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Abstract In this paper, we investigate a system of the incompressible Navier-Stokes
equations coupled with Landau-Lifshitz equations in three spatial dimensions. Under the
assumption of small initial data, we establish the global solutions with the help of an
energy method. Furthermore, we obtain the time decay rates of the higher-order spatial
derivatives of the solutions by applying a Fourier splitting method introduced by Schonbek
(SCHONBEK, M. E. L? decay for weak solutions of the Navier-Stokes equations. Archive
for Rational Mechanics and Analysis, 88, 209-222 (1985)) under an additional assumption
that the initial perturbation is bounded in L'(R?).
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1 Introduction

In this paper, we investigate the following Navier-Stokes-Landau-Lifshitz system:

V-u=0, (la)
Ou+u-Vu+Vp=pAu—V - (Vdo Vd), (1b)
Opd+u-Vd=Ad+ |Vd|*d+d x Ad, |d =1, (1c)

where (t,z) € RT x R3, u(z,t) is the velocity field, d(z,t) is the magnetic moment, and the
symbol Vd® Vd denotes a 3 x 3 matrix whose (i, j)th entry is given by 0;d-9;d for 1 < ,5 < 3.
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(1a) and (1b) are the well-known Navier-Stokes equations, while (1c) is the Landau-Lifshitz
system when u = 0. When the term d x Ad is omitted, the system (1) reduces to liquid crystals
which have been studied by many researchers. Lin et al.l'l established the global existence of a
unique “almost strong” solution that has at most finitely much possible singular time which is
analogous to that for the heat flows of harmonic maps (see Ref. [2]) for the initial boundary value
problem in bounded domains in two dimensions (see Ref. [3] for some related works). However,
the global existence of weak solutions in three dimensions remains an open problem. For strong
solutions, Li and Wang¥, Lin and Dingl®, Wang!®, Hineman and Wang!” studied the global
existence of strong solutions with small initial data and the local existence of strong solutions
with any initial data. Recently, the decay of smooth solutions to the non-isothermal model for
compressible nematic liquid crystals has been studied by Guo et al.l8). An approximate model
of liquid crystals system by the Ginzburg-Landau function was studied® !, i.e., |Vd|?d was
replaced by f(d) = VF(d) = % (|d|* — 1)d with € > 0, and the large time behavior of solutions
in the whole space was shown.

Many works have been done on the global stability of the near-constant-equilibrium solutions
to the Cauchy problem or the initial boundary value problem of the compressible Navier-Stokes
equations. Matsumura and Nishidal'?! proved the global existence of small solutions in the H3-
norm and established the first-order spatial derivatives of solutions in the H'-norm in R3. At the
same time, under an assumption that the small initial disturbance belongs to H3(R?)N L(R3?),
Matsumura and Nishidal*® obtained the following convergence rate:

(o= 1,u,0 = 1)(t)|[ 2 < C(L+1) 75

for any ¢ > 0. For the small initial perturbation belonging to H* only, Matsumural* used the
weighted energy method to show the time decay rates

IV (p = 1w, 0 = 1)(t)]| 2 < C(L+18)"%
for k=1,2, and
1(p = 1,6 — 1)(8)]| e < C(1+1)71.

For the spatial dimension n = 2 or 3 of the same system, if the small initial disturbance belongs
to H*(R") N W1 (R") with s > [2] + 3, Poncel'” obtained the optimal L? convergence rate

IV (p — 1,u,0 = ()| < C(1+1) 7307575

for 2 < p < oo and k = 0,1, and 2. In order to establish optimal decay rates for higher-
order spatial derivatives of solutions, if the initial perturbation is bounded in the H~*-norm
(s € [0,2)) instead of L'-norm, Guo and Wang!'6 developed the time convergence rates as
follows by using a general energy method:

IV%(p = 1,u,0 = 1)(B) || g~ < C(1+1)~ %

for 0 < k < N — 1. For more results, readers can also refer to Refs. [17]-[21] and references
therein. For the classical incompressible Navier-Stokes equations, the readers can refer to
Refs. [22]-[26]. Schonbek!?®! and Schonbek and Wiegner(? used the Fourier splitting method (2
and inductive argument to establish optimal decay rates for higher-order derivatives norm
after having the optimal decay rates of solutions and its first-order spatial derivatives at hand.
Recently, by using the Fourier analysis and standard techniques, Liu and Gaol?”) proved global
well-posedness and long time decay of the three-dimensional Boussinesq equations.

As for the system (1), Zhai et al.[?8! obtained the global existence of a unique solution without
any small conditions imposed on the third component of the initial velocity field relying upon
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the Fourier frequency localization and Bony’s paraproduct decomposition. When the density
is also considered, by using energy methods and delicate estimates from the harmonic analysis,
Fan et al.?%! obtained regularity criteria for the strong solutions of the system (1) in Besov and
multiplier spaces. However, the asymptotic behavior of the solutions to the three-dimensional
Navier-Stokes-Landau-Lifshitz system remains an open problem. Motivated by the study of the
decay rates for Navier-Stokes equations, the main purpose of this paper is to study the global
existence and decay rates of smooth solutions to the system (1). However, compared with the
Navier-Stokes equations, some new difficulties arise due to the additional presence of magnetic
moment. Especially, the strong coupling nonlinearities |Vd|?d and d x Ad in (1c) will cause
serious difficulties in the proofs of the time-independent global energy estimates.
For the system (1), the initial data are given by

u(z,0) =uo(z), V-up=0, d(z,0)=do(z), |do(z)=1, (2)
and
ug € HN(R?), do —wo € HYTL(R?) (3)

for any integer N > 2 with a fixed vector wy € S?, that is, |wo| = 1. Furthermore, as the spatial
variable tends to infinity, we assume

lim do(x) = wp. (4)

|z|—o0

The main tools in the present paper consist of the higher-order energy estimate and the
Fourier splitting method. The paper is organized as follows. In Section 2, we obtain the global
solution under the assumption of small initial data with the help of the energy method. In
Section 3, we establish the L?(R3) time decay rate of the velocity u and the magnetic moment
d. In Section 4, with the previous decay estimates, we combine the Fourier splitting method[2*
with the inductive step2° 26! to establish time decay rates of the higher-order spatial derivatives
of the solution. In Section 5, we establish the time decay rates for the mixed space-time
derivatives of velocity and magnetic moment.

