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Abstract The objective of this study is to investigate the effects of the Coulomb dry
friction model versus the modified Coulomb friction model on the dynamic behavior of
the slider-crank mechanism with a revolute clearance joint. The normal and tangential
forces acting on the contact points between the journal and the bearing are described by
using a Hertzian-based contact force model and the Coulomb friction models, respectively.
The dynamic equations of the mechanism are derived based on the Lagrange equations of
the first kind and the Baumgarte stabilization method. The frictional force is solved via
the linear complementarity problem (LCP) algorithm and the trial-and-error algorithm.
Finally, three numerical examples are given to show the influence of the two Coulomb
friction models on the dynamic behavior of the mechanism. Numerical results show that
due to the stick friction, the slider-crank mechanism may exhibit stick-slip motion and
can balance at some special positions, while the mechanism with ideal joints cannot.
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1 Introduction

Because of manufacturing tolerance, wear, plastic deformation, and so on, practical joints
in multibody mechanical systems always include clearances. Clearances may lead to friction
and impact between the components of joints, which have significant influence on the dynamic
responses of the systems.

In recent years, a great number of researchers have studied problems of modeling and ana-
lyzing multibody systems including clearance joints[1–7]. Erkaya and Uzmay[8] and Erkaya and
Doǧan[9] studied kinematic and dynamic characteristics of planar multibody systems with link
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flexibility and joint clearance. They also carried out both experimental and numerical investi-
gations to analyze the effects of joint clearance on conventional articulated and partly compli-
ant mechanisms[10–11]. Flores and his research group have valuable contributions about joint
clearance in thematic literature. Dry contact including friction and lubrication effects between
bearing and journal parts[12–15], and different joint types and clearance sizes in two-dimensional
and three-dimensional mechanism motions[16–19] were investigated by them. Rahmanian and
Ghazavi[20] and Farahan et al.[21–22] studied nonlinear dynamic behaviors and bifurcation in
multibody systems with revolute clearance joints. Bai et al.[23–24] and Bai and Sun[25] inves-
tigated the effects of different normal contact force models and body flexibility on dynamic
characteristics of mechanical systems with clearance joints. They also presented the wear pre-
diction for revolute clearance joint in multibody systems using the Archard’ s wear model[26–27].
Qi et al.[28] and Wang et al.[29] proposed recursive formulations for multibody systems includ-
ing frictional joints with tiny clearances using the interactions between bodies, and presented
a constraint-based approach for modeling revolute clearance joints of planar multi-rigid-body
systems. Based on the absolute nodal coordinate formulation (ANCF), Tian et al.[30–32] and
Wang et al.[33] investigated planar/spatial flexible multibody systems with dry and lubricated
clearance joints. Yan and Guo[34] and Xiang et al.[35] presented a general method of kine-
matic accuracy analysis for the flexible planar mechanisms with uncertain link lengths and
joint clearances, and discussed the coupled iterative analyses between system dynamic response
and joint wear prediction. However, all these studies mentioned above were based on the mod-
ified Coulomb friction model. Although it can avoid numerical difficulties when the relative
tangential velocity is in the vicinity of zero, the modified Coulomb friction model does not
produce any force at zero relative velocity, and exhibits poor capability to simulate stiction and
stick-slip motion[36–37].

Different from the aforementioned studies, some researchers investigated multibody systems
with clearance joints using the LuGre friction model. Muvengei et al.[38–39] studied the dy-
namic behaviors of planar multibody systems with LuGre friction at different located revolute
clearance joints, and found that the effect of stick-slip friction on the overall dynamic behav-
ior at different speeds varies from one clearance joint to another. Zhao et al.[40] presented a
method for modeling and analyzing planar multibody systems with mixed lubricated revolute
joints based on the finite element method and the Lagrange equations. Zheng and Zhou[41]

and Zheng et al.[42] investigated the dynamics of flexible multibody systems including joints
with clearance and lubrication for press systems via the software ADAMS. However, the LuGre
friction model introduces extra degree of freedom (DOF), and requires the determination of a
large number of parameters, which can hardly be gained even by experiments in most cases.
Therefore, it cannot be adopted easily[36–37].

