51)

The modal frequency equations and shape functions of the in-plane symmetrical and antisym-
metrical modes of the cable are obtained, which covers the effects of the initial tension force,
the thermal changes, the bending stiffness, the shearing, and the ratio of Young’s modulus to
the shear modulus on the dynamical characteristics.
4.2 Out-of-plane free vibration

In this section, the out-of-plane free vibrations, including the modal frequencies and shapes
of the cable, are discussed. Similar to Subsection 4.1, ignoring the following terms: the in-plane
displacement v, the external force, the damping force, the quadratic term of w, the rotational
inertia term, and the joint term of rotational inertia and shear stiffness on the out-of-plane free
vibration of the cable, we can rewrite Eq. (27) as follows:

∂2w

∂t2
− (1 − λαΔTint)

∂2w

∂x2
+ τ

(
1 +

ζ

λ
− ζαΔTint

)∂4w

∂x4
− τζ

λ

∂4w

∂x2∂t2
= 0. (52)

The boundary conditions can be rewritten as follows:

w(x)|x=0,1 = 0, w′(x)|x=0,1 = 0. (53)

Set w(x, t) = ϕ(x) exp(iωt), where ω is the angular frequency. Substituting it into Eqs. (52)
and (53) yields

(D4 + 0D3 +BD2 + 0D +R)ϕ(x) = 0, (54)

ϕ(x)|x=0,1 = 0, ϕ′(x)|x=0,1 = 0, (55)

where

B = −λ− αΔTintλ
2 − τζω2

(λ+ ζ − αλζΔTint)τ
, R = − λω2

(λ+ ζ − αλζΔTint)τ
.

For the homogeneous ordinary differential equation shown in Eq. (54), using the classical
procedure[24] yields a solution similar to Eq. (46).

We move the coordinate origin to the middle point of the cable span. Then, the boundary
conditions in Eq. (55) have the following new form:

ϕ|x=± 1
2

= 0, ϕ′|x=± 1
2

= 0. (56)

Substituting Eq. (46) into the boundary conditions in Eq. (56) yields

C1 cos(ϑ/2) − C2 sin(ϑ/2) + C3 cosh(δ/2) − C4 sinh(δ/2) = 0, (57)

C1 cos(ϑ/2) + C2 sin(ϑ/2) + C3 cosh(δ/2) + C4 sinh(δ/2) = 0, (58)

− C1ϑ sin(ϑ/2) + C2ϑ cos(ϑ/2) + C3δ sinh(δ/2) + C4δ cosh(δ/2) = 0, (59)

C1ϑ sin(ϑ/2) + C2ϑ cos(ϑ/2) − C3δ sinh(δ/2) + C4δ cosh(δ/2) = 0. (60)
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Setting C2 = 0 and C4 = 0 and imposing the boundary conditions yield

ϑ tan(ϑ/2) + δ tanh(δ/2) = 0, (61)

ϕ(x) = c1

(
cos(ϑx) − cos(ϑ/2)

cosh(δ/2)
cosh(δx)

)
, (62)

which are the frequency equation and the modal shape function of the out-of-plane symmetrical
mode, respectively.

Setting C1 = 0 and C3 = 0 and imposing the boundary conditions yield

δ tan(ϑ/2) − ϑ tanh(δ/2) = 0, (63)

ϕ(x) = c2

(
sin(ϑx) − sin(ϑ/2)

sinh(δ/2)
sinh(δx)

)
, (64)

which are the frequency equation and the modal shape function of the out-of-plane antisym-
metrical mode, respectively.

As shown in Eqs. (61)–(64), the key parameters such as ζ, β, ε0, and ΔTint have a significant
effect on the out-of-plane free vibration of the cable.
4.3 Discussion

In this section, we focus on the effects of the key parameters, e.g., the ratio of Young’s
modulus to the shear modulus ζ, the nondimensional bending stiffness τ , the initial tension
strain ε0, the temperature increment ΔTint, and the elasto-geometric parameter λ, on the sym-
metrical/antisymmetrical frequencies of the lowest in-plane/out-of-plane modes of the cable.
The parametric study is conducted by means of the proposed expressions through the MATH-
EMATICA software.