Throughout this paper, D! with an integer [ > 0 stands for any spatial derivatives of the order
I. When [ < 0 or [ is not a positive integer, D! stands for Al defined by A*u = F~1(|¢]*0(€)),
where 4 is the Fourier transform of u, and F~! is its inverse. For any integer s > 0, we use
H*(R?) to denote the usual Sobolev spaces with norm || - || g= and LP(1 < p < o0) to denote the
usual LP(R?) spaces with norm || - ||L». We will use the notation A < B to mean that A < CB
for a universal constant C' > 0 that only depends on the parameters coming from the problem
and the indexes NV and s coming from the regularity on the data. We also use C for a positive
constant depending additionally on the initial data.

Our main results are stated in the following theorems.

Theorem 1  Assume that the initial data (ug,do — wo) satisfy (1)—(4). There exists a
constant §g > 0 such that if

[uoll gt + lldo — woll = < do, (5)

then the problem (1) has a unique global solution (u,d) satisfying that for all t > 0,

t
lul, Ol + () = wollFra +/0 (IVul, )l + IV (d(, 7) = wo)llFna)dr

< C(lluollzy + lldo — woll7rn+1)- (6)
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Theorem 2 Let (u,d) be the smooth solution obtained in Theorem 1. Assume additionally
up € HY(R3) N LY(R3) and dy — wo € H*(R3) N LP(R3), for any 1 < p < oo and a unit vector
wo. Then, there exists a small number dg > 0 such that if

luoll 1 + [ldo — wol| 2 < do, (7)

then
lu(- )l < C(L+1)77, (8)
(-, t) — wollre < C(1+1)" 2073, 9)

Theorem 3 Let (u,d) be the smooth solution obtained in Theorem 1, assume additionally
up € HY(R3) N LY(R3), dy — wo € H*(R3) N LY (R?), and assume that

(-, t)l|22 + [ld(-, ) — woll22 < Co(L+8)"% for t20, >0, (10)
where Cy = Coy(uo, do,wp). Then, for m € N, there exists Cp, = Cpp(11, Co) such that
ID™u(-, )| 22 + [ID™(d(-,t) — wo)ll72 < Cr(1+8)7" 724, (11)
and for 2 < p < oo, there holds

D™ u(, )| Lo + [ D™ (d(-, 1) = wo) | < Crn (1 + 1)~ F 27070 (12)

[N

especially,
ID™ (-, ) [ Lo + | D™(d(,t) = wo)l|zse < Con (1 41)~(FHH5), (13)

Remark 1 Since (10) is valid for 4 = 2 by Theorem 3, under all the assumptions of
Theorem 3, we obtain the decay estimates

D™ u(-,t)[|22 + | D™ (d(-, 1) — wo)|[22 < Crn (1 + )=+, (14)
D™ u(-, )| e + [ D™ (d(- ) = wo) | < Cra(1 + 1)~ 2072) 7% (15)

3+m

[D™u(-, )| Lo + [[D™(d(-; 1) = wo)l|Le < Cra(141)7 2 (16)

Moreover, we establish decay rates for the mixed space-time derivatives of solutions to the
Cauchy problem (1)—(4).

Theorem 4  Under all the assumptions in Theorem 2, the global classical solution (u,d)
of the Cauchy problem (1)—(4) has the time decay rate

2147
2

IV (O, 0pd) (1)[172 < C(L+ )™ 2 . (17)
2 Energy estimates

In this subsection, we will derive the a priori energy estimate for the system (1) by assuming
that

u(, )l + [1d(-,t) —wolluz <6 (18)

for sufficiently small § > 0.
We first recall the Sobolev interpolation of the Gagliardo-Nirenberg inequality.



Decay rates of higher-order norms of solutions 1503
Lemma 1 Let 0 < m, and o < 1. Then, we have
1D fllze S ID™ L 1D fI1Z, (19)
where 0 < 0 < 1, and « satisfies
1 1 1
S SR L R L )
3 p 3 q 3 r
Here, if p = 0o, we require that 0 < 6 < 1.
Proof This can be found in Page 125 of Ref. [30].
We recall the following commutator estimates:
Lemma 2  Let m > 1 be an integer and define the commutator
V™, flg=V"(fg) = fV™"g. (20)
Then, we have
V™, Agllie SNVl V™ gllzee + [V fllzes llgllzrs- (21)
In addition, we have that for k > 0,
IV*(f)llee S ULV gllLre + V5 Flloallgl ces, (22)
where p, pa, and ps € (1,00), and
1 1 1 1 1
p P11 P2 P3 P4
Proof Readers can refer to Lemma 3.1 in Ref. [31].
We begin with the first type of energy estimates including v and d.
Lemma 3  If (18) holds, then for k =0,1,---, N, we have
d
T RS(ID'“UIQ +[DFd)de + O(||D* |22 + [ DM2d122)
S O(ID L + IDM2d] 20, (24)

Proof Applying D* to (1b), D**! to (lc), and multiplying the resulting identities by
DFu, D*1d, respectively, summing up them and then integrating over R3 by parts, we get

1d
——/ (|Dku|2+|DkHd|2)dx+/ (u|DF*ul? + | D24 da
2dt Jps R3
=— [ D*(u-Vu)D*udx — DkV-(VdQVd)Dkudx—/ D*l(y - Vd)D*ddx
R3 R3 R3

+/ DFFY(|Vd[*d) - D**'ddx + [ DFT(d x Ad) - DFddx
R3 R3

=L+L+1I3+1,+Is.
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We shall estimate each term on the right hand side of (25). First, for the term I7, by using
Lemma 1 and Lemma 2, we obtain

I = — D¥(u - Vu) D*udz
R3

S ID"u]l sl Vull g2 + ull oo | D*Vu| p2) [ D*ul| 1o

S ([0t 357 2

2’““ + |lull o | D¥Vul| 2) [|D* | 2
SO D 7. (26)

For I, integrating by parts and employing the Leibniz formula and Holder’s inequality, we
obtain

I, = [ D¥Vd®Vd)D"udx
]R3

_ Z Ok/ Dl+1de7l+lde+1ud$
0Lk

S D CUID™ | sl | DFH Tl o | DM o (27)
oIk

Ifo<i< [%] by using Lemma 1, we get
D[ s | D¥F | s

<D (d = wo) H;Wl | D*+2d|| s V|| 5 w1 HDkHdHl—kTl

SO DM 2d] pe, (28)

where « is defined by

[+1 1_(@ l)x(l l)+(k+2 1)>< l
3 3 \3 2 E+1 3 2 kE+1
Since 0 <1 < [g] we have o = 3E=2143 ¢ [2,2)
1 <

2(k—1+1)
If [%] +1< k, by using Lemma 1 again, we get

1D d] s [ DM o

1= 505D || 9k42 || 35D || e T || k2 (|1 D
<[V T | DR (| D# (d - wo)|| 77 | D2l 3
Sol[DMd| ., (29)

where « is defined by

k—l—i—l_%:(a_l) 20+ 1 (k:+2 1) (_ 2l+1) (30)