The purpose of this paper is to compare and analyze the influence of using the Coulomb
dry friction model and the modified Coulomb friction model on the dynamic response of the
slider-crank mechanism with a revolute clearance joint. The advantages of the Coulomb dry
friction model include that it can capture stiction and stick-slip motion and requires a small
number of selected parameters. The main difficulty in solving contact problems with dry friction
results from instantaneous changes of the frictional forces at transitions from sliding to sticking
or reversed sliding. Fortunately, these problems can be solved by the linear complementarity
problem (LCP) algorithm[43–46] or trial-and-error algorithm[47]. The trial-and-error algorithm
can be employed expediently when there is only one pair of contact points. However, the LCP
algorithm is much more efficient dealing with multipoint contact problems with friction[48], and
the results can be tested by the trail-and-error algorithm. Flores et al.[49] proposed an LCP
algorithm for dynamic modeling and analysis of rigid multibody systems with translational
clearance joints. Zhuang and Wang[50–51] and Wang et al.[52] presented a constraint-stabilized
method for the planar multi-rigid-body system possessing translational joints with tiny clear-
ances and friction based on the horizontal linear complementarity problem (HLCP) algorithm.
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Krinner and Thümmel[53] investigated a planar 6-bar linkage mechanism with revolute clearance
joints using the methods of unilateral contacts. Akhadkar et al.[54–55] used nonsmooth contact
dynamics (NSCD) approach to analyze the influence of the joint clearances in a mechanism of
a circuit breaker, and validated their studies by comparing with experimental data.

The remainder of this paper is organized as follows. In Section 2, the modeling of the
slider-crank mechanism with a revolute clearance joint is presented, and the contact force
models utilized in this work are briefly introduced. In Section 3, the algorithms for solving the
frictional force are given. In Section 4, three numerical examples are illustrated. Finally, in the
last section, the main conclusions of this paper are drawn.

2 Modeling the slider-crank mechanism with a revolute clearance joint

2.1 Modeling the slider-crank mechanism

Consider a planar slider-crank mechanism moving in a vertical plane, as illustrated in Fig. 1.
The mechanism consists of four rigid bodies: the ground, an uniform disk (the crank), the
rod AB (the connecting rod), and a slider. Joint A connecting the disk with the rod AB is
a revolute clearance joint. The journal of joint A is part of the crank, and the bearing of
joint A is part of the rod AB. The revolute joint O connecting the ground with the disk, the
revolute joint B connecting rod AB with the slider, and the translational joint are ideal joints.
The inertial frame of reference Oxy is fixed on the ground, and the relevant coordinates are
illustrated in Fig. 1. The gravitational acceleration is taken as acting in the positive x -direction.
The moments of inertia of the crank and rod AB are J1 (about the joint O) and J2 (about the
mass center C2), respectively. The masses of rod AB and the slider are m2 and m3, respectively.
The radius of the disk is L1. The distance between the mass center of rod AB and the bearing
center of joint A is a2, while the distance between the mass center of rod AB and the center of
joint B is b2.

Fig. 1 The model of the slider-crank mechanism with a revolute clearance joint
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The crank, which is the driving part, rotates with a given driving torque of

M1 = M10 sin(ωt) (1)

or with a given rheonomic constraint of

θ1 = θ10 cos(ωt). (2)

In either case, the crank is subject to a viscous damping torque c1θ̇1, while the slider is subject
to a viscous damping force c3ẋ3.