The cable ends are anchored at different levels and fixed by the applied initial force H0 =
1.2 × 106 N at different temperatures. The cable has the following characteristics:

Ex = 1.37 × 1011 Pa, L = 1 176 m, G = 2.74 × 1010 Pa,

A = 5.74 × 10−1 m2, ρ = 6.4 × 103 kg · m−3, α = 1 × 10−6 K−1,

where Ex is the initial value of the axial Young’s modulus, which can vary from 137GPa to
1 000GPa. The initial temperature is 273.15K. The other nondimensional parameters can vary
based on the above properties. Figure 5(a) shows the variations in the tension force of the cable,
where ε0 is a function of temperature, and is set to be 0.001 5, 0.001 6, and 0.001 7, respectively.
The temperature significantly affects the tension force. Especially, the sensitivity of the tension
force to the temperature is different, which depends on the initial strain. Moreover, the tension
force of a lower initial strain is more sensitive to the temperature than that of a higher initial
strain. This is due to the fact that the strain produced by thermal variations is a big part of the
total strain when the initial strain is small. Figure 5(b) plots the in-plane static configurations
of the cable at different temperatures. It is noted that the sag increases when the temperature
rises. This is due to the fact that, when the temperature increases, the tension force decreases
while its sag increases.

Figure 6 shows the in-plane modal frequency spectra with different values of the elasto-
geometric parameter λ of the cable. The antisymmetrical and symmetrical modal frequency
spectra are denoted by dotted and solid lines, respectively. The crossover and avoidance phe-
nomena occur when the Irvine parameter increases. As shown in Fig. 6(a), the antisymmetrical
and symmetrical modal frequencies depend on the parameter λ. This is different from Irvine’s
result[1], where the antisymmetrical mode is independent of λ. When λ increases, the frequency
spectrum curves become horizontal, approaching the frequency of an inextensible cable. The
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Fig. 5 Effects of the temperature on the tension force and the static configuration
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Fig. 6 Relationships between the in-plane modal frequencies and the elasto-geometric parameter λ
of the cable

crossover and avoidance points in Fig. 2(a) are different from those given in Ref. [20] because
both the shear stiffness and the bending stiffness are considered in the dynamical model of the
cable. Further discussion on the crossover and shape of the first symmetrical mode is carried out
(see Fig. 6(b)). As can be seen from Fig. 6(b), if λ < λ1 (λ1 = 1 509), the frequency of the first
symmetric mode is less than that of the first antisymmetric mode, and the vertical component
of the first symmetric mode shape has no internal node, which is similar to the results given
by Irvine[1]. If λ = λ1, the frequencies of the first symmetric and antisymmetric modes are
not equal, which is a new phenomenon, compared with Irvine’s result[1]. In this case, the
vertical modal component is tangential to the profile at the supports. Here, λ1 can be defined
as a critical point of the mode shape (CPMS), at which the mode shape transforms from no
internal node to many internal nodes or vice versa. The frequency of the first symmetric mode
is less than the frequency of the first antisymmetric mode when λ1 < λ < λ2 (λ2 = 1 799).
However, two internal nodes appear in the vertical component of the first symmetric mode
shape. Moreover, if λ = λ2, the frequencies of these two modes are equal. λ2 can be defined
as the crossover point of the frequency (CPF). When λ > λ2, the frequency of the symmetric
mode is larger than that of the antisymmetric mode. The discussion shows that the CPMS and
the CPF are different, but they are identical in Ref. [1]. This could be attributed to the fact
that the dimensionless bending stiffness is considered in the dynamical model, which is similar
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to the buckling change mode from a C-curve to an S-curve when the spring stiffness bears a
certain relation to the flexural stiffness.

Figure 7(a) illustrates the natural frequencies of the in-plane modes as a function of the
ratio ζ of Young’s modulus to the shear modulus at different temperatures. It is well-known
that Young’s modulus of the CFRP cables ranges from 137GPa to 1 000GPa, or even greater
than 1 000GPa, while the shear modulus is relatively small. Young’s modulus can be selected
to match different types of demands under special environmental conditions. From the curves
shown in Fig. 7(a), it can be seen that the natural frequencies may increase or decrease with the
increase in ζ at different temperatures. At higher temperatures, i.e., ΔTint = 30 K, the natural
frequencies of the lower modes decrease when ζ increases, e.g., the first three order symmetric
modes and the first four order antisymmetric modes. However, the natural frequencies of higher
modes increase when ζ increases. The natural frequencies of the fourth symmetrical mode is a
critical mode since its frequency trends a limit after increasing and crossing the frequency of
the fourth antisymmetric mode when ζ increases. The critical modes are different at different
temperatures. The first antisymmetric mode becomes the critical mode when ΔTint = 0 K.
These features make the design of the CFRP cable complex, especially with regard to the
vibration control. When the temperature is below zero, e.g., ΔTint = −30 K, all the natural
frequencies of the in-plane modes increase when ζ increases.