3 3 2(k + 1) 32 2(k + 1)

Since [£] +1 <1 <k, we have a = %ﬁ& €(3,2).
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Combining (28) and (29), by Cauchy’s inequality, we deduce from (27) that for 0 <1 < k&,

Iy S 6(|ID" Ml 72 + | D247 2). (31)
And for the term I3, similarly,

Iy = | DF(u-Vd)D*"?ddx
]R3

= Y ¢ | D'wD*'VdD*"ddx
o<I<k R3

S D ClD'ullps | D*1d) ol | DFF2d 2. (32)

0<I<k

fo<i< [g], by using Lemma 1, we get

ID"ull pal| D o

_L L L _L
Sl 1D | [Pl D 2] 2
SO ul e + | DH2d ), (33)

where « is defined by

R NN

If [%] +1 <1 <k, by using Lemma 1 again, we get

1D ul| o | D" o

e Gay) o 2041 1 _2l+1
S ol o4 a5 2

SO(IDM | g2 + |DMF2d] 2), (35)

where « is defined by (30), and o = 5252 € (3,2).

Combining (33) and (35), by Cauchy’s inequality, we deduce from (32) that for 0 <1 < k&,

I3 < 6(ID" ulZz + [ DM2d][2). (36)

By integration by parts, Leibnitz formula, and Holder’s inequality, the fourth term on the
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right hand side of (25) can be estimated as
I :/ DFFL(|Vd|?d) - D*dda
R3

=- Y C,Q/ DY(|Vd)?)D*~tdD 2 ddx
0<I<k R3

=— > C}H/ DY(|Vd)?)D*~tdD 2 ddx
1<I<k—1 R3

— [ |Vd|?D*aD*"%ddx — [ D*(|Vd|*)dD*"?ddx
R3 R3

== > > .o / D aDm T gDE DR 2 dd
R3

1<I<k—1 0<m<I—1

_ Z 0}671/

D dDAD* ' dD* 2ddx — [ |Vd|* D*dD*2ddx
1<i<k—1 R R3

3
- > ¢y | pmHdpmtlapt i dda
o<m<k R?

S DL D CiaCrID™ | || DT | e | DY s | DMFRA 2

1<I<k—10<m<I—1

+ > Cioal D o] V| pol| Dl o | DA 1

1<I<k—1
+ IVd| Lo || Vd|| Lo | D*d| o || D*F2d]| >

+ ) CRID™ || | DR | | DFRd e

0<m<k

=141 + Lyo + Lug + Lua.

Now, we estimate the first term Iy;. If 1 <1 < [%], by using Lemma 1, we get

|D™ | o | D' o || D* | o

m41 m41 11

B [E i P ol

<[1D2(d - wo)| 12

SO|ID )| e,

where « is defined by

m+1 1 (a 1)><(1 m+1) (k+2 l)xm+1
3 6 3 2 k 3 2 ko

Since 0 < I < [%52], we have a =2 — —E— € (0,1).

m

= HDk+2dH;Tm ||D2d|\;T:L ||Dk+2dHlL;%

(37)

(38)
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If [551] + 1 <1< k—1, by using Lemma 1, we get
ID™ 4 d]| o || D' 1| o | D'l o

S|lD2d], E |2 F D%l |02l F ([0 = o £ |02l
SOID*2d| e, (39)

where « is defined by

k=1 1 a 1 l E+2 1 l
5= G2 pr ()< (-%)
Since [A51] + 1 <1<k -1, wehavea =2~ % € [0,1).
Combining (38) and (39), we deduce from (37) that for 0 <1<k
I S 6|DM2d]2.. (40)

Similarly, 145 can be estimated as follows:

Lo= Y Ci(|D"d| |Vl o[ D*'d] Lo || D*2d] 2
1<I<k—1

L Dl

A

[Vl 75 [ D4+ 2al 757 | D2 |V 7 | D24
< O|[DM2d|[7.. (41)
The third term on the right hand side of (37) can be estimated by
Iz = HVdHLGHVdHLG||Dkd||LG||Dk+2dHL2

< 1Pl [Vl 127 D42 9 7 02 D

< O[|DM2d|| 2. (42)
Next, we estimate the last term Iyy. If 1 <m < [%], by using Lemma 1, we get

| D™ | 1 | DF ™| o

1-m

SID2(d = wo)ll > | D**2d) £, || D2dl| F || D*2d]
SO D e, (43)

where « is defined by

AR ONC S

3 3 3 2 k 3 2
Since 0 < m < [£], we havea:?—ﬁ €1,3]
If [%] +1 < m < k, by using Lemma 1, we get

D™ d| s | DF ™| o

17277171 2m—1
S D2 % 02 Do - wo) | D42

SO DM 2d] e, (44)
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where « is defined by

k—m—i—l_l_(g_l)X2m—1+(k+2_l)X(1_2m—1)
3 6 \3 2 2k 32 2k /)
Since [£] +1 <m <k, we have a =2 — -2~ € [1, 3).

Combining (40)—(44), we deduce from (37) that

I, < 6||DM24)|3,. (45)

Finally, it remains to estimate the last term I5, note that (a x b) - b = 0, and we have

Is= | D*'(dx Ad)-D*"lddx
R3
= > ckH/ (D'd x D**=IAd) - D*dda
0<I<k+1

- > Ok+1/ (D'd x D*1=vd) - D1 vddx
1<IKk+1

- > c,m/ D'Vd x DF1=lvd) . DFlddx
0<i<k+1

Z ChialID'd x D¥=*2d]| 12 | D*2d| -
1<I<k+1

+ 3 ChalDYd x DY o | D e (46)
0<I<k+1

Now, we begin to estimate || D'd x D*=1+2d| ;2. If 1 < I < [E£L], by using Lemma 1, we get
|D'd x D*=1+24) 1»

< | DY) o || DF12d)| s

o 121 f2 201 o g1 2t
S P =wo)[ . T (|D*2d]| 7 (| D% T

< 6D 2d] e, (47)

where « is defined by

l 17(04 1)><(1 2l—1)+(k+2 1)x2l—1
3 6 \3 2 2k 3 2 2%
+

ki) wehavea:2—ﬁ€[l,%).

Since 1 <1 <
+

(%
It [k+1] 1 <I< k+1, by using Lemma 1, we get
||Dld % l)k*lJerHL2

S| D'd| s || DF 124 o

<HVdHL 2k+2||Dk+2dH2k+2HDa d— wo) H2k+2HDk+2d||1L;22}cllz

<o) D]z, (48)
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where « is defined by

E—1+2 1 a 1 20—1 E+2 1 21—-1
SR B CEE I E11)
3 6 \3 2/  2k+2 3 2 2k + 2

Since [M1] +1 <1< k+1, we have o = 52 € (3,2].

