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Abstract A transition Fokker-Planck-Kolmogorov (FPK) equation describes the pro-

cedure of the probability density evolution whereby the dynamic response and reliability

evaluation of mechanical systems could be carried out. The transition FPK equation of vi-

bratory energy harvesting systems is a four-dimensional nonlinear partial differential equa-

tion. Therefore, it is often very challenging to obtain an exact probability density. This

paper aims to investigate the stochastic response of vibration energy harvesters (VEHs)

under the Gaussian white noise excitation. The numerical path integration method is

applied to different types of nonlinear VEHs. The probability density function (PDF)

from the transition FPK equation of energy harvesting systems is calculated using the

path integration method. The path integration process is introduced by using the Gauss-

Legendre integration scheme, and the short-time transition PDF is formulated with the

short-time Gaussian approximation. The stationary probability densities of the transition

FPK equation for vibratory energy harvesters are determined. The procedure is applied

to three different types of nonlinear VEHs under Gaussian white excitations. The approx-

imately numerical outcomes are qualitatively and quantitatively supported by the Monte

Carlo simulation (MCS).
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1 Introduction

Vibration energy harvesters (VEHs) excited by random excitations have flourished as a
focal research topic in recent years. Such sources of powers are currently finding applications
in different fields of technology, such as wireless sensors, data transmitters, vivo biomedical
implants, and health monitoring of structures and machines[1–5].

Many studies have been devoted to exploiting different random vibratory energy harvesting
systems. Cottone et al.[6] found that the bistable oscillators can outperform the linear ones
under the Gaussian white noise excitation. Daqaq[7] derived an approximate expression for the
mean power under the exponentially correlated noise and demonstrated the existence of an op-
timal potential shape maximizing the output power. Green et al.[8] demonstrated that Duffing-
type nonlinearities can reduce the size of electromagnetic energy harvesting devices. Daqaq[9]

used the method of moment differential equations to calculate response statistics. Masana and
Daqaq[10] investigated the influence of stiffness-type nonlinearities on the transduction of the
buckling piezoelectric beam under the band-limited noise. He and Daqaq[11–12] employed the
statistical linearization technique and the finite element method to investigate how the shape
of the potential energy function influences the mean steady-state approximate output power.
Xu et al.[13] introduced the stochastic averaging of energy envelope for Duffing-type VEHs.
Kumar et al.[14] used the finite element method to solve the Fokker-Planck-Kolmogorov (FPK)
equation of the associated bistable energy harvester. Jin et al.[15] introduced the equivalent
nonlinearization technique to derive a semi-analytical solution of the corresponding nonlinear
VEHs. Jiang and Chen[16–17] used the standard stochastic averaging method and the general-
ized stochastic averaging method to solve the response of nonlinear random vibratory energy
harvesting systems. Liu et al. introduced VEHs with fractional-order nonlinear properties[18]

and colored noise excitation[19], respectively. Xiao and Jin[20] proposed the energy harvester
under the correlated white noise excitation, and computed the response with the generalized
harmonic function method. Yang and Xu[21] exploited the VEHs with fractional derivative
damping, and analyzed the dynamical response with the stochastic averaging method. As seen
from the above description, the response statistical characteristics of random energy harvesting
systems can be solved from the stationary FPK equation. However, to solve the probability
density function (PDF) from the transition FPK equation has not been reported. To address
the lack of studies in this aspect, the present work develops the path integration technique to
solve the transient FPK equation.

The PDF evolution is governed by the FPK equation. Thus, the FPK equation provides
a powerful tool for addressing the response characteristics of the nonlinear stochastic system.
However, the FPK equation cannot be exactly solved. Many efforts have been devoted to
developing different approximate or numerical approaches. Among various approaches[22–24],
the path integration method has been receiving much attention, which can be traced back to
Wehner and Wolfer[25], and also developed by Crandall et al.[26], Hsu and Chiu[27–28], Sun and
Hsu[29], Naess and Johnson[30], Iourtchenkoa et al.[31] and Feng et al.[32]. Recently, a Gauss-
Legendre integration scheme to improve the computational efficiency and accuracy of the path
integration method was developed [33–34]. Subsequently, this approach was extended to the
Duffing-Rayleigh oscillator[35], structural dynamic systems[36], and ship roll motion[37]. So far,
to the authors’ best knowledge, there is no path integration analysis on energy harvesting.
To address the lack of studies in this aspect, the present work develops the path integration
technique to determine the response of nonlinear energy harvesters under the Gaussian white
noise excitation.