Remove the constraints generated by joint B and the given rheonomic constraint for the
crank, the vector of generalized coordinates of the mechanism q can then be expressed as

q = (θ1, x2, y2, θ2, x3)
T
. (3)

The vectors of the geometric centers of the journal and the bearing of joint A can be easily
gained by using the geometrical parameters and generalized coordinates of the mechanism,

rCj
=

(

L1 cos θ1

L1 sin θ1

)

, (4)

rCb
=

(

x2 − a2 cos θ2

y2 − a2 sin θ2

)

. (5)

For convenience of expression, the following notations are used in this paper:

Ȧm×n =
dAm×n

dt
, (6)

Äm×n =
d2Am×n

dt2
, (7)

where Am×n represents an m × n matrix, and t is time.

2.2 Normal contact force model

The simulation needs to develop a mathematical model for the revolute clearance joint A

in the slider-crank mechanism, as shown in Fig. 2. The eccentricity vector d connecting the
centers of the bearing and the journal of joint A is defined as

d = (d1, d2)
T

= rCj
− rCb

. (8)

Fig. 2 The revolute joint A with clearance and small penetration



Comparison and analysis of two Coulomb friction models 1243

The unit eccentricity vector n which is normal to the surfaces of collision between the bearing
and the journal can then be expressed as

n =

(

n1

n2

)

=
1

|d|
d =

1
√

d2
1 + d2

2

(

d1

d2

)

. (9)

The unit vector has the same direction as the line of centers of the bearing and the journal.
Rotating the vector n in the counter clockwise direction by π/2 gives the unit tangential vector
τ ,

τ =

(

τ1

τ2

)

=

(

−n2

n1

)

=
1

√

d2
1 + d2

2

(

−d2

d1

)

. (10)

When the journal contacts with the bearing, appropriate normal and tangential contact force
models are employed and the resultant forces are included as generalized forces in the dynamic
equations of the mechanism. In the present study, the normal contact force is calculated by a
Hertzian-based contact force model given by Hunt and Crossley[56] as

Fn =

{

Kδα + χδαδ̇, δ > 0,

0, δ < 0,
(11)

where Fn represents the normal contact force. δ and δ̇ are the penetration depth and penetration
velocity between the journal and the bearing, respectively. K is the stiffness coefficient, while χ
is the hysteresis factor. For the case where there is a parabolic distribution of contact stresses,
the value of the exponent α is equal to 1.5[57]. α can be either higher or lower for materials
such as polymer or glass[58]. The coefficient of stiffness K can be obtained by using

K =
4

3 (σ1 + σ2)

( RbRj

Rb − Rj

)1/2

, (12)

where Rj and Rb are the radii of the journal and the bearing, respectively. σ1 and σ2 denote
the material parameters for the crank and rod AB, respectively, and they are given by

σι =
1 − ν2

ι

Eι
, ι = 1, 2, (13)

in which Eι and νι are the material Young’s modulus and Poisson’s ratio associated with the
corresponding body, respectively. The hysteresis factor χ can be obtained as[59]

χ =
3K

(

1 − ε2
r

)

4δ̇(−)
, (14)

where εr is the restitution coefficient, and δ̇(−) is the initial impact velocity.
As shown in Fig. 2, the penetration depth between the journal and the bearing can be

calculated by

δ =
√

d2
1 + d2

2 − (Rb − Rj). (15)

2.3 Tangential contact force models

The Coulomb dry friction model is a fundamental and simple friction model for dry contact-
ing surfaces. It has good capability to simulate stiction and to capture the stick-slip motion,
and it requires a smaller number of selected parameters and less computational time than the
bristle-based friction models[36–37]. Besides, the coefficients of Coulomb friction can be easily
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obtained by consulting handbooks on friction or by doing experiments. Therefore, the Coulomb
dry friction model is employed as the tangential contact model for the components of joint A

in this paper.