In what follows, we give the estimate of the remaining term | D'*'d x Dk’l”dHLg. If

0<I< [%], by using Lemma 1, we get
HDl+1d X Dk*l+2d|| s
L5

S|IDMY| s || D2 e

1—
L2

!
1-%
L2

S |[D%(d - wo)|[} || DM 2| || Dd|| . | DF2d]|
< 6| DF2d|| e, (49)

where « is defined by

Since 0 < I < [4], we have v =1+ —2(kk—l) € [3,2).
If [£] +1 <1< k+1, by using Lemma 1, we get

||Dl+1d % Dk_l+2dHL%
SIID™ | L2 | DM2d) s
<[Vl ([ D4+ 2a FT | D2 d - wo) | (| D42 27
S8 DM2 e, (50)

where « is defined by

L ()

Since [§]+1<l<k+1, wehavea:l—l—% €2,2].
Combining (47)—(50), we deduce from (46) that for 0 <1 < k+ 1,

I5 < 8|1 DM2d) 2. (51)

Summing up the estimates for I; ~ I, i.e., (26), (31), (36), (45), and (51), we deduce (24)
for 0 < k < N, and this yields the desired result.

Next, we derive the second type of energy estimates excluding d — wy.
Lemma 4  If (18) holds, then we have

d
—/ ld — wol2de + [|V(d — wo)|22 < 0. (52)
dt Jgs

Proof Since wy is a unit constant vector, we rewrite 1(c) as

0¢(d — wo) +u-V(d —wo) = A(d —wo) +[V(d —wo)Pd +d x A(d—wo),  (53)
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and multiplying (53) by d — wg, integrating by parts, we obtain

1d

L gl + 9= w2

= |V(d — wo)|*d - (d — wp)dx —i—/ (dx A(d — wp)) - (d — wp)dx
R3 R3

S IVl s [[ V| 2]ld — wol

L6
SVl Vd]Zs
< dlIvd|Z., (54)

where we have used Holder’s inequality, (18), and (a x b) - b = 0.
Thus,

d
lld = woll2: + [ 9(d = wo)l22 < 0.

Next, we will combine all the energy estimates that we have derived to prove Theorem 1.

Proof We first close the energy estimates at each [th level in our weaker sense. Let N > 2
and 1 < m < N. Summing up the estimates (24) of Lemma 3 from k& = 0 to k = m, since 0 is
small, we obtain

d
7 lellzrn + [1Vdlln) + ([ VullFm + [D*dl7m) <0, (55)

which, together with (52), yields

d
7 lellzrn + lld = wollzmss) + (IVullFrm + IVl fmsa) <O. (56)

Let m =1 in the estimates (56), and we have

d
7 lullzrs + 1d = woll3r=) + (IVullz: + [ Vdl32) <0, (57)

and then integrating directly in the time variable, we get
lullZ + lld = woll 2 < lluollz + lldo — woll3- (58)

By a standard continuity argument, this closes the a priori estimates (18). This in turn
allows us to take m = N in (56), and then integrate it directly in the time variable to obtain
(6). This completes the whole proof of Theorem 1.

3 Proof of Theorem 2

In this section, we shall give the proof of Theorem 2. In order to establish that d —wg decays
in LP(R3) for p > 1, we first establish the following inequality.

Lemma 5  Under the assumption (18), for p > 2, we have

d p
5/}1@ | — wolPdz + C, /R IV]d — wol [2dz < 0. 9)
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Proof Let 2 < p < oo and multiply (53) by |d — wo|[P~2(d — wp), which gives

lg/ |d—w0|pdx—/ |d—wo|p_2(d—wo)-A(d—wo)dx

pdt R3 R3

- / IV(d — wo)|?|d — wolP~2(d — wo) - dd + / Id — wolP~2(d — wo) - (d x Ad)dz.  (60)
R3 R3

We can estimate the second term on the left hand side of (60) by integration by parts as
follows:

= [ 1= w3 = ) Al - wo)ds
R

=(p-2) |(d — wo) - V(d — wo)|?|d — wo|P~*dx + / |d — wo|P~2V(d — wp) - V(d — wp)dz
R3 RS

-2 1
:pT/ |V|d—w0|2|2|d—w0|p_4dx+Z/ |V|d—w0|2|2|d—w0|17—4d$
R3 R3

4(p-1)
p2

= / V|d — wol? [*da. (61)
R3
The first term on the right hand side of (60) is estimated as

/|V(d—w0)|2|d—w0|p72(d—w0)-dd:z:
R3
<lld =il | |1V(d=w0)Pld - wop~da
R‘
§5/ |V(d — wo)|?|d — wo|P~2dx
R3

46
<= / V]d — wol? 2da, (62)
p* JRrs

where we have used (18) and |d| = 1.
By virtue of integration by parts and (a x b) - b = 0, the second term on the right hand side
of (60) is estimated as

[ a2~ n) - (d x Ao
——(p-2) / ld — wolP~ 4V (d — wo) - (d — wo)(d — wo) - (d x Vd)da

- /R ld — wolP~2V(d — wo) - (d x Vd)da — /R ld — wolP~2(d — wp) - (Vd x Vd)dz
<=2 [ =P V(- w)Pda

<2222 [ 9id- wltas. (63)
D R3

Substituting (61)—(63) into (60), for 2 < p < 0o, we reach the desired estimate (59).
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Lemma 6  Under the assumption (18), and dy — wo € L*(R3) N L*(R3), we have

‘/R% |d — w0|dx < Co. (64)

Proof Multiply (53) by @l:—zg‘(or alternatively by Idi:ﬁ, and ¢ — 0), which gives

d—wo

d d—
—/ d—olde = [ A=) modat [ [Vd=w)Pd do
dt RS ]R3 |d 3

Wo

d_
+ d x Ad) - dzx. 65
/R; ) (65)

|d — wol

The first term on the right hand side of (65) can be estimated by integrating by parts as

d—wo
- A(d — d
/ [d—wg] A4 T w0)de

_ V(d—wo)-V(d—wo)dx+/ |(d—wO)'V(d—WQ)|2dx
R3

RS |d — wol |d — wo?
_ 2 _ 2
g_/ [V(d = wo)| dﬂ/ V(d = wo)? |
R3 |d—(UQ| R3 |d—(UQ|
=0. (66)