The paper is organized as follows. Section 2 reviews the governing equation of motion
for vibratory energy harvesting systems. Section 3 establishes the PDF solution of vibratory
energy harvesting systems under Gaussian noises excitations with the path integration method.
Sections 4–6 investigate the stationary PDF solution of three different types of nonlinear VEHs.
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Section 7 ends the paper with concluding remarks.

2 Vibration energy harvesting system

The electromechanical coupling equations of motion for vibration energy harvesting systems
can be expressed as

mẍ + cẋ +
dU(x)

dx
+ χz = −mẍb, (1)

Cpż + z/R = χẋ (piezoelectric), Lż + Rz = χẋ (electromagnetic), (2)

where x represents the displacement of the mass, c is the damping coefficient, χ is the linear
electromechanical coupling coefficient, ẍb is the base acceleration, Cp is the capacitance, L is the
inductance, U(x) represents the potential function symmetries and asymmetries, and z is the
electric quantity representing the induced voltage in piezoelectric harvesters and the induced
current in the electromagnetic ones. These are measured across an equivalent resistive load R.

The non-dimensional electromechanical coupling equations can be described as[8–9]

Ẍ + 2ζẊ + g(X) + κZ = ξ(t), (3)

Ż + αZ = Ẋ, (4)

where g(X) = dU(x)
dx , and ξ(t) = −ẍb is the base acceleration. ξ(t) is the Gaussian white noise

with a zero mean and autocorrelation function

E[ξ(t)ξ(t + τ )] = 2Dδ(τ), (5)

in which E[·] denotes the expected value, D is the intensity of the excitation, and δ(·) is the
Dirac function.

It is worth noting that Eqs. (3)–(4) are universal since g(X) represents the restoring force
symmetries and asymmetries which include cubic nonlinearity, quadratic-cubic nonlinearity,
and cubic-quintic nonlinearity.

The transition FPK equation corresponding to Eqs. (3) and (4) is governed as

∂p(x, t)

∂t
= −

∂(f1p(x, t))

∂x
−

∂(f2p(x, t))

∂y
−

∂(f3p(x, t))

∂z
+ D

∂2p(x, t)

∂x2
2

, (6)

where x = [x, y, z] = [X, Ẋ, Z], f1 = y, f2 = −(2ζy + g(x) + κz), and f3 = −αz + y.

3 Path integration method for energy harvesting systems

For the PDF p(x, y, z, t) at any given moment, it can be calculated through the integration
from the transition probability density q(x, y, z, t) and the initial distribution as

p(x, y, z, t) =

∫

Ω

q(x, y, z, t|x(0), y(0), z(0), t0)p(x(0), y(0), z(0), t0)dx(0)dy(0)dz(0), (7)

where Ω is the integral interval of x, y, and z.
For a long-time duration into a sequence of appropriate short-time intervals from the initial

distribution as follows:

p(x, y, z, t) =

∫

Ω

N
∏

j=1

q(x(j), y(j), z(j), tj |x
(j−1), y(j−1), z(j−1), tj−1)

· p(x(j−1), y(j−1), z(j−1), tj−1)dx(j−1)dy(j−1)dz(j−1). (8)
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Next, the Gauss-Legendre quadrature integration scheme is used to calculate Eq. (8). First,
the domain along the x-direction is divided into two Gauss points as

{

xi = xL + 0.211 3 (xR − xL),
xi+1 = xR − 0.211 3 (xR − xL),

(9)

along the y-direction it can be discretized into
{

yi = yL + 0.211 3 (yR − yL),
yi+1 = yR − 0.211 3 (yR − yL),

(10)

and along the z-direction it can be written as
{

zi = zL + 0.211 3 (zR − zL),
zi+1 = zR − 0.211 3 (zR − zL).

