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1 Introduction

In the last several decades, functionally graded materials (FGMs) have been thoroughly
investigated because of their ability to optimize mechanical behaviors by setting the material
parameters as some unique functional forms. Therefore, with such attractive and practical
advantages, FGMs have been widely applied into various fields, such as the energy conversion
fields, transportation, model-cutting tools, surface wrinkling, semiconductors manufacture and
bio-systems[1–5]. Zheng et al.[6] systematically studied the laterally variable thickness (LVT)
multi-cell tubes for crashworthiness. The optimization problem of crashworthiness of automo-
tive parts with the tailor rolled blank was investigated by Sun et al.[7]. For the energy absorption
of thin-walled structures, Sun et al.[8] introduced the functionally graded thin-walled structures
and investigated the crashworthiness subject to an axial crushing load.

As for the FGM vessels under various loading conditions, there have been a large number
of researchers exploring its elastic and elastoplastic responses with different methods[9–15]. By
functionalizing the elastic modulus as an exponential form in the radial direction, You et al.[9]

obtained the exact elastic expressions of stress components and the radial displacement of an
inner-pressurized FGM cylinder. By using a power-function-form Young’s modulus and keeping
Poisson’s ratio constant, Tutuncu and Ozturk[10] analyzed the elastic behaviors of FGM vessels
with mechanical loadings. With a linear function form of elastic modulus, Shi et al.[11] gave
the elastic results of the problem, which is the same as that in Ref. [10].

The above works merely focus on the problems subject to mechanical loads. Smart materials
with piezomagnetic and piezoelectric effects as well as magnetoelectricity can be often exposed
to mechanical, electric, and magnetic fields[16–28], in which the coupling effect can be a candidate
for tailoring intelligent structures with numerous utilization such as the large actuation and the
energy harvesting[26–28]. For example, researchers[29–34] have studied the effects of magnetic
field on the elastic constants of magnetic elastomers and found that the material becomes
stiffer in a magnetic field. Therefore, by this way, it is rather vital and necessary to have a
better understanding of the impacts of magnetic field on the materials mechanical behaviors,
especially for the FGMs specializing material properties purposely by the variation of material
parameters.

Recently, by assuming the elastic modulus and magnetic permeability as power series forms
(for example, by setting µ(r) = µ0r

β and E(r) = E0r
β) along the concerned directions,

the analytical results of both displacements and the components of stresses and strains have
been derived correspondingly when dealing with the inner pressurized FGM hollow cylinder
problems[35–42]. For the same problem, some other situations like Young’s modulus denoted
by an exponential function form while the magnetic permeability was assumed as constant
were thoroughly researched[43–46]. However, all these works ignored the effect of Poisson’s ratio
which has been reflected by analyzing the radial displacements and stress components of the
mechanical loaded FGM tubes under a uniform magnetic field[47–48]. Furthermore, the FGMs
can be literally and theoretically considered to be composed by grading its different components
in certain directions by some specific volume fraction forms. However, if the expressions of the
components’ volume fractions are set with inappropriate forms, rather complex mathematical
derivation efforts and complicated results originate[49]. Acknowledging this fact, in this paper,
we define the volume fraction of each phase of the FGMs as an exponential form with three
variables (the same as Refs. [48] and [50]) which can keep consistent with the patterns presented
in lots of previous works merely by adjusting these three indexes.

In this work, we have studied the inner pressurized FGM tubes in uniform magnetic fields.
In Section 2, the theoretical derivation works are finished with the analytical results of the
radial displacement, stress components, and the perturbation magnetic field vector. Then, the
effects of Poisson’s ratio, the magnetic intensity, and the parameter n in the volume fraction
function are discussed in Section 3. Finally, Section 4 gives some conclusions.
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2 Theoretical analyses

The configuration of an inner pressurized FGM tube under uniform magnetic fields within
the cylindrical polar coordinate (r, θ, z) is displayed in Fig. 1, and the stress boundary conditions
are σr |r=a = −p and σr|r=b = 0 (a and b are the inner and outer radii, respectively). In this
paper, the FGM tube consists of two distinct materials A and B, and the volume fraction of
material A is assumed to vary in the radial direction with an expression as

c(r) = c0 + c1(r/b)n, (1)

where c0, c1, and n are three material parameters.