The Coulomb dry friction model is expressed as

Fτ =

{

−µFnsgn (vτ ) , vτ 6= 0,

−µsFnSgn (aτ ) , vτ = 0,
(16)

where Fτ is the frictional force acting on the contact points between the journal and the
bearing[60]. vτ is the relative tangential velocity of the contact points, and aτ = dvτ/dt.
µs and µ are the coefficients of static and kinetic friction, respectively. µs is generally larger
than µ. sgn (x), which is the sign function, is defined by

sgn (x) =















+1, x > 0,

0, x = 0,

−1, x < 0,

(17)

while Sgn (x), which is the multivalued function, is defined as[61]

Sgn (x) =















+1, x > 0,

[−1, +1] , x = 0,

−1, x < 0.

(18)

In order to make comparison, a modified Coulomb friction model which many researchers have
adopted is given here,

Fτ = −cdµFnsgn (vτ ) , (19)

where cd is a dynamic coefficient of correction, which is expressed as

cd =



















0, |vτ | 6 v0,

|vτ | − v0

v1 − v0
, v0 6 |vτ | 6 v1,

1, |vτ | > v1,

(20)

in which v0 and v1 are given tolerances for the relative tangential velocity[12–19,30–33]. These
two Coulomb friction models are illustrated in Fig. 3.

Fig. 3 Two Coulomb friction models
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2.4 Dynamic equations for the slider-crank mechanism

For a kinematically constrained rigid multibody system, the Lagrange equations of the first
kind are given by











d

dt

(∂T

∂q̇

)

−
∂T

∂q
= Q + ΦT

q
λ,

Φ (q, t) = 0,

(21)

where T is the kinetic energy of the mechanism. q̇ is the vector of generalized velocities.
Q is the vector of generalized forces. Φ is the kinematic independent holonomic constraints
vector[62], while Φq is the Jacobian matrix of the holonomic constraints ∂Φ

∂q
. λ is the vector of

Lagrange multipliers.
The kinetic energy of the mechanism is expressed as

T =
1

2
q̇TMq̇, (22)

where M is the positive definite mass matrix

M = diag (J1, m2, m2, J2, m3) . (23)

The vector of generalized forces is expressed as

Q = Q + WFτ , (24)

where

W =













Rj − τ1L1 sin θ1 + τ2L1 cos θ1

−τ1

−τ2

−Rb − τ1a2 sin θ2 + τ2a2 cos θ2

0













,

and

Q = F + UFn,

in which F is the vector of generalized externally applied forces,

F = (M1 − c1θ̇1, m2g, 0, 0, m3g − c3ẋ3)
T with a given driving torque, (25)

or

F = (−c1θ̇1, m2g, 0, 0, m3g − c3ẋ3)
T with a given rheonomic constraint, (26)

and

U =













n1L1 sin θ1 − n2L1 cos θ1

n1

n2

n1a2 sin θ2 − n2a2 cos θ2

0













.

The constraint equations can be expressed as

Φ =

(

x2 + b2 cos θ2 − x3

y2 + b2 sin θ2

)

= 0 with a given driving torque, (27)
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or

Φ =





θ1 − θ10 cos(ωt)
x2 + b2 cos θ2 − x3

y2 + b2 sin θ2



 = 0 with a given rheonomic constraint. (28)

To keep the constraint violations under control, the method of Baumgarte stabilization[63] can
be used,

Φ̈ + αBΦ̇ + βBΦ = 0, (29)

where αB > 0, and βB > 0, and they can be chosen following the instruction of Ref. [64].
From Eq. (29), the following equation can be obtained:

Φqq̈ + Φ̇qq̇ + αBΦqq̇ + Φ̇∗ + αBΦ∗ + βBΦ = 0, (30)

where Φ∗ = ∂Φ

∂t . Substituting Eqs. (22) and (24) into Eq. (21) results in

q̈ = M−1Q + M−1WFτ + M−1ΦT
q
λ. (31)

Equation (31) is inserted into Eq. (30), which gives the vector of Lagrange multipliers,

λ = A−1BFτ + A−1c, (32)

where

A = ΦqM−1ΦT
q
,

B = −ΦqM−1W ,

c = −ΦqM−1Q − Φ̇qq̇ − αBΦqq̇ − Φ̇∗ − αBΦ∗ − βBΦ.