(11)

In this case, the integral (8) can be discretized into the following composite Gauss-Legendre
quadrature form:

p(xI
r , y

I
s , zI

t , tI) =
∆x

2

∆y

2

∆z

2

2n
∑

i=1

2m
∑

j=1

2l
∑

k=1

q(xI
i , y

I
j , zI

k, tI |x
I−1
i , yI−1

j , zI−1
k , tI−1)

· p(xI−1
i , yI−1

j , zI−1
k , tI−1), (12)

where ∆x, ∆y, and ∆z are the lengths of sub-intervals along the x-, y-, and z-directions,
respectively.

The short time transition probability density is

q(xI
i, y

I
j, z

I
j, tI |x

I−1
i , yI−1

j , zI−1
j , tI−1)=

1

(2π)3/2|C|1/2
exp

(

−
1

2
(xI−m

x
I−1)

T
C−1(xI−m

x
I−1)

)

, (13)

where C = E[(xI−1 − m
x

I−1)(xI−1 − m
x

I−1)
T
], and x

I−1 = [xI−1
i , yI−1

j , zI−1
k ].

Moreover, an initial distribution is selected as

p(x(0), y(0), z(0), 0) =
1

(2π)3/2σxσyσz
exp

(

−
(x(0)−mx)

2

2σ2
x

−
(y(0)−my)

2

2σ2
y

−
(z(0)−mz)

2

2σ2
z

)

, (14)

where mx, my, and mz are means, and σx, σy , and σz are standard deviations.

4 Application to the Duffing-type VEH

The Duffing-type VEH is an important model of the nonlinear VEH, which had been widely
reported[1]. Moreover, the non-dimensional electromechanical coupling equations can be de-
scribed as

Ẍ + 2ζẊ + X + δX3 + κZ = ξ(t), (15)

Ż + αZ = Ẋ. (16)

The transition probability in Eq. (13) is assumed to be Gaussian, and depends only on the
mean and variances of x, y, and z. The mean and variances for the system can be derived from
the non-dimensional electromechanical coupling equations (15) and (16), which yields























































ṁ100 = m010,
ṁ010 = −2ζm010 − m100 − δm300 − κm001,
ṁ001 = m010 − αm001,
ṁ200 = 2m110,
ṁ110 = m020 − 2ζm110 − m200 − δm400,
ṁ101 = m011 + m110 − αm101,
ṁ020 = −4ζm020 − 2m110 − 2δm310 + 2D,
ṁ011 = −2ζm011 − m101 − δm301 + m020 − αm011,
ṁ002 = 2m011 − 2αm002,

(17)
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where mijk = E[xiyjzk].
These moment equations are not closed because the system is nonlinear. The moments of

higher than the second-order can be truncated by using the Gaussian closure procedure,














































































m210 = m010m200 + 2m100m110 − 2m010m
2
100,

m201 = m001m200 + 2m100m101 − 2m001m
2
100,

m300 = 3m100m200 − 2m3
100,

m310 = 3m110m200 − 2m010m
3
100,

m301 = 3m101m200 − 2m001m
3
100,

m400 = 3m2
200 − 2m4

100,

m500 = 6m5
100 − 20m3

100m200 + 15m100m
2
200,

m510 = 16m010m
5
100 − 10m110m

4
100 − 20m010m

3
100m200 + 15m110m

2
200,

m501 = 16m001m
5
100 − 10m101m

4
100 − 20m001m

3
100m200 + 15m101m

2
200,

m600 = 16m6
100 − 30m4

100m200 + 15m3
200.