Fig. 1 A schematic diagram of a long FGM tube subject to an internal pressure in a uniform magnetic
field Hz

The average stress and strain in a representative volume element (RVE) V can be defined
as[51–53]






σ =
1

V

∫

V

σ̂(x)dx, ε =
1

V

∫

V

ε̂(x)dx,

σ(i) =
1

Vi

∫

Vi

σ̂(i)(x)dx, ε(i) =
1

Vi

∫

Vi

ε̂(i)(x)dx,

(2)

where σ̂ and ε̂ are the stress and strain fields over the RVE, respectively, σ̂(i) and ε̂(i) are the
constituents, σ and ε are the overall volume average stress and strain of the RVE, respectively,
and σ(i) and ε(i) are the components with the volume Vi.

For the case in this paper, with the Voigt method and uniform strain field assumption, the
stress and strain can be respectively expressed as

σ = c(r)σ(1) + (1 − c(r))σ(2), (3)

ε
(1)
θ = ε

(2)
θ = εθ, ε(1)

r = ε(2)
r = εr, (4)

where i = 1 and 2 denote the materials A and B, respectively, σ(1) and σ(2) are the aver-

age stresses of the materials A and B, respectively, and ε
(i)
r and ε

(i)
θ represent the radial and

circumferential strains, respectively.

For the linear elastic deformation, we have

εr =
du

dr
, εθ =

u

r
, (5)
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where u stands for the radial displacement. For each component of the FGM tube, Hooke’s law
can be written as






σ(i)
r = λiε

(i)
θ + (λi + 2Gi)ε

(i)
r ,

σ
(i)
θ = (λi + 2Gi)ε

(i)
θ + λiε

(i)
r ,

σ(i)
z = λi(ε

(i)
θ + ε(i)

r ),

(6)

where λi and Gi are the Lamé constants, and σ
(i)
r , σ

(i)
θ , and σ

(i)
z are the stress components in

the radial, circumferential, and axial directions, respectively.
Substituting Eq.(̇6) into Eq. (3) gives the average stress components of the FGM tube,






σr = λ
u

r
+ (λ + 2G)

du

dr
,

σθ = (λ + 2G)
u

r
+ λ

du

dr
,

σz = λ
(u

r
+

du

dr

)
,

(7)

where
{

λ = c(r)λ1 + (1 − c(r))λ2,

G = c(r)G1 + (1 − c(r))G2.
(8)

With the following assumptions: (a) each material component of the FGM tube is non-
ferromagnetic and non-ferroelectric; (b) the Thompson effects are omittable; (c) the displace-
ment electric currents are ignored, for the elastic medium with perfect conductions, the simpli-
fied electrodynamics, Maxwell’s equations can be written as[41–42]






J = ∇× h, h = ∇× (U × H), div h = 0,

e = −µ(r)
(∂U

∂t
× H

)
, ∇× e = −µ(r)

∂h

∂t
,

(9)

where J , h, U , H , e, and t are the electric current density, the perturbation of magnetic field,
the displacement vector, the magnetic intensity, the perturbation of electric field vector, and
the time variable, respectively.

Taking the initial magnetic field vector H (0, 0, Hz) into Eq. (9) yields






U = (u, 0, 0), e = µ(r)
(
0, Hz

∂u

∂t
, 0

)
, h = (0, 0, hz),

J =
(
0,−

∂hz

∂r
, 0

)
, hz = −Hz

(∂u

∂r
+

u

r

)
.