Substituting Eq. (32) into Eq. (31) leads to the differential dynamic equations for the system,

q̈ = GFτ + H , (33)

where
G = M−1W + M−1ΦT

q
A−1B, H = M−1Q + M−1ΦT

q
A−1c.

3 Calculating the frictional force and solving the ordinary differential equa-

tions

3.1 Complementary conditions between accelerations and friction saturations

In order to solve the dynamic equation (33), the frictional force between the journal and
the bearing of the clearance joint A and Fτ must be determined. When vτ 6= 0, the journal
is sliding relative to the bearing. Therefore, the frictional force can be calculated by the first
equation of Eq. (16). When vτ = 0, there are the following three cases:

(i) aτ = 0 ⇒ |Fτ | 6 µsFn remains sticking.
(ii) aτ < 0 ⇒ Fτ = +µsFn commences negative sliding.
(iii) aτ > 0 ⇒ Fτ = −µsFn commences positive sliding.

Therefore, when vτ = 0, the determination of the stick-slip transition and the calculation of the
static frictional force between the journal and bearing will be difficult. Using the non-smooth
dynamic approach[48], one can transform this problem to an LCP and solve it.

An LCP is a set of linear equations that can be expressed as

u = Av + b (34)
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subject to inequality complementarity conditions

u > 0, v > 0, uTv = 0, (35)

for which the vectors u and v can be calculated for given A and b[65]. That is to say, the LCP
is the problem of finding solutions u ∈ R

n and v ∈ R
n for conditions (35) and Eq. (34), in

which b is a given n-dimensional vector, and A is a given n × n matrix.
When vτ = 0, the positive and negative parts of the acceleration aτ are defined as[66]















a+
τ =

1

2
(|aτ | + aτ ) ,

a−
τ =

1

2
(|aτ | − aτ ) .

(36)

The saturations of friction are defined as[66]

{

F+
τ = µsFn + Fτ ,

F−
τ = µsFn − Fτ .

(37)

Then, the accelerations a+
τ and a−

τ are complementary to the friction saturations F+
τ and F−

τ ,
respectively. From Eqs. (36) and (37), one can obtain the following three equations:















aτ = a+
τ − a−

τ ,

Fτ = µsFn − F−
τ ,

F+
τ = −F−

τ + 2µsFn.

(38)

The above equations will be used in the next subsection.
3.2 LCP algorithm for the static frictional force

Taking the derivative of Eq. (8) versus time yields

ḋ = Eq̇, (39)

where

E =

(

−L1 sin θ1 −1 0 −a2 sin θ2 0

L1 cos θ1 0 −1 a2 cos θ2 0

)

.

Taking the derivative of Eq. (10) with respect to time leads to

τ̇ = Dḋ, (40)

where

D =











d1d2

(d2
1 + d2

2)
3/2

−d2
1

(d2
1 + d2

2)
3/2

d2
2

(d2
1 + d2

2)
3/2

−d1d2

(d2
1 + d2

2)
3/2











.

Substituting Eq. (39) into Eq. (40) results in

τ̇ = DEq̇. (41)
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The relative tangential velocity of the contact points between the journal and bearing is

vτ =
(

τTE + Ψ
)

q̇, (42)

where

Ψ = (Rj, 0, 0, −Rb, 0) .

Therefore, aτ can be expressed as

aτ = v̇τ = Rq̈ + Sq̇, (43)

where

R = τTE + Ψ,

S = τ̇TE + τTĖ.