The second term on the right hand side of (65) can be estimated by using |d| =1 as

d— wo
|d — wol

|V(d wo)|?d - dr < | |V(d— wo)|*dz. (67)
RS

The third term on the right hand side of (65) can be estimated by integrating by parts and
using (@ x b)-b=0 as

d—wo
d x Ad) - dx
‘/R'a( ) |d—w0|

d wo / 9i(d — wo)
= — (0id x 0;d) - d x 0;d) - ——=dz
Z g Z g o)

3
+Z/Ra(d><aid)-(d—wo)ai(d_wo)'(d_wo)dx

|d — w3
= 0. (68)
Combining (66)—(68), we deduce from (65) that

/|d woldz < /|Vd wo)|?da. (69)

Integrating the inequality (69) with respect to ¢ yields

t
/|d—w0|dx</ |d0—w0|dx+// IV(d = wo) Pdadr. (70)
R3 R3 0 Jrs



Decay rates of higher-order norms of solutions 1513

Similar to (70), we have from (52) that

t
/|d—w0|2d:v—|—// |V(d—w0)|2dxd7</ |do — wo|?dz. (71)
R3 0 JR3 R3

Combining the inequalities (70) and (71) yields

/ |d — wo|dx < C
R3

This completes the proof of the lemma.

Lemma 7  Let d be the solution obtained in Theorem 1. Assume dy —wo € LP(R3),1 <
p < oo. Then, we have

(-, ) — wollrer < Ot +1)"30=9). (72)

Proof According to the idea in Ref. [32], we multiply (59) by (1 + ¢)®, for an arbitrary
a > 0, which yields

d

S+ )7d = o) + Co(1 + 7V (1d = wolF)[22 < L+ Hd = wollfye  (73)

With Holder’s inequality, the right hand side of (73) is estimated as
a(l+6)* 7 d - wollZ,
< Co(1+1)°7H|V(ld — wol?)|| 13 B ld = wol| 5
= Co(1+1)7555 | V(|d — wol¥) Hl*w (1+ 1) 75 2| d — wo|| 7
E(1+ %[V (d — wol F)|22 + Cae(1 + 0771 d = wol L, (74)

where v = 3(1 — —) and a > yp.
Substituting the estimate (74) into (73) and taking € > 0 suitably small, we have

d C o »

dt((l +t)%|ld — wollf,) + 7]”(1 + )%V (|d — wol ¥)|122

< Coe(L+ )77 H|d — wol%,

< Cuc(l 4+t L (75)

where we use Lemma 6.
Integrating the inequality (75) with respect to ¢ yields

c, [* »
(1+t)“||d—wolip+7”/0 (1 +7)*[V(|d — wol¥)|22dr

< ldo — wollfp + Cae(1+6)*77P, 20, 2<p< oo, (76)
from which it follows

ld = wollzy < C(1+1)"|ldo = wollzs + C(1+1)777. (77)
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Due to a > vp,
ld — wollLr < C(L+1)"2073). (78)

This completes the proof of the case p > 2. For the case 1 < p < 2, applying the interpolation
inequality (78) and Lemma 6 yields

2(1—1 2_1 _3(1_1
ld - wollze < lld—woll3s ' lld —wollZr < Co(1+1) 207, (79)

This completes the proof of the lemma.
Next, we turn to establish L? decay of the velocity u.

Lemma 8  Let (u,d) be the solution obtained in Theorem 1. Assume that the initial data
satisfy Theorem 2. Then, we have

_3
ull2: < C(t+1)"2. (80)

Proof Multiplying (1b) and (53) by u and d — wp, respectively, summing up them, and
then integrating over R3 by parts, we get

1d

—— (|u? + |d — wo|*)dx —i—/ (| Vul? + |V(d — wo)|?)dz
2dt ]R3 R3

= / Vu- (Vdo Vd)dz + | |Vd[*d- (d — wo)da + / (d x Ad) - (d — wo)dz
R3 R3 R3

=K + Ko + K. (81)
The first integral on the right hand side of (81) is estimated as

K, = Vu - (Vd© Vd)dx
R3

<Vl 2]|Vd| 2] V] L~
1 3
S IVull 2| Vdl| 2| V| 2] VPd] ;.
1
< 65 (IVulls + IVd]Z2), (82)

where we use (6) and (18).
By Holder’s inequality, the second integral on the right hand side of (81) is estimated as

KQ:/ |Vd|*d - (d — wp)dz
R3

< |ld — wol| || Vd||3 2
< 6|Vl (83)

By integrating by parts and using (a x b) - b = 0, the last integral on the right hand side of
(81) is estimated as

Kg = /Rs(d X Ad) . (d—wo)dx

- —/ (Vd x Vd) - (d — wo)da —/ (d x Vd) - V(d — wo)da
R3

R3

=0. (84)
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Substituting the estimates (82)—(84) into (81), we have

d

— / |(u, d — wo)|*dx + C/ |V (u,d — wp)|?dz < 0. (85)
dt R3 R3

Applying Plancherel’s theorem to (85) gives

d L L

G [@a—wpac+c [ 1ei@d-wPd <o (50)
dt Jps R3

As in Ref. [26], we define the ball

s = {e e el <o) = (12)°)

for a constant k that will be specified as below. Hence,

d P L P
G [ l@aapas s [ jePi@asPae [ jePi@d-aPs
R3 5(t) S(t)e

g —— d— wo)2d @,d—wo)de, (87
1y @ rass [ (7 ) IE Ao, 67
where S(¢)¢ is the complementary set of S(t). Then,

3 Ll@a—wra+ o [ 1@

s
1+t S(t)

<k

(@, d — wo)|*d¢

N

[)2de + k(1 + 1) 3. (88)

Here, we have used the decay estimate ||d(-,t) — wo|lrr < C(t + 1)7%(17%) which has been
obtained in Lemma 7 with p = 2. The following estimate, which will be established later, is
needed:

(& D] <C for £eS(H) (89)

for an absolute constant C'. Then, we obtain

r(t)
/ [af2de < 0/ r2dr < C(1+1)72. (90)
S(t) 0

Combining the inequalities (88) and (90) yields

5

/|ud wo 2d§+—/ (@, d — wo)[2dE < (1 + )73, (91)

Multiplying both sides of (91) by (1 + )%, we get

S (a+ner /R (@, d— @) Pde) < 01+ 1), (92)
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where k > 20
Solving the inequality directly yields

/RS |(u,d — wp)|2dz < C(1+1¢)"%. (93)

To complete the proof, we need to establish the inequality (89). As in Ref.[33], taking the
Fourier transform in the system (1b) yields

8ta+ |€|2A: G(évt)a (94)
where

G, t) = —F(u-Vu) — F(Vp) — F(V-(Vd e Vd)), (95)

and F indicates the Fourier transform. Multiplying (94) by the integrating factor elsl’t yields