(10)

Then, with f = µ(r) (J × H), the radial Lorentz’s stress fr can be induced as

fr = H2
z µ(r)

(∂2u

∂r2
+

1

r

∂u

∂r
−

u

r2

)
, (11)

where µ(r), the magnetic permeability of the FGM tube, can be expressed with the Voigt
method as

µ(r) = c(r)µ1 + (1 − c(r))µ2. (12)
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Substituting Eqs. (7), (11), and (12) into the equilibrium equation, i.e.,

dσr

dr
+

σr − σθ

r
+ fr = 0, (13)

yields the governing ordinary differential equation for the radial displacement u,

r(φ1 − φ2r
n)

d2u

dr2
+ (φ1 − φ3r

n)
du

dr
− (φ1 + φ4r

n)
u

r
= 0, (14)

where





φ1 = c0(λ1 + 2G1 + µ1H
2
z ) + (1 − c0)(λ2 + 2G2 + µ2H

2
z ),

φ2 = c1(λ2 + 2G2 + µ2H
2
z − λ1 − 2G1 − µ1H

2
z )/bn,

φ3 = (n + 1)φ2 + c1nH2
z (µ1 − µ2)/bn,

φ4 = n(λ2 − λ1)c1/bn − φ2.

(15)

2.1 Case 1: φ1 6= 0

For the case φ1 6= 0, Eq. (14) can be rearranged as

r
(
1 −

φ2

φ1
rn

)d2u

dr2
+

(
1 −

φ3

φ1
rn

)du

dr
−

(
1 +

φ4

φ1
rn

)u

r
= 0. (16)

For convenience, by setting x = χ(r) = φ2

φ1

rn, Eq. (16) can be rewritten as

x2(1 − x)
d2u

dx2
+ x

(
1 −

n − 1 + φ3/φ2

n
x
)du

dx
−

1

n2

(
1 +

φ4

φ2
x
)
u = 0. (17)

According to Ref. [54], Eq. (17) can be solved as

u(r) = C1rF (α, β, δ; x) + C2
1

r
F (α − δ + 1, β − δ + 1, 2 − δ; x), (18)

where C1 and C2 are constants, and F is the hypergeometric function defined in |x| < 1 with
a power series form as

F (α, β, δ; x) = 1 +

∞∑

m=1

Cm
α+m−1C

m
β+m−1

Cm
δ+m−1

xm, (19)

in which

δ = 1 +
2

n
, α =

√
(φ3/φ2 − 1)

2
− 4φ4/φ2 + φ3/φ2 + 1

2n
, β =

φ3/φ2 + 1

n
− α. (20)

Note that Eq. (18) holds throughout by the following. Rearrange the radial displacement

u(r) = C1P (r) + C2Q(r), (21)

where the specific forms of P (r) and Q(r) and their derivatives with respect to r are





P (r) = rF (α, β, δ; x),

Q(r) =
1

r
F (α − δ + 1, β − δ + 1, 2 − δ; x),

dP (r)

dr
=

nαβx

δ
F (α + 1, β + 1, δ + 1; x) +

P (r)

r
,

dQ(r)

dr
=

1

r

(n(α − δ + 1)(β − δ + 1)x

(2 − δ)r
F (α − δ + 2, β − δ + 2, 3 − δ; x) − Q(r)

)
.

(22)
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Then, with Eq. (7) and the fifth equation of Eq. (10), the stress components and the perturbation
of magnetic field can be derived as






σr = (λ + 2G)
(
C1

dP (r)

dr
+ C2

dQ(r)

dr

)
+ λ

(
C1

P (r)

r
+ C2

Q(r)

r

)
,

σθ = λ
(
C1

dP (r)

dr
+ C2

dQ(r)

dr

)
+ (λ + 2G)

(
C1

P (r)

r
+ C2

Q(r)

r

)
,

σz = λ
(
C1

dP (r)

dr
+ C2

dQ(r)

dr
+ C1

P (r)

r
+ C2

Q(r)

r

)
,

hz = −Hz

(
C1

dP (r)

dr
+ C2

dQ(r)

dr
+ C1

P (r)

r
+ C2

Q(r)

r

)
.