The crossover phenomena between the symmetric and antisymmetric modes and the avoid-
ance phenomena between the symmetrical modes are also observed. It is worth noting that the
crossover between the fifth-order symmetrical and antisymmetrical modes produces twice when
the ratio ζ increases. Simultaneously, the mode shape varies with increasing ζ (see Fig. 7(b)).
If ζ < 7.5, the frequency of the fifth symmetric mode is less than that of the fifth antisymmetric
mode, and the vertical component of the fifth symmetric mode shape has eight internal nodes.
When ζ = 7.5, the mode shape has no internal node and is tangential to the profile at the
supports, which indicates that ζ = 7.5 is a CPMS. When

7.5 < ζ < 9.64,

the frequency of the fifth symmetric mode is also less than that of the fifth antisymmetric
mode, and the mode shape has no internal node. When ζ further increases, the CPF and
CPMS appear sequentially.

ζ

ζ ζ

ζ
ζζ

ζ

Δ

Δ

ΔΔ

Fig. 7 Relationships between the frequencies of the in-plane modes and ζ at different ΔTint and the
fifth symmetric and antisymmetric modes

The effects of the key parameters, e.g., the elasto-geometric parameter λ, the bending stiff-
ness τ , and the ratio ζ of Young’s modulus to the shear modulus on the natural frequencies
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of the out-of-plane modes, are discussed. Figure 8 depicts the natural frequencies of the out-
of-plane modes of the cable. It shows that the natural frequencies of the out-of-plane modes
are not sensitive on the elasto-geometric parameter λ since these frequencies remain almost
constant when the elasto-geometric parameter λ increases. However, the frequencies are sus-
ceptible to the bending stiffness τ , the ratio ζ of Young’s modulus to the shear modulus, and
the temperature (see Figs. 9(a) and (b)). Figure 9(a) shows that the natural frequencies of the
high-order modes increase sharply when the bending stiffness increases from 0 to 0.002 5. We
take the fourth symmetrical mode as an example, when the bending stiffness is 0.002 165, the
natural frequency increases by 48.9% from 3.667 to 5.460. Therefore, we can conclude that the
bending stiffness is a key factor for understanding the dynamic behavior of the cable, which is
similar to the previous work on the steel cable in Ref. [25]. It is well-known that the bending
stiffness is constant for a designed CFRP cable or steel cable and is difficult to be changed,
since it is determined by the transverse size of the cross-section. In order to obtain the desired
natural frequencies for controlling the large vibration of the cable, a reasonable ζ may be im-
portant. As shown in Fig. 9(b), the natural frequencies of higher-order modes are also sensitive
to ζ. In addition, it is clear that the natural frequencies of lower-order modes, including the
first two symmetric and antisymmetric modes, increase slightly when ζ increases.

In the following section, we will discuss the spatial motion of the cable so as to understand
its nonlinear dynamical behavior.

λ

Fig. 8 Relationship between the frequency of the out-of-plane modal and the elasto-geometric pa-
rameter λ of the inclined CFRP cable

Fig. 9 Relationships between the frequency of the out-of-plane mode and the parameters τ and ζ
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5 Perturbation analysis

In this section, the standard MSM[26–28] is directly applied to the governing equations (32)
and (33) for determining the equilibrium solution of the cable under external primary and
one-to-one internal resonances.

Equations (32) and (33) can be rewritten as follows:

g′′ + gω2
in + ε(μ1g

′ + b12g
2 + b13q

2 + b14g
3 + b15gq

2 + f1 cos(Ω1t)) = 0, (65)

q′′ + qω2
out + ε(μ2q

′ + b22gq + b23g
2q + b24q

3 + f2 cos(Ω2t)) = 0, (66)

where pi (i = 1, 2) are replaced by the harmonic loads fi cos(Ωit) (i = 1, 2), and

ω2
in = b11, ω2

out = b21.

A bookkeeping parameter ε, which is later set to be 1, is introduced to rescale the parameters
governing these equations, including the nonlinear terms, the damping terms, and the external
load. The apex denotes the differentiation with respect to the time t.

The displacements g(t) and q(t) are expanded as follows:

g(t) = g1(T0, T1) + εg2(T0, T1), (67)

q(t) = q1(T0, T1) + εq2(T0, T1), (68)

where
T0 = t, T1 = εt.