%@‘f‘%a) = e a(e 1),
Integrating in the time variable gives
t
(e, t) = e—‘f‘2fa5+/ e P9 G (e, 5)ds. (96)
0

We analyze each term in G(&,t) separately. We have

Flu- Vo) = |F(V- @wou) < Y / & lluid|dz < Cle). (97)
z>1,_]<3
Similarly, we see

|F(V - (Vd © Vd)) < CIE]. (98)

Taking the divergence of the velocity equation in the system (1) yields

0 0?
Ap = gy axiaxj( u’) — 2 Owon, (Vd'Vd). (99)
Taking the Fourier transform gives
EPFp)=— > &&F@)— Y GGF(VAVE). (100)
i>1,j<3 i>1,j<3
It follows that F(p) < C, and thus
F(Vp) < CIE]. (101)

Substituting (97), (98), and (101) into (96), for £ € S(t), we get

t
(¢, )] < e | + Clel / e IEP =gy
0

Q _ o€t
gl-e )

<Clet (102)

< Ce—\f\% +
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Then, we obtain

-

r(t)
/ [u]?de < 0/ r2r2dr < C(1+ 1) 2. (103)
S(t) 0

Substituting (103) into (88), we get

/|ud wo 2d§+1+t/ (@, d — wo)|2dé

k 5
< — dE+k(1+1)72
ST, A0+

S(1+1)°%. (104)
Similarly, multiplying both sides of (104) by (1 +#)°*, we get
d

5((1 oo /R |(avm)l2d§) <O +1)%h 3,

where k > 20
Solving the inequality directly yields

/ (1, d — wo)2de < C(1+ )% (105)
Due to (105), (97) is estimated as
Fu Vol = Aol < 3 [ ioluiar<co el 1os)
i21,7<3

Using Lemma 7 gives
[, 1dids < = wulzAdlzs < Ce+1)7E.
Then,
[F(V- (Vdo V)| < C(1+1)7Tl¢], (107)
and F(p) < C(1 +t)~ 2. Hence,
F(Vp) < C(L+1)2[¢]. (108)
Combining (106)—(108) and (95) yields
G ) <CAL+t)72f¢l for €€ S(t). (109)
Substituting (109) into (96), for £ € S(t), we get

t
a6, 1)] < e g + Cle] / e I (t=9) (1 4 5)=3ds
0

< Ce ™ Lo+
<C, (110)

1

since £ € S(t) and |¢] < C(1 +t)"2. It completes the proof of (89) and hence completes the
proof of the lemma.
Proof of Theorem 2 Combining Lemma 7 and Lemma 8 yields Theorem 2.
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4 Proof of Theorem 3

In order to establish Theorem 3, we first establish a higher-order energy estimate for the
solution.

Lemma 9 Let (u,d) be the solution obtained in Theorem 1, and assume additionally
up € HY(R?)NLY(R3) and dy —wo € H2(R?)N LY (R3). Then, for m € N, we have the following

inequality:

d
X (|Dmu|2 + |Dmd| )dx +/ (|Dm+1u|2 + |Dm+1d|2)d:1:
m(||u||L°°HDmuHL2 + | D%d|[3 0 | D™ 72 + [l 2 | D™ 7 2
+[d = woll 7 [ D™ ul 2 + || Vd|[ 7= | D™d| 72 + Rum), (111)
where
0, m=1,2,
2 _2
2 MullZa D™ ull " 4+ X (ld = woll 7L [IDT "
1<i< g 2€i<
2 2
+ X ulLlpm R+ X ld = wol3. | D™~7dll,
1<i<m—1 2
2(2—v; — BJ)
B = 1+C E > d—wo’ =i 7| pm- i— g+1d”1 7 =7 -5; (112)
1<i< =2 0<5<s L2
+ X Hd—on + X IId—on%zHDm‘idH;T
1<zt 1< 2y
+ ¥ ld=woll7. D™ ’+1d||1 ., om>=3
1<i<2
3 2i43 _ _2i+5 i+1
with a; = 55025550 = stntny 0 = m+1’ and i = 755 .

Proof Asin Ref. [26], applying D™ to (1b), and multiplying by D™, integrating by parts,
we obtain the following inequalities:

2dt/ |Dmu|2dx+/ | D™y ?da

=— [ D™(u-Vu)V™udx — D™(V - (Vd © Vd)) D" udz
R3 R3

< %|\Dm+1u||§2 +C/ |Dm_1(u-Vu)|2d:v+C/ ID™(Vd © Vd)[2dz
R3 R3

HDm“uHL +c/ WPl uPde +C Y / | DiuD™ y|2dz

1<y

+C/ |Vd|? |Dm+1d|2dx+c/ |D%d]?|D™d]*dz + C ) / |DFtaD™ T i d 2 da

2Ky
1 m m m m
< G107 ull: + Clluli | D™ ullZ: + OVl |D™ T d| 22 + C| D2 2 | D™ d]Z:

+C Y Dl 1D e + O Y D |DT 7 (113)

1<i<n 2<i< L
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For the third term on the right hand side of (113), by the Gagliardo-Nirenberg inequality,
Theorem 1 and Theorem 2, for m > 2, we obtain

_ 3 3
V|2 | D™ )2 < (V)32 | D) 7 | D™ 22 < 6 D™ 2 (114)

~

By the Gagliardo-Nirenberg inequality, the fifth term on the right hand side of (113) is
estimated as

> D[ lID™ 7

1<i< g
<O Y Dl ul T DTl
1<i< g
1. . m—i, 12/(1—a;
<GP ulfa +C 37 ulFl Dl 7. (115)

1<
Moreover, the last integral on the right hand side of (113) is estimated as

Y D dE | DT

2<i<

m i —6; m —1
<C N DAL | — wol 25 | D2

2K

1 m m—41—i 1112/(1—6;
<D™l +C Y fld - wolFa D a0, (116)

2K

Applying D™ to (1¢), multiplying by D™d, and integrating by parts, we obtain the following
inequalities:

1d
——/ |D’"d|2d:1:+/ | D™ d2da
2dt R3 R3

=— | D™(u-Vd)D™ddz+ [ D™(|Vd*d)D™ddx + | D™(d x Ad)D™ddx
R3 R3 R3

= [ D™ Y(u-Vd)D™ddx —/ D™ Y (|Vd|*d)D™ ddx + | D™(d x Ad)D™ddx
R3 R3 R3

1
< §|\Dm+1d|\%2 +C/ | D™ (y - Vd)|2d3:+0/ | D™ (|Vd|*d)|?dz
R3 R3

+ [ D™(dx Ad)D™dda. (117)
]RS

By the Gagliardo-Nirenberg inequality, the second term on the right hand side of (117) is
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estimated as