Inserting Eq. (33) into Eq. (43) yields

aτ = RGFτ + RH + Sq̇. (44)

Combining Eq. (44) with Eq. (38) results in

(

a−
τ

F+
τ

)

=

(

RG 1
−1 0

)(

F−
τ

a+
τ

)

+

(

−RGµsFn − RH − Sq̇

2µsFn

)

, (45)

where
{

F+
τ > 0, a+

τ > 0, a+
τ F+

τ = 0,

F−
τ > 0, a−

τ > 0, a−
τ F−

τ = 0.
(46)

Some numerical methods for the LCP, such as Lemke’s algorithm, can be adopted to solve
Eq. (45) and conditions (46) to obtain the solution F−

τ . Substituting F−
τ into the second

equation of Eq. (38), the static frictional force Fτ can be calculated.
3.3 Trial-and-error algorithm for the static frictional force

As the mechanism has only one pair of contact points, the trial-and-error algorithm can
be employed, and the results generated by the trial-and-error algorithm can be compared with
those yielded by the LCP algorithm to test the validity of the LCP algorithm.
When vτ = 0, suppose aτ = 0 firstly. Then, Eq. (44) leads to

Fτ =
−RH − Sq̇

RG
. (47)

If |Fτ | 6 µsFn, the static frictional force is then solved by Eq. (47), otherwise the frictional
force is determined by

{

Fτ := µsFn if Fτ > µsFn,

Fτ := −µsFn if Fτ < −µsFn.
(48)

By using the LCP algorithm or the trial-and-error algorithm, the static frictional force Fτ

can be obtained. Inserting Fτ into Eq. (33), the dynamic equations can be solved by numerical
methods for ordinary differential equations. In this study, Lemke’s algorithm is used to solve
the LCP, and the ODE15s in MATLAB is adopted to solve Eq. (33). The simulation flowchart
is given in Fig. 4.



Comparison and analysis of two Coulomb friction models 1249

＞

- -

Fig. 4 Simulation flowchart

4 Numerical examples

As the focus of this study is to investigate the influence of using the two Coulomb friction
models on the dynamical response of the slider-crank mechanism with a revolute clearance joint,
the journal and the bearing of the clearance joint are in permanent contact in all numerical
examples, which is so called “contact or following mode”[15].

The parameters of the slider-crank mechanism are set as

J1 = 1.00 kg · m2, m2 = 2 kg, J2 = 0.96 kg · m2, m3 = 20 kg,

L1 = 1.00 m, a2 = 1.20 m, b2 = 1.20 m, Rb = 0.100 1 m, Rj = 0.100 0 m.

The coefficients for the Hertzian-based contact force model are[46–47]

K = 1 × 109 N/m1.5, χ = 1 × 1011 N · s/m2.5, α = 1.5.

The viscous damping coefficients for the crank and the slider are

c1 = 25 N · m · s/rad, c3 = 100 N · s/m.

The Baumgarte stabilization constants are set as

αB = 100, βB = 100.

The gravitational acceleration is set as g = 9.8 m/s2. When vτ 6 ε = 1 × 10−5 m/s, the
relative tangential velocity of the contact points between the journal and bearing is treated as
zero[68–69].

The velocity tolerances for the modified Coulomb friction model are set as

v0 = 5 × 10−4 m/s, v1 = 1 × 10−3 m/s.
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4.1 Example I: the crank rotating with a given driving torque

In this example, the crank is driven by a given sinusoidal driving torque,

M1 = M10 sin(ωt) = 12 sin2t (N · m).

The initial conditions of the mechanism are set as

q0 = (0, 2.2001 m,0, 0, 3.4001 m)
T
,

q̇0 = (0, 0, 0, 0, 0)
T
.