(23)

With the natural boundary conditions σr|r=a = −p and σr|r=b = 0, the following equations
are obtained:






C1 = −p((λ(b) + 2G(b))Q′(b) + λ(b)Q(b)/b)/C0,

C2 = p((λ(b) + 2G(b))P ′(b) + λ(b)P (b)/b)/C0,
(24)

where

C0 =((λ(b) + 2G(b))Q′(b) + λ(b)Q(b)/b)((λ(a) + 2G(a))P ′(a) + λ(a)P (a)/a)

− ((λ(a) + 2G(a))Q′(a) + λ(a)Q(a)/a)((λ(b) + 2G(b))P ′(b) + λ(b)P (b)/b). (25)

In the following, some special situations are discussed.
(a) If c0 6= 0 and c1 = 0, which indicates that the tube contains only one material with

graded parameters along the radial direction, then Eq. (14) reduces to the well-known Eulerian
equation,

r2 d2u

dr2
+ r

du

dr
− u = 0 (26)

with the solution as

u(r) =
pa2

2(b2 − a2)

( r

c0(λ1 + G1) + (1 − c0)(λ2 + G2)
+

b2

r(c0G1 + (1 − c0)G2)

)
, (27)

by which Eq. (23) can be rewritten as






σr =
pa2

b2 − a2

(
1 −

b2

r2

)
,

σθ =
pa2

b2 − a2

(
1 +

b2

r2

)
,

σz =
pa2(c0λ1 + (1 − c0)λ2)

(b2 − a2)(c0(λ1 + G1) + (1 − c0)(λ2 + G2))
,

hz = −
pa2Hz

(b2 − a2)(c0(λ1 + G1) + (1 − c0)(λ2 + G2))
.

(28)

(b) If n = 0, the tube becomes isotropic, and Eqs. (27) and (28) change into the results given
by Ref. [55].
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Note that, in the above two cases, Lorentz’s stress in the radial direction approaches zero
which can be verified by taking Eq. (26) into Eq. (11).

(c) If Hz = 0 and c1 = −c0k, Eqs. (21) and (23) reduce to Eqs. (12) and (13) obtained by
Ref. [48].
2.2 Case 2: φ1 = 0

In this case, Eq. (14) can be simplified as

φ2r
2 d2u

dr2
+ φ3r

du

dr
+ φ4u = 0 (29)

with the solution

u(r) = C3r
m1 + C4r

m2 . (30)

Then, with the above results, we derive Eq. (23) as





σr = C3r
m1−1((m1 + 1)λ + 2m1G) + C4r

m2−1((m2 + 1)λ + 2m2G),

σθ = C3r
m1−1((m1 + 1)λ + 2G) + C4r

m2−1((m2 + 1)λ + 2G),

σz = λ(C3(m1 + 1)rm1−1 + C4(m2 + 1)rm2−1),

hz = −Hz(C3(m1 + 1)rm1−1 + C4(m2 + 1)rm2−1),

(31)

where m1 = 1
2 − φ3

2φ2

+ 1
2

√(
φ3

φ2

− 1
)2

− 4φ4

φ2

, m2 = 1
2 − φ3

2φ2

− 1
2

√(
φ3

φ2

− 1
)2

− 4φ4

φ2

, and C3 and

C4 given by the boundary conditions σr|r=a = −p and σr|r=b = 0 are





C3 = −pbm2−1((m2 + 1)λ(b) + 2m2G(b))/C0,

C4 = pbm1−1((m1 + 1)λ(b) + 2m1G(b))/C0,

(32)

where

C0 = am1−1bm2−1((m1 + 1)λ(a) + 2m1G(a))((m2 + 1)λ(b) + 2m2G(b))

− am2−1bm1−1((m1 + 1)λ(b) + 2m1G(b))((m2 + 1)λ(a) + 2m2G(a)). (33)

Therefore, we have some special situations as follows.
(a) When the material A and the material B have the same Poisson’s ratio and conditions

as E2 − E1 = E0, E2/E0 = c0, m2 − m1 = m0, m2/m0 = c0, and c1 = −1, Eq. (29) reduces to
Eq. (4) in Ref. [42], i.e.,

r2 d2u

dr2
+ (1 + ζn)r

du

dr
+ (ηn − 1)u = 0, (34)

where





ζ =
(E2 − E1)(1 − v)

(E2 − E1)(1 − v) + H2
z (µ2 − µ1)(1 + v)(1 − 2v)

,

η =
(E2 − E1)v

(E2 − E1)(1 − v) + H2
z (µ2 − µ1)(1 + v)(1 − 2v)

.