D™ (u - Vd)|*dz
R3
< lullZeID™d| 22 + lld — wol 7o | D™ |72

+ > D ul. D2

1<i<m—1
< ullf [D™d])72 + [|d — wol| 7o | D™ ul 72

SO D il [

1<i<m—1

D™d|)3

1
< G0 ull Lt w2 | D™l 2+ [l d—wol < [| D™l 72

+C Y ulda DR, (118)

1<i<m—1
The third integral on the right hand side of (117) is estimated as

m—1
/ DY (V) P < Z/ D' D™ (Vd]2) Pda
R3 = Jrs

SOID™ | Ge + |VdllZ< | D™ dlIZe + Y DT e | D™ 7

IR

+ > > IIDdlge| D g | D d e

1<ig< ™2 05y

< 0| D™ d|fe + |Vl [ D™d][ -

m 2(1—6;) m—1q
+ >0 D3 - woll 35 T | D™ d)3

NS

m i+035) (2—vi—B; m—i—
+ Y ST DAY T d - w35 | D)2,

1< gm 2 0yt

1 m m m—j =
< P |z + (V| = | D™ d] 72 + C Y lld=wolia| D dl, "

2(2—v;—85)

> IId woll 2 " DT e (119)
—2 0<j<

1<i<
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The last integral on the right hand side of (117) is estimated as

D™(d x Ad)D™ddx
RS

=— | D™(VdxVd)D™ddx — | D™(d x Vd)D"Vddx
3 R3

R3
:/ S Gl (DIVd x D™1Vd) - D dde
R? ogi<m—1

/ Y CL(D'dx D™'Vd) - D"Vdda
R3

1<i<m

1 m m T m—1
< Pl + | D%l | D™ 7 + C > IIDTd|E. | D™ 7

+C 0 Dl D
1<i<
1 m m
< gl s + D] 1Dl
+C D0 DA fld— wol 1D
1<i<m;1

+C Y IDm R = w78 D

1<y

1 R
g§||D’”+1d|\%2+||D2d|\%m|\Dmd||%2+C Z l|d — woll7=|| D™ "d] ;5"

1< 771;1

+C Y lld—woli2) D™ Z“dlll (120)

1<y

This completes the proof of the lemma for m > 3. Next, we consider the cases m = 1 and 2. If

=1, then
=) D(u - Vu)Dudz < %HDQUH%z + C/R3 |u - Vul*dz
1HD2UHL2 + Cllull7 IVl Z2, (121)
- /R D(V - (Vd ® Vd))Dudx = g D(Vd ® Vd)D*udx

1
< 71Dl +C/ |D(Vd © Vd)[*dx
R3

1
< 7I1D%ullz: + O D*d| L || D7z, (122)
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—/ D(u-Vd)Dddx:/ (u - Vd)D?*ddx
R3 R3

1
<~ || D3d|3: + O/ lu - Vd|*ddx
4 RS
1
< Z”DQdHQL? + COllu)| 7= Vdll7, (123)
/ D(|Vd|*d)Dddx = —/ |Vd[*?dD?*ddx
R3 R3
1
< ZIID2d||%2 +O|Vd| 1~ Vd]|7, (124)

D(d x Ad) - Dddx < ||Vd||13||Vd|| s|| D?d|| > < 6| D?d||2. (125)
]R3

For the case m = 2, we have

3
- D?(u - Vu)D*udx = —/ Z On0; (u;0yu) D*uda

R? Ry Gi=1
3
= — / Z (8k<9ju181u + 28Ju18k81u + ulakajazu)DQUdI
R b ii=1

1
< 71D%ullZ: + Cllullz= 1 D*ulZe, (126)

— [ D*(V-(Vdo Vd))D*>udz = [ D?*(Vd® Vd)D3udx
R3 R3

1
S ZIID‘Q’UII%z + C/ |D*(Vd ® Vd)|*dz
R3
1
< ZIIDSUII%z +C||D?d|| 1 | D*d|[72 + C||Vd| 2~ || D?d| 7

1
< 7I1D%ullz + CoD*d|Le + C D] |D?d||Z:, - (127)

in which

3
2

3
V||~ < C|D™ | 75 | Vd] 27" < C,

where we have used Theorem 1 and (18). Moreover,

— [ D*(u-Vd)D*ddx
R3

3
- / > OkOm(uidid)D*dda
R3 1 omi=1
3
_ / S Ok 1sdhd + 1040, + D110y + 1,040 i) D> ddlc
R

3
k,m,i=1

1
< ID%dlfZ: + flulz=< 1 D*dl72 + d = woll 2 [ D]z, (128)
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/ D?(|Vd|*d)D?ddx
]R3

:—/ D(|Vd|*d)D?ddx
R3

<

ool —

<

|— oo|

< ID%d|[72 + ClIVd| L [|D*d| %,

8
D?*(d x Ad) - D*ddx
]R3

=— | D(dx Ad) - D3ddx
]R3

1
gc/ |Vd||D?d||D3d|dz < §||D3d|\§2 + C||Vd||3 || D?d||3.
RS

This completes the proof of the lemma for m = 1 and 2.

We now establish the following auxiliary lemma which follows the idea in Ref. [26].

Lemma 10 Let m € N, assume

ID™ullfe + [ D™l < Croa(t+1) 7077,

and suppose

d m m — m m
D™ ullze + D™ d]72) < Colt + 1) (1Dl 72 + [|D™ul72)

m

+) Cit+1)7% = (D™ ulF. + | D7)

i=1

with $; 2 pm—1 + 2. Then,

D™ |72 + [ D™ dll7> < Con(t+ 1)

with Pm = 1+ Pm—1, where Cm = Cm(cm—lu Ciu Sis pm—lam)'
Proof We use the Fourier-splitting argument. Let

S = {5 eR’: I¢| < ((/;0++1k)%}’

Then,
D™ ul[Ze + [ D™ |7

9 2 2
> /S €2(Dmal + Dmd| e

Co+k

>CQ+/€
t+1

> EE (D"l + D) -

CotFk \m m Co + k2 T 2L AT
> (| D™l + [ D)) - (S250) /S (1D Tul” + [D™-Td] )dé.

t+1 t+1

| D3d||32 +C/ |Vd|2|D2d|2dx+O/ |Vd|*|Vd|*dx
R3 R3

ID%d||2 + C|IVd|[ L | D*d|[72 + C| VL [ Val|Zs | Velle

k=1+ max {s;}.