Using the above initial conditions, the dynamic response is simulated with the following four
cases in the revolute clearance joint A: (i) no friction; (ii) using the modified Coulomb friction
model with µ = 0.10; (iii) using the Coulomb dry friction model with µ = µs = 0.10; (iv)
using the Coulomb dry friction model with µ = 0.10 and µs = 0.11. The dynamic response of
the slider-crank mechanism with ideal joints (ideal slider-crank mechanism) is also simulated
to compare with the above results. Figure 5 shows the time histories of angular position and
angular velocity of the crank. When the revolute clearance joint has no friction, the motion of
the slider-crank mechanism with a revolute clearance joint is identical with ideal slider-crank
mechanism, as shown in Fig. 5(a). Because of the friction in the clearance joint A, the amplitude
of the crank angular position reduces and the motion lags, as illustrated in Figs. 5(b), 5(c), and
5(d). The modified Coulomb friction model does not capture stick-slip motion, but the Coulomb
dry friction model does.

.
.

.
.

Fig. 5 Time histories of θ1 and θ̇1 based on different friction models: (a) no friction; (b) the modified
Coulomb friction model with µ = 0.10; (c) the Coulomb dry friction model with µ = µs = 0.10;
(d) the Coulomb dry friction model with µ = 0.10 and µs = 0.11 (color online)

Figure 6 depicts the time histories of the relative tangential velocity, the frictional force,
and the normal contact force of the contact points between the journal and the bearing. The
contact points show stick-slip motion if the Coulomb dry friction model is applied, as shown in
Figs. 6(b), 6(c), and 6(d), where Fig. 6(d) is a magnified view of the blue rectangle in Fig. 6(c).
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Due to the difference between static and kinetic friction coefficients, the relative tangential
velocity and the contact forces oscillate severely when the contact points move from stick to
slip, as shown in Figs. 6(c) and 6(d).

.
1

.
1

.
1

.
1

Fig. 6 Time histories of 5 000vτ , 3Fτ , and Fn based on different friction models: (a) the modified
Coulomb friction model with µ = 0.10; (b) the Coulomb dry friction model with µ = µs = 0.10;
(c) the Coulomb dry friction model with µ = 0.10 and µs = 0.11; (d) the magnified view of
the blue rectangle in Fig. 6(c) (color online)

Figure 7 shows the comparison of the crank angular position based on two different algo-
rithms: trial-and-error algorithm and LCP algorithm, using the Coulomb dry friction model
with µ = 0.10 and µs = 0.11. It can be seen that the two different algorithms yield identical
results.

- -

Fig. 7 Time histories of the crank angular position θ1 using different algorithms (color online)

In order to investigate the differences between the modified Coulomb friction model and the
Coulomb dry friction model, Fig. 8 gives the plots of the ratio Fτ/Fn versus vτ using the two
Coulomb friction models. It can be observed from Fig. 8 that the Coulomb dry friction model
exhibits the stick friction characteristics when the relative tangential velocity is in the vicinity
of zero.
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4.2 Example II: the crank rotating with a given constraint

In this example, the crank rotates with a given rheonomic constraint,

θ1 = θ10 cos(ωt) = 0.03 cos2t.

. 1 . 1

Fig. 8 Plots of Fτ/Fn versus vτ for the two Coulomb friction models: (a) the Coulomb dry friction
model; (b) the modified Coulomb friction model

The initial conditions of the mechanism are set as

q0 = (0.030 0, 2.199 6 m, 0.015 0 m, − 0.012 5, 3.399 5 m)T,

q̇0 = (0, 0, 0, 0, 0)
T
.

The dynamic response of the mechanism is simulated for the revolute clearance joint A modeled
by the following four cases: (i) no friction; (ii) the modified Coulomb friction model with
µ = 0.050; (iii) the Coulomb dry friction model with µ = µs = 0.050; (iv) the Coulomb dry
friction model with µ = 0.050 and µs = 0.055. The dynamic response of ideal slider-crank
mechanism is also simulated to compare with the above results. In this system, the Lagrange
multiplier λ1 corresponding to the rheonomic constraint is the driving torque acting on the
crank. The time histories of λ1 for the clearance joint A modeled by Cases (i), (ii), (iii), and for
the ideal slider-crank mechanism are given in Figs. 9(a) and 9(b), where Fig. 9(b) is a magnified
view of the blue rectangle in Fig. 9(a). Due to the transient effect of stick friction, the driving
torque acting on the crank are slightly different using the two different Coulomb friction models.
The time histories of λ1 for the clearance joint A modeled by Cases (iii) and (iv) and for the ideal
slider-crank mechanism are shown in Figs. 9(c) and 9(d), where Fig. 9(d) is a magnified view
of the blue rectangle in Fig. 9(c). Figure 10 illustrates the time histories of relative tangential
velocity, frictional force, and normal contact force of the contact points between the journal
and the bearing in Case (iv). Because of the difference between the static and kinetic friction
coefficients, the relative tangential velocity, the contact forces, and the driving torque acting
on the crank oscillate severely when the contact points move from stick to slip, as shown in
Figs. 9(c), 9(d), and 10.

Figure 11 shows the time histories of the Lagrange multiplier λ1 using the Coulomb dry
friction model with different friction coefficients. Simulation results show that lager friction
coefficients correspond to larger amplitudes of the Lagrange multiplier λ1. In other words, the
increase in the friction coefficient leads to the increase in the amplitude of the driving torque
on the crank, which is consistent with our common sense.
4.3 Example III: equilibrium of the mechanism

In this example, the driving crank torque is zero. The initial conditions of the mechanism
are set as

q0 = (π − 0.01, 0.2002 m,0.0050 m, −0.0042, 1.4002 m)
T
,

q̇0 = (0, 0, 0, 0, 0)
T
.
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Fig. 9 Time histories of the Lagrange multiplier λ1 using different friction models: (a) the modified
Coulomb friction model with µ = 0.050 and the Coulomb dry friction model with µ = µs =
0.050; (b) the magnified view of the blue rectangle in Fig. 9(a); (c) the Coulomb dry friction
model with µ = µs = 0.050 versus µ = 0.050 and µs = 0.055; (d) the magnified view of the
blue rectangle in Fig. 9(c) (color online)
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.
1

Fig. 10 Time histories of 5 000vτ , 3Fτ , and Fn: (a) using the Coulomb dry friction model with
µ = 0.050 and µs = 0.055 and (b) the magnified view of the blue rectangle in Fig. 10(a)
(color online)

Using the above initial conditions, the dynamic behavior of the mechanism is simulated with
the following three cases in the revolute clearance joint A: (i) no friction; (ii) using the modified
Coulomb friction model with µ = 0.15; (iii) using the Coulomb dry friction model with µ = 0.15
and µs = 0.20. The dynamic response of ideal slider-crank mechanism is also simulated to
compare with the above results. Figure 12 illustrates the time histories of the crank angular
position θ1 in these cases. If the Coulomb dry friction model is adopted as the tangential
contact force model for the revolute clearance joint A, the system can balance at θ1 = π − 0.01
due to static friction. However, the crank can hardly keep balance in other cases, and it moves
from θ1 = π − 0.01 to θ1 = 0, as shown in Fig. 12.
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.
Fig. 11 Time histories of the Lagrange multiplier λ1 using the Coulomb dry friction model with

different friction coefficients (color online)

Figure 13 gives the time histories of relative tangential velocity and frictional force of the
contact points between the journal and the bearing in Case (iii). In this case, the relative
tangential velocity of the contact points is zero. Then, the contact points are subject to static
frictional forces, which are unequal to zero.

Fig. 12 Time histories of the crank angu-
lar position θ1 using different mod-
els (color online)

.
1

Fig. 13 Time histories of 1 000vτ and Fτ using
the Coulomb dry friction model (color
online)

5 Conclusions

This paper aims at comparing and analyzing the effects of the Coulomb dry friction model
and the modified Coulomb friction model on the dynamic behavior