(35)

(b) When Hz = 0, Eq. (34) takes a similar form to that in Ref. [10], i.e.,

r2 d2u

dr2
+ (1 + n)r

du

dr
+

( nv

1 − v
− 1

)
u = 0. (36)

Then, the same solutions for the displacement and stress components can be determined.
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3 Numerical examples and discussion

With the use of the following dimensionless quantities r = r/b, a = a/b, σr = σr/p,
σθ = σθ/p, σz = σz/p, u = u(r)E2/(bp), and hz = hz(r)E2/(Hzp), where a and b are the
inner and outer radii, respectively, p is the internal pressure, Hz is the magnetic intensity, and
E2 is the elastic modulus of the material B, this numerical part provides some examples to
explore the influences of Poisson’s ratio, the magnetic density, and the index n. Moreover, the
selected configuration and material parameters are listed in Table 1.

Table 1 Selected configuration and material parameters

a c0 c1 E1/GPa E2/GPa µ/(H·m−1)

0.7 1 1 210 70 4π × 10−7

3.1 Effects of Poisson’s ratio

In this part, effects of Poisson’s ratio on the FGM tube in uniform magnetic fields have
been discussed. It is assumed that the FGM tube is made by two different materials, and
three sets of Poisson’s ratios are chosen, i.e., v1 = 0.3, v2 = 0.2; v1 = v2 = 0.3; and v1 = 0.3,
v2 = 0.4.

Indicated from Fig. 2, it can be concluded that Poisson’s ratio has an obvious effect on the
distribution of the radial displacement for the FGM tube under the uniform magnetic field
compared with the results[48] without magnetic fields. Aside from the displacement, Poisson’s
ratio displays the similar effects on stress components, as shown in Figs. 3–5. Specifically, the
trend of the distribution of radial stress increases with the decrease of Poisson’s ratio, which is
contrary to the circumferential stress (see Figs. 3 and 4). As for the axial stress, the influence
of Poisson’s ratio is more pronounced, which is closer to the inner tube’s surface. Meanwhile,
the minimum value achieves in the outer surface as exhibited in Fig. 5.

Fig. 2 Evolutions of the radial displacement
with different Poisson’s ratios (n =
1.5, Hz = 2.23 × 109 A/m)

Fig. 3 Evolutions of the radial stress with dif-
ferent Poisson’s ratios (n = 1.5, Hz =
2.23 × 109 A/m)

From Fig. 6, it can be seen that the magnetic field vector distributes almost horizontally for
each set of chosen Poisson’s ratio while all the values are negative.

3.2 Effects of the magnetic intensity

Based on Eqs. (21), (23), (30), and (31), this part investigates the effects of magnetic intensity
on the mechanical responses of the FGMs tube and makes comparisons with the situation
ignoring the magnetic field. All the results have been graphed in Figs. 7–9.
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Fig. 4 Evolutions of the circumferential
stress with different Poisson’s ratios
(n = 1.5, Hz = 2.23 × 109 A/m)

Fig. 5 Evolutions of the axial stress with dif-
ferent Poisson’s ratios (n = 1.5, Hz =
2.23 × 109 A/m)

Fig. 6 Evolutions of the perturbation of magnetic field with different Poisson’s ratios (n = 1.5, Hz =
2.23 × 109 A/m)

Fig. 7 Comparisons of two different magnetic
intensities (Hz = 2.23 × 109 A/m in
this work and Hz = 0[48]) for the radial
displacement (n = 1.5, v1 = 0.2, v2 =
0.3)

Fig. 8 Comparisons of two different magnetic
intensities (Hz = 2.23 × 109 A/m in
this work and Hz = 0[48]) for the
stresses (n = 1.5, v1 = 0.2, v2 = 0.3)
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Fig. 9 Comparisons of two different magnetic intensities (Hz = 2.23 × 109 A/m in this work and