(18)

Substitute Eq. (18) into Eq. (17) and obtain the closed moment equations, i.e.,


























































ṁ100 = m010,

ṁ010 = −2ζm010 − m100 − δ(3m100m200 − 2m3
100) − κm001,

ṁ001 = m010 − αm001,
ṁ200 = 2m110,

ṁ110 = m020 − 2ζm110 − m200 − δ(3m2
200 − 2m4

100),
ṁ101 = m011 + m110 − αm101,

ṁ020 = −4ζm020 − 2m110 − 2δ(3m110m200 − 2m010m
3
100) + 2D,

ṁ011 = −2ζm011 − m101 − δ(3m101m200 − 2m001m
3
100) + m020 − αm011,

ṁ002 = 2m011 − 2αm002.

(19)

Then, Eq. (19) can be solved by the fourth-order Runge-Kutta (RK4) algorithm. By substi-
tuting the solution of Eq. (19) into Eq. (13), the path integration PDFs can been calculated by
using the initial distribution (14) and Eq. (12). The numerical implementation of the path inte-
gration method has been described above, and the main steps for the numerical implementation
are concluded and given in Fig. 1.

-

-

- -

Fig. 1 Flowchart of the numerical implementation of the three-dimensional path integration method
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The PDFs and logarithmic PDFs of the displacement, velocity, and electricity obtained with
the path integration method are compared with the Monte Carlo simulation (MCS) results of
the systems (15) and (16) shown in Fig. 2. The system parameters are set as ζ = 0.8, δ = 0.5,
κ = 0.05, α = 0.05, and D = 0.01.

Fig. 2 Comparisons of PDFs and logarithmic PDFs of the Duffing-type VEH, in which the solid lines
are numerical results from the path integration method, and the hollow circles are numerical
results based on Eqs. (15) and (16) by using the RK4 algorithm

Figure 2 shows that the PDFs and logarithmic PDFs of displacement, velocity and electricity
obtained with the path integration method are close to the MCS results. The logarithmic PDFs
which show the effectiveness of the solution procedure can illustrate the accuracy of the tail
region. The validity and accuracy of the path integration method have been verified by the
MCS.
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Figure 3 describes the joint PDFs of the displacement and velocity obtained with the path
integration method and the MCS results of the systems (15) and (16). It is demonstrated
that the joint PDF which is based on the path integration method agrees very well with the
simulation result.

.

Fig. 3 Comparisons of stationary joint PDFs of the Duffing-type VEH

5 Application to the quadratic-cubic VEH

The quadratic-cubic VEH is an asymmetric system which includes quadratic and cubic
nonlinearity in the restoring force[8]. One of the mathematical models for the quadratic-cubic
VEH can be expressed as follows:

Ẍ + 2ζẊ + X + λX2 + δX3 + κZ = ξ(t), (20)

Ż + αZ = Ẋ. (21)

The mean and variances for the system can be derived from the non-dimensional electrome-
chanical coupling equations (20) and (21), which yields


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
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










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











ṁ100 = m010,

ṁ010 = −2ζm010 − m100 − λm200 − δm300 − κm001,

ṁ001 = m010 − αm001,

ṁ200 = 2m110,

ṁ110 = m020 − 2ζm110 − m200 − λm300 − δm400,

ṁ101 = m011 + m110 − αm101,

ṁ020 = −4ζm020 − 2m110 − 2λm210 − 2δm310 + 2D,

ṁ011 = −2ζm011 − m101 − λm201 − δm301 + m020 − αm011,

ṁ002 = 2m011 − 2αm002,

(22)

where mijk = E[xiyjzk].
Substitute Eq. (18) into Eq. (22) and obtain closed moment equations by the RK4 algorithm.

The system parameters are selected as ζ = 0.2, δ = 0.5, κ = 0.5, α = 0.5, λ = 1, and D = 0.01.
Therefore, the path integration PDFs can be rendered by using the initial distribution (14) and
Eq. (12).