Substituting Eqs. (67) and (68) into Eqs. (65) and (66) and then equating the coefficients of
the same powers of ε, we obtain the following differential equations:

(i) ε0

ω2
ing1 +D2

0g1 = 0, (69)

ω2
outq1 +D2

0q1 = 0. (70)

(ii) ε1

f1 cos(Ω1T0) + b12g
2
1 + b14g

3
1 + b13q

2
1 + b15g1q

2
1

+ ω2
ing2 + μ1D

1
0g1 + 2D1

0D
1
1g1 +D2

0g2 = 0, (71)

f2 cos(Ω2T0) + b22g1q1 + b23g
2
1q1 + b24q

3
1 + ω2

outq2 + μ2D
1
0q1 + 2D1

0D
1
1q1 +D2

0q2 = 0, (72)

where

Dm
j =

∂m

∂Tj
, m = 1, 2, j = 0, 1.

The general solutions of Eqs. (69) and (70) can be expressed as follows:

g1 = A1(T1)eiωinT0 +B1(T1)e−iωinT0 , (73)

q1 = A2(T1)eiωoutT0 +B2(T1)e−iωoutT0 , (74)

where Aj(T1) (j = 1, 2) are complex functions, and Bj(T1) is the corresponding conjugate
complex function of Aj(T1).
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Substituting Eqs. (73) and (74) into Eqs. (71) and (72), we have

(ω2
in +D2

0)g2 = −ieiT0ωinωin(A1μ1 + 2A′
1) − eiT0ωinA1(3b14A1B1 + 2b15A2B2)

− e−iT0(ωin−2ωout)b15A
2
2B1 − 1

2
eiT0Ω1f1 + TNS1 + c.c., (75)

(ω2
out +D2

0)q2 = −ieiT0ωoutωout(A2μ2 + 2A′
2) − eiT0ωoutA2(2A1b23B1 + 3A2b24B2)

− e−iT0(2ωin−ωout)A2
1b23B2 − 1

2
eiT0Ω2f2 + TNS2 + c.c., (76)

where TNSj (j = 1, 2) denote the non-secular terms, c.c. denotes the complex conjugate of the
preceding term, and the apex denotes differentiation with respect to T1.

For the external primary and internal one-to-one resonances of the system,

Aj(T1) =
1
2
aj(T1)eiψj(T1), Bj(T1) =

1
2
aj(T1)e−iψj(T1), (77)

where j = 1, 2, aj and ψj are the amplitude and phase of Aj , respectively.
5.1 In-plane excitation

To explore the internal one-to-one resonance between both modes of the system under the
external primary resonance of the lowest in-plane mode, we let

Ω1 = ωin + σε, ωout = ωin + σ1ε. (78)

By substituting Eqs. (77) and (78) into the secular terms in Eqs. (75) and (76) and separating
the real and imaginary parts, we obtain the modulation equations in polar form for the internal
one-to-one resonance between both modes when the external primary resonance of the in-plane
mode occurs as follows:

ωina
′
1 = −1

8
b15a1a

2
2 sin(2(α1 + α2)) − 1

2
f sinα1 − 1

2
μ1ωina1, (79)

a1ωinα
′
1 = −3

8
b14a

3
1 −

1
4
b15a1a

2
2 −

1
8
b15a1a

2
2 cos(2(α1 + α2)) − 1

2
f cosα1 + σωina1, (80)

ωouta
′
2 =

1
8
b23a

2
1a2 sin(2(α1 + α2)) − 1

2
a2μ2ωout, (81)

a2ωoutα
′
2 =

1
4
a2
1a2b23 +

1
8
b23a

2
1a2 cos(2(α1 + α2)) +

3
8
b24a

3
2 + σ1ωouta2 − σωouta2, (82)

where

f = f1, α1 = T1σ − ψ1, α2 = −T1σ + σ1T1 + ψ2.

In the above equations, σ and σ1 are the external and internal detuning parameters, respectively.
5.2 Out-of-plane excitation

To explore the internal one-to-one resonance between the lowest in-plane and out-of-plane
modes of the cable applied with the lateral excitation, we let

Ω2 = ωout + σε, ωout = ωin + σ1ε. (83)

Substituting Eqs. (77) and (83) into the secular terms in Eqs. (75) and (76) and separating
the real and imaginary parts, we obtain the modulation equations in polar form for the internal
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one-to-one resonance between both modes when the external primary resonance of the out-of-
plane mode occurs as follows:

ωina
′
1 = −1

8
b15a1a

2
2 sin(2(α1 − α2)) − 1

2
a1μ1ωin, (84)

a1ωinα
′
1 = −3

8
a3
1b14 −

1
4
a1a

2
2b15 −

1
8
b15a1a

2
2 cos(2(α1 − α2)) + σ1a1ωin + a1σωin, (85)

ωouta
′
2 =

1
8
b23a

2
1a2 sin(2(α1 − α2)) − 1

2
f sinα2 − 1

2
a2μ2ωout, (86)

a2ωoutα
′
2 = −1

4
a2
1a2b23 − 1

8
b23a

2
1a2 cos(2(α1 − α2)) − 3

8
a3
2b24 −

1
2
f cosα2 + a2σωout, (87)

where

f = f2, α1 = T1σ + σ1T1 − ψ1, α2 = T1σ − ψ2.

5.3 Both in-plane and out-of-plane excitations
For the loads added in both the in-plane and the out-of-plane modes, the dynamic behavior

of the cable under the condition of internal one-to-one resonance could be more interesting.
Similarly, we let

Ω1 = Ω2 = ωin + σε, ωout = ωin + σ1ε. (88)

Substituting Eqs. (77) and (88) into the secular terms in Eqs. (75) and (76), we can obtain
the modulation equations in polar form for the internal one-to-one resonance as the external
primary resonance of both the first in-plane and out-of-plane modes occurring as follows:

ωina
′
1 = −1

8
b15a1a

2
2 sin(2α1 + 2α2) − 1

2
f sinα1 − 1

2
a1μ1ωin, (89)

a1ωinα
′
1 = −3

8
a3
1b14 −

1
4
a1a

2
2b15 −

1
8
b15a1a

2
2 cos(2α1 + 2α2) − 1

2
f cosα1 + a1σωin, (90)

ωouta
′
2 =

1
8
b23a

2
1a2 sin(2α1 + 2α2) +

1
2
kf sinα2 − 1

2
a2μ2ωout, (91)

a2ωoutα
′
2 =

1
4
a2
1a2b23 +

1
8
b23a

2
1a2 cos(2α1 + 2α2) +

3
8
a3
2b24 +

1
2
kf cosα2

+ σ1a2ωout − a2σωout, (92)

where

f2 = kf1, f1 = f, α1 = T1σ − ψ1, α2 = σ1T1 − T1σ + ψ2,

and k is a dimensionless factor.
In this section, the modulation equations in polar form for the internal one-to-one resonance

of the cable are derived by the standard MSM. The nonlinear dynamic behavior of the system
will be discussed in the following section.

6 Nonlinear dynamic behaviors

In this section, the nonlinear dynamic behaviors of the system are discussed in detail when
the internal one-to-one resonance between the lowest in-plane and out-of-plane modes of the
cable is subject to different external harmonic excitations.
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6.1 Physical parameters of the cables
In order to explore the nonlinear dynamic behavior of the cable under the conditions of

internal and external resonances with different materials, excitation frequencies, and amplitudes
using the aforementioned detuning equations, we choose the basic dimensional and physical
parameters of the steel cable as follows:

L = 500 m, E = 1.95 × 1011 Pa, A = 0.017 188 87 m2,

m = 99.92 kg · m−1, θ = 22.51◦ × π/180◦, g = 9.8 m · s−2,

H0 = 6 × 107 N, G = 7.6 × 1010 Pa, μ1 = 0.001, μ2 = 0.001,

where L is the length, E is Young’s modulus, A is the cross-sectional area, m is the mass
per unit length, θ is the inclined angle, g is the gravity acceleration, H0 is the initial tension
force, G is the shear modulus, and μ1 and μ2 are damping ratios. Equations (50) and (62) are
the lowest mode shapes of the in-plane and out-of-plane of the steel cable, respectively. Thus,
the first dimensional frequencies of the in-plane and out-of-plane of the cable are 0.149 4 and
0.132 9, respectively. In addition, the materials CFRP1 and CFRP2 will be used to explore the
nonlinear dynamic behaviors of the CFRP cable. The physical parameters are given as follows:
the shear modulus is 5.3×1010 Pa, the density per unit length is 20.29 kg·m−1, and Young’s
modulii are 1.95 × 1011 Pa and 5.95 × 1011 Pa for CFRP1 and CFRP2, respectively.