Hz = 0[48]) for the perturbation of magnetic field (n = 1.5, v1 = 0.2, v2 = 0.3)

As illustrated in Fig. 7, the radial displacement of the cases with/without the magnetic
field, declines from the inner surface to the outer surface, while the differences are verified
by the larger radial displacement when Hz = 0 than that when Hz = 2.23 × 109 A/m.
Figure 8 shows the evident distribution trends among the axial, radial, and circumferential
stresses, while the value of the radial stress increases with the increment of radius, and the
other two just decrease. For different magnetic intensities, the radial stress keeps nearly un-
changed but certain differences happen to the stresses in the axial and circumferential directions.
From Fig. 9, it can be acknowledged that the magnetic field affects the perturbation of magnetic
vector significantly. For example, when there is no magnetic field, the perturbation of magnetic
vector is equal to zero, while it weakly increases along the radial direction for the case of the
magnetic field with a certain intensity.
3.3 Effects of the parameter n

Since the volume fractions of the materials A and B are determined by the parameter n
as shown in Eq. (1), it seems rather necessary to detect its impacts on the performance of the
FGM tube (see Figs. 10–14). In this section, the parameters are selected as n = 1.5, 3.0, and
5.0.

Fig. 10 Evolutions of the radial displacement
with different values of the parameter
n (v1 = 0.2, v2 = 0.3, Hz = 2.23 ×

109 A/m)

Fig. 11 Evolutions of the radial stress with
different values of the parameter n

(v1 = 0.2, v2 = 0.3, Hz = 2.23 ×

109 A/m)

Figure 10 shows that the radial displacement declines with the increment of the parameter
n and reaches its minimum value at the outer surface. For the distribution of stress compo-
nents with the natural boundary conditions σr|r=a = 0 and σr|r=b = 0, the parameter n just
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inconsiderably influences the distribution of the radial stress, i.e., the differences mainly focus
on the middle part of the tube with a less than 3% accretion from n = 1.5 to n = 3 while a less
than 3.5% increment from n = 3 to n = 5 (see Fig. 11). For the stresses in the circumferential
and axial directions, the maximum difference (more than 50%) is located at the outer surface
when the parameter n changes from 3 to 5 (see Figs. 12 and 13). As shown in Fig. 14, the
distribution of the perturbation of the magnetic field vector is similar to that in Fig. 6. All of
these lines are below zero, which can also be easily known from the fifth equation of Eq. (10),
and the perturbation of the magnetic field vector will incline to zero with the growth of the
parameter n.

Fig. 12 Evolutions of the circumferential stress with different values of the parameter n (v1 = 0.2,
v2 = 0.3, Hz = 2.23 × 109 A/m)

Fig. 13 Evolutions of the axial stress with
different values of the parameter n

(v1 = 0.2, v2 = 0.3, Hz = 2.23 ×

109 A/m)

Fig. 14 Evolutions of the perturbation of
magnetic field with different values of
the parameter n (v1 = 0.2, v2 = 0.3,
Hz = 2.23 × 109 A/m)

4 Conclusions

In summary, this paper studies the mechanical response of an inner pressurized FGM cylinder
composed of two materials within uniform magnetic fields. By assuming the volume fraction
of material component as an exponential function form, we derive the analytical expressions
of the radial displacement, the stress components, and the perturbation magnetic vector with
the Voigt method. Furthermore, the effects of Poisson’s ratio, the magnetic intensity, and the
parameter n are discussed. From the results of the numerical part, it can be concluded that
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both Poisson’s ratio and the parameter n have effects on the radial displacement, the axial
stress, and the perturbation of the magnetic field vector. Moreover, by comparing the results
with those in our previous work, essential differences of the mechanical responses of the FGM
tube are illustrated between the situation with and without the action of the magnetic field.
These results obtained in this paper can serve as an important contribution to the design and
development of the FGM structures within multi-physical fields.
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