Figure 4 depicts the PDFs and logarithmic PDFs of the displacement, velocity, and electricity
for the quadratic-cubic VEH, and Fig. 5 shows the joint PDFs of displacement and velocity
obtained with the path integration method and the MCS results of the systems (20) and (21).
These results show that the approximate PDFs and logarithmic PDFs of the path integration
method coincide with the MCS ones.
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Fig. 4 Comparisons of PDFs and logarithmic PDFs of the quadratic-cubic VEH, in which the solid
lines are numerical results from the path integration method, and the hollow circles are nu-
merical results based on Eqs. (20) and (21) by using the RK4 algorithm

Fig. 5 Comparisons of stationary joint PDFs of the quadratic-cubic VEH
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6 Application to cubic-quintic VEH

A cubic-quintic Duffing-type VEH was designed by Cao et al.[38], and they discussed the
influence of the potential well depth on the harvesting performance under the harmonic excita-
tion. Jiang and Chen[17] investigated the stochastic response of the cubic-quintic Duffing-type
VEH under the Gaussian white noise excitation by using the stochastic averaging method. The
non-dimensional electromechanical coupling equations can be written as

Ẍ + 2ζẊ + X + δX3 + βX5 + κZ = ξ(t), (23)

Ż + αZ = Ẋ. (24)

The transition probability in Eq. (13) is assumed to be Gaussian, and depends only on the
mean and variances of x, y, and z. The mean and variances for the system can be derived from
the non-dimensional electromechanical coupling equations (23) and (24), which yields


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
















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





ṁ100 = m010,

ṁ010 = −2ζm010 − m100 − δm300 − βm500 − κm001,

ṁ001 = m010 − αm001,

ṁ200 = 2m110,

ṁ110 = m020 − 2ζm110 − m200 − δm400 − βm600,

ṁ101 = m011 + m110 − αm101,

ṁ020 = −4ζm020 − 2m110 − 2δm310 − 2βm510 + 2D,

ṁ011 = −2ζm011 − m101 − δm301 − βm501 + m020 − αm011,

ṁ002 = 2m011 − 2αm002,

(25)

where mijk = E[xiyjzk].

These moment equations are not closed because the system is nonlinear. The moments of
higher than the second-order can be truncated by using the Gaussian closure procedure. By
substituting Eq. (18) into Eq. (25) and obtaining closed moment equations, the path integration
PDFs can be calculated with the closed moment. The system parameters are selected as ζ = 0.4,
δ = 5, κ = 0.05, α = 0.05, β = 1, and D = 0.01.

For the cubic-quintic VEH, the PDFs and logarithmic PDFs of the displacement, velocity,
and electricity obtained with the path integration method are compared with the MCS results
in Fig. 6, and the joint PDFs of displacement and velocity are presented in Fig. 7. The PDFs
and logarithmic PDFs obtained from the path integration agree well with the MCS ones.

7 Conclusions

In this paper, we investigate the response of the vibration-based energy harvester under the
Gaussian white noise. To achieve this goal, the path integration solution of the transition FPK
equation of energy harvesting systems is used to obtain the response statistics of the harvester.
The path integration process is determined by using the Gauss-Legendre integration scheme,
and the short-time transition PDF is introduced by the short-time Gaussian approximation.
The procedure is applied to three different types of nonlinear VEHs under Gaussian white
excitations. It is observed that, both of the path integration solution and the direct Monte
Carlo numerical integration of the stochastic differential equations provide close predictions for
the marginal PDFs of the displacement, velocity, and electricity, and the joint PDFs of the
displacement and velocity.

The investigation yields the following conclusions.
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Fig. 6 Comparisons of PDFs and logarithmic PDFs of the cubic-quintic VEH, in which the solid lines
are numerical results from the path integration method, and the hollow circles are numerical
results based on Eqs. (23) and (24) by using the RK4 algorithm

(a) Path integration method

Fig. 7 Comparisons of stationary joint PDFs of the cubic-quintic VEH
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(I) The information of how probability distribution evolves over time is formulated numeri-
cally by the values of transition PDF at the discrete Gaussian quadrature points.

(II) The PDF from the transition FPK equation of energy harvesting systems is obtained.
(III) The path integration outcomes are qualitatively and quantitatively supported by the

MCS.
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