In the following figures, the frequency-response and force-response curves are used to inves-
tigate the dynamic behaviors of the system. The dotted and solid lines denote the unstable
and stable solutions, respectively. SN denotes a saddle node bifurcation, while HB represents a
Hopf one. To reduce the number of figures, the solutions a1 and a2 have been merged into one
figure, and a2 is sometimes replaced by −a2.
6.2 External primary resonances of the in-plane mode

Figure 10 shows the frequency-response curves of cables with different excitation forces

σ σ

σ

Fig. 10 Frequency-response curves of cables with different materials
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and materials when excitation is applied to the in-plane mode. There are no unstable branches
and no single in-plane modal motion for the given cases. The response amplitude of the in-plane
mode is always larger than that of the out-of-plane mode. Although the response amplitude
increases with the increase in the excitation force of the cable, the resonance frequency range
moves far away from the natural frequency and initial conditions, i.e., the initial displacements
or speeds need to be increased. Comparing Figs. 10(a), 10(b), and 10(c), we can conclude that
it is useful to replace the steel cable with a CFRP one since it makes the occurrence of the
primary resonance more difficult. For example, as seen in Fig. 10, the detuning parameter σ
shifts from 0.186 7 to 0.351 1 when the steel cable is replaced by CFRP2 and f = 0.01.

Figure 11 shows the force-response curves of cables with different excitation forces and
materials when the excitation is applied to the in-plane mode. It can be seen that there exist
multiple branches of equilibrium solutions within a small range of excitation forces when the
corresponding excitation frequency is fixed; the bigger the excitation frequency is, the larger
the range of excitation forces inducing external primary resonances is. Furthermore, although
there are two stable branches if the excitation force is within a very small range, the dynamic
behavior is complex. Figure 11 shows the Hopf bifurcations (HB1 and HB2) and saddle node
bifurcations (SN1, SN2, and SN3). Large vibrations may occur when the excitation force is
within a certain range between the corresponding excitation forces producing HB1 and HB2. In
addition, the excitation force range, in which the multiple branches of the equilibrium solutions
are observed, decreases when the CFRP2 cable is used to replace the steel cable. Generally, the
large vibrations generated by the external primary and internal resonances occur easily within
this excitation force range. Therefore, the CFRP cable can be used to replace the steel cable
to reduce the possibility of large vibrations by reducing the excitation force range inducing the
external primary and internal resonances from the view point of nonlinear dynamics.

σ  
σ  
σ  

σ  
σ  
σ  

σ  
σ  
σ  

Fig. 11 Force-response curves of cables with different materials (color online)
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6.3 External primary resonances of the out-of-plane mode
Figure 12 shows the frequency-response curves of the steel cable with different excitation

forces when excitation is applied to the out-of-plane mode. There are four branches of equilib-
rium solutions within a certain excitation frequency range when f = 0.000 1, but there are only
two branches when f = 0.001. In other words, the dynamics of the system becomes relatively
simpler when the excitation force increases. In addition, it is seen that there exists a trivial
solution only for the in-plane response a1, while there is no trivial solution for the out-of-plane
response a2. This means that the single modal response can be excited when the excitation is
applied to the out-of-plane mode, which is different from the result obtained in Subsection 6.2.
This phenomenon can also be observed in Fig. 13 when the CFRP cable is used to replace the
steel cable. Similar to the results obtained by the in-plane excitation, increasing the excitation
force and replacing the steel cable with the CFRP cable can reduce the large vibrations of the
inclined cable (see Fig. 13).

σ σ σ

σ σ σ

Fig. 12 Frequency-response curves of the steel cable

σ σ

σ

σ

σ

σ

Fig. 13 Frequency-response curves of the CFRP cables (color online)
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Figure 14 shows the force-response curves of cables with different materials and excitation
frequencies when the excitation is applied to the out-of-plane mode. The comparison of Figs. 14
and 11 shows that they are almost similar. The main difference is that there is only one Hopf
bifurcation for every case in Fig. 14, which means that the dynamic behavior becomes simpler
when excitation is applied to the out-of-plane mode.

σ  
σ  
σ  

σ  
σ  
σ  

σ  
σ  
σ  

Fig. 14 Force-response curves of cables with different materials

6.4 External primary resonances of both in-plane and out-of-plane modes
In order to model the harmonic excitation generated by wind, the excitation loads applied to

both in-plane and out-of-plane modes are assumed to have the same frequency, i.e., Ω1 = Ω2,
and k is used to adjust the relative magnitude in the two different planes of the cable, i.e.,
f2 = kf1. The nondimensional load applied to the in-plane mode is twice that of the out-of-
plane mode as k = 0.5, and vice versa as k = 2.

Figure 15 shows the frequency-response curves of the steel cable with different forces as
Ω1 = Ω2. Although the frequency-response curves still have the characteristic of hard spring,
there exists a stable branch σ < 0. In other words, the resonant frequency range expands to
almost twice that of the excitation applied to each plane separately. From Fig. 15(a), it can be
seen that the primary resonant frequency range will expand further when the excitation ampli-
tude increases. Two saddle node bifurcations are observed in the primary resonant frequency
range. By comparing Figs. 15, 10(a), and 12, it can be concluded that the dynamic behaviors of
the steel cable become increasingly complex when excitation is applied to the in-plane, out-of-
plane, and both in-plane and out-of-plane modes. Two branches of the equilibrium solutions,
one is stable and the other one is unstable, emerge from the saddle node bifurcation (SN1) at
σ = 0.115 2. Therefore, there exist two almost identical stable branches of equilibrium solutions
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σ σ σ σ

σ σ

Fig. 15 Frequency-response curves of the steel cable with different forces

when σ � 0.015 2, as shown in Fig. 15(a). Another two branches of equilibrium solutions emerge
from the other saddle node bifurcation (SN2) at σ = 0.112 6. Therefore, there are five branches
of equilibrium solutions when σ � 0.112 6, which is different from the dynamic behavior of the
system as excitation is applied to each single plane. In addition, the response amplitudes a1

and −a2 of the in-plane and out-of-plane modes are not symmetrical even if k = 1, as shown in
Fig. 15(b). The response amplitude a1 of the in-plane mode is slightly larger than the amplitude
a2 of the out-of-plane mode, even if k = 2, which could be attributed to the in-plane initial
geometric configuration of the steel cable.

Figure 16 shows the force-response curves of the steel cable with different constant detuning
parameters σ when Ω1 = Ω2. It is seen that there exists only one stable branch of equilibrium
when σ < 0, as shown by the right graph in Fig. 16(a). This further confirms the results shown
in Fig. 15. As seen in the left graph in Fig. 16(a), when the excitation amplitude f decreases
from 0.01, the stable coupled equilibrium solutions, i.e., a1 and −a2, decrease and become
unstable through the saddle node bifurcation at SN4. They may also jump to other stable
branches through the saddle node bifurcation at SN1, and then end at f = 0.005. Moreover,
they may jump through the saddle node bifurcation at SN3, and become unstable through the
Hopf bifurcation at HB2. Then, the unstable coupled solutions regain their stability through
another Hopf bifurcation at HB1. Lastly, they decrease rapidly and end through the saddle
node bifurcation at SN2.

As we know, there exist three stable branches of equilibrium solutions when σ � 0.112 6.
Another stable branch is given in Fig. 16(b) when

σ = 0.15, 0.75, k = 1.
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Fig. 16 Force-response curves of the steel cable with different forces

It is seen that the force-response curves form a closed curve, and consist of one stable branch
and some unstable branches of equilibrium solutions within a certain excitation force range. As
the excitation amplitude f decreases from 0.006 when σ = 0.15, the stable coupled steady-state
solutions, i.e., a1 and −a2, start through a saddle node bifurcation at SN3, and then decrease
and end through another saddle node bifurcation at SN1. They may also jump to other stable
branches through the saddle node bifurcation at SN2, and become unstable through the Hopf
bifurcation at HB. From Fig. 16(c), it is noted that the excitation force range for one of the
stable branches arising at SN1 shifts to the left significantly, which means that the increase in
the excitation force applied to the out-of-plane mode can narrow the excitation force range for
multiple equilibrium solutions.

The cable materials CFRP1 and CFRP2 are considered to explore the effects of new materials
on the nonlinear dynamics. Figure 17 shows the force-response curves of the CFRP1 cable when
σ = 0.75 and k = 0.5. Compared with Fig. 16(a), there are three stable branches of equilibrium
solutions within a small excitation force range, and the dynamics of the CFRP1 cable is similar
to that of the steel cable system. However, the response amplitude and excitation force range
for the primary resonance are reduced when the CFRP1 cable is used to replace the steel cable
as k = 2, as shown in Fig. 18.

The nonlinear dynamic behaviors of the CFRP2 cable are shown in Figs. 19 and 20. An
interesting phenomenon for the largest stable branches of equilibrium solutions is observed,
as shown in Fig. 19. When the excitation force increases from zero and k = 1, the response
amplitude a2 of the in-plane mode increases while that of the out-of-plane mode decreases.
Besides, when the excitation force increases from zero and k = 2, the response amplitude
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s

Fig. 17 Force-response curves of the CFRP1 cable, where k = 0.5 (color online)

Fig. 18 Force-response curves of the CFRP1 cable, where σ = 0.25 (color online)

a2 of the out-of-plane mode increases, while the response amplitude a1 of the in-plane mode
decreases. In both the equilibrium solutions, a1 and a2 increase when k = 1. These mean that
the energy transmission through the one-to-one internal resonance is considerable when the
internal resonance is excited and the ratio of energy transmission decreases with the increase
in the excitation force. Therefore, the energy transmission between the lowest in-plane and
out-of-plane modes through the internal resonance is nonlinear because of the nonlinear couple.
Moreover, smaller stable branches become unstable when k = 2, which is detrimental in practice
because the unstable solution will converge to the large stable one.
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Fig. 19 Force-response curves of the CFRP cable (CFRP2, σ = 0.75) (color online)

σ σ σ

Fig. 20 Frequency-response curves of the CFRP cable with different forces (CFRP2, f = 0.001)
(color online)

Figure 20 shows the frequency-response curves of the CFRP2 cable with different forces as
f = 0.001. The nonlinear dynamic behavior is similar to that of the steel cable because of
the similar frequency-response curves and identical bifurcations while the detuning parameter
σ shifts to the right. This means that the primary resonant frequency range expands when
the external excitation is applied to the out-of-plane mode of the CFRP2 cable, which is more
obvious than that of the steel cable. It is important to note that the response amplitudes of
both planes decrease significantly when the CFRP2 cable is used to reduce the vibration of the
cable, as shown in Fig. 21.

7 Conclusions

The mechanical and mathematical mode-reduced model for the analysis of 3D vibration
problems of the inclined CFRP cable is established. The eigenvalues for the free vibration of
the CFRP cable are solved by the analytical method. Then, the nonlinear dynamic behavior of
the cable with different materials under one-to-one internal resonance between both the lowest
in-plane and out-of-plane modes are investigated by the MSM when the system is subject to
the in-plane and out-of-plane harmonic excitations independently and simultaneously. The
parametric analyses of both free linear vibration and forced nonlinear dynamics are conducted.
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σ σ σ

Fig. 21 Frequency-response curves of cables with different material (k = 2 and f = 0.000 1) (color
online)

Some meaningful and novel phenomena and suggestions are drawn as follows by a systemic
dynamic analysis of the midspan of the cable:

(i) The temperature, the elasto-geometric parameter, and the ratio of Young’s modulus to
the shear modulus have significant effects on the natural frequencies of the in-plane mode of the
inclined CFRP cable. The bending stiffness has a significant effect on the natural frequencies
of both the in-plane and the out-of-plane modes.

(ii) The axial Young’s modulus plays an important role not only in increasing the cable
strength but also in adjusting the natural frequencies of the in-plane and out-of-plane modes,
which could be utilized to control the large vibration of the inclined cable in cable-stayed
bridges.

(iii) The CPMS is defined, which is the transition of the mode shape from having no internal
node to having internal nodes or vice versa. Furthermore, it is observed that the CPMS is not
coincident with the CPF.

(iv) Another interesting observation is that the crossover between the two frequency spectra
of the fifth-order symmetrical and antisymmetrical modes occurs twice with the increase in the
ratio of Young’s modulus to the shear modulus.

(v) The shifting and expanding phenomena in the frequency range for the primary resonance
with increasing the excitation amplitude are observed, regardless of whether the load is added
in-plane, out-of-plane, or both. This means that the bigger the excitation amplitude is, the
larger the resonant frequency range is.

(vi) The CFRP cable can reduce the large vibration compared with the steel cable because it
makes the occurrence of the primary resonance more difficult by shifting the threshold frequency,
triggering the large vibration far away from the natural frequency, and reducing the excitation
force range inducing external primary and internal resonances.

(vii) The dynamic behavior of the system under the in-plane excitation is similar to that
under the out-of-plane excitation. The single modal response could be excited when the ex-
citation is applied to the out-of-plane mode. However, more complex dynamic behaviors are
observed when the system is excited on both planes, especially when the resonant frequency
range has expanded twice.

(viii) The response amplitudes of both modes of the system are not symmetrical, even if
the same excitation is applied to both the in-plane and the out-of-plane modes because of the
in-plane static configuration.

(ix) The energy transmission through one-to-one internal resonance is considerable when the
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internal resonance is triggered. Then, the ratio of energy transmission decreases with increas-
ing the excitation force. Therefore, the energy transmission between the in-plane mode and
the out-of-plane mode through the internal resonance is nonlinear because of their nonlinear
coupling.
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