1<i<m

2 2
/S (IDmal + Dmd| )¢

(129)

(130)

(131)

(132)

(133)
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Using the last inequality and the hypothesis (132), we have

d m m k m m
F(ID™ulz= + 1D dl\%z)+t+—1(HD ull7z + |1 D™d])7:)

Co + k)? -
< Cpy G TR” S Cit+ 1)

Multiplying (¢ + 1)*, integrating in the time variable and dividing by (¢ + 1)*, we get

D™ |32 + |D™d||72 < Con(t + 1)~ HFPm=) £ N Oyt 4 1),
=1

Since s; = pm—1 + 2, the conclusion of the lemma follows.

We are now ready to prove Theorem 3.

Proof of Theorem 3  We first consider the cases m = 1 and 2. By the Gagliardo-
Nirenberg inequality, Theorem 1, and Theorem 2, we have

'3
e < ClID™ul| 75 ull 12 ™ < Con(t + 1)~ 3025 (134)
for m > 2.
Similarly,
lld = wollLe < Con(t+ 1)~ 10=55), (135)
3 _ 3 5 3
IVdllz~ < CID™ |75 [V 2™ < Con(t + 1)~ 10770, (136)
1D < CID 1 d| 5[ Vd][ 2 < Con(t + 1) 30730 (137)
for k > 3.

Substituting (134)—(137) into (112), we obtain

d
T (|Dmu|2+|Dmd| )da:+/ (| D™+l + | D™+ d|?)de
\Co(t+1) HID™ullzz + |D™d]72)- (138)

Therefore, the result holds for m = 1 and 2. We can now use Lemma 10 directly to obtain (11).
For m > 3, we need to estimate R, of (112),

RS Y (t+D)F4 > @+ + Y (t+1)"

1<i< e 2<i< 2 1<i<m—1
D D (S ) I S N N (o R
1< 22 1< mF2 0y
+O> 0 DT D (1) (139)
1<i< 2y 1 1<i<y
where k; = 2u + M(mlz), and note that since 1 < i < %, we have k; > 2u + (m + 1).
2
ei =21+ w, and note that since 2 <4 < %, we have e; > 2u+ (m+1). 7, =2+

(m+l)(m 1)
m—i—3

gy ntm—g)

m 375

, and note that since 1 < i < m—1, we haver; > 2u+(m+1). w
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and note that since 1 < j < ’”T_2, we have w; > 2u+ (m+1). 2, = 2u+ %}i_gﬂ),
and note that since 1 < i < 252, we have z; > 2u+ (m+1). y; = 2u+ % and
2
note that since 1 < i < 251, we have y; > 2+ (m+1). 2z = 2u+ %, and note
2
that since 1 < i < ’g, we have z; > 2u + (m + 1). Moreover, we use the induction hypothesis

| D* (u, d — W0)||L2 <O(t+1)F*fork<m—1.

Substituting (139) into (111), we obtain the hypothesis (132). Applying Lemma 10 directly,
we obtain the conclusion (11) for m > 3.

As for (12), by the Gagliardo-Nirenberg inequality,

_%:(1_@)94_1(1_9)7

|D™uler < CID™ullfalull3", S - )+

"=

and (13) follows by interpolating the above inequality.
5 Proof of Theorem 4

In this section, we will establish the time decay rates for the mixed space-time derivatives
of velocity and magnetic moment.

Proof of Theorem 4 First of all, we shall estimate ||V!d,u|/z 2. Applying D! to (1b),
multiplying the resulting identities by D'Ou, integrating the resulting equation over R3, and
using Young’s inequality, one gets

| D'oyul|2. = / DY (—u-Vu+ pAu—V - (Vd ® Vd)) - D' dyudz
R3

<e||D'osul|32 + || D' (—u - Vu + pAu — V - (Vd © Vd))||2.
=¢|D'oul2z + J1 + Jo + Js. (140)

By using Lemma 2 and Theorem 3, we estimate the first factor in the inequalities (140),

Ji SllullZe D gz + 1D

§(1+t)73(1+t)7(l+1+%)+(1+t)73(17é)7l(1+t)73(17%)71

11+2l

SA+6)” (141)
Similar to the estimate of the term .J;, for the terms .J> and Js, we have
B2 SVl £ (1407 (142)
J3 S V3« | D27 £ (14 )74+ 7D = (14077 (143)
Combining (141)—(143), we deduce from (140) that
ID'dyullfz < (L41)” 7% (144)

Similar to the estimate of the term || D!du) 1.2, applying D' to (1c), multiplying the resulting
identities by D'0,d, integrating the resulting equation over R3, and using Young’s inequality,
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one gets

| D'0d|2, = / DY(—u-Vd+ Ad + |Vd|?d + d x Ad) - D';ddx
R3

<e||D'oyd||%: + C|| D (—u - Vd + Ad)||2. +/ DY(|Vd]*d+d x Ad) - D'0;ddx
R3

=¢||D'0yd||2> + Hy + Hoy + Hs + Hy. (145)

Similar to the estimate of the terms J; and J,, we easily estimate

11421

Hy S |ulli||D"Fd||F2 + | D'ull 3| Vd||7s S (L+8) "2, (146)
Hy <||VF2d)2, S (146 2. (147)

By employing the Leibniz formula, Holder’s inequality, Young’s inequality, and Lemma 1,
Hs is estimated as follows:

Hy< Y > cfey / SDdeDk_deDl_kd-Dlatddx

0<k<l 0<m<k R

S DY CEACHID™ || e | DF | o | D' e || D Ord 2

~

0<k<l—1 0<m<k

+ Y O ID™ | s ]| D'

o<m<l

D'Oyd|| >

L6

<el|D'od|7: +C Y D™ || D
0<m<l
+C > Y DTl DR e DR e
0<k<l—1 0<m<k

7+21—-2m

<el[D'od|F: +C Y A4t

o<m<l

+C Z Z (1 + t)— H2m (1 + t)_ T+2k—2m (1 4 t)_ sal2k

0<k<l—10<m<k

13421

<e||D'od|2. + C(1+t)" "= . (148)

Similarly, we have
Hy$ Y Cf | D'dxD'"FAd-D'd,ddx
o<kl R3

< Y CHIDRd| Lo )| D2 s || D'Osd) 12 + (| DFF2d) 2 || D Oy 2
1<kl

<ellD'ord||z. +C Y ID*dIITs | DT Rd| s + O D22

1<k<l
<e|Dd|2 +C > (146 "F 1+ ED y o1 +4)F
1<kl

7+21

<e|D'od|)3. + C(A+1t) 2 . (149)



Decay rates of higher-order norms of solutions 1527

Combining (146)—(149), we deduce from (145) that

7421

| D o2 < (1 +1)" 7= . (150)

~

Then, we complete the proof of Theorem 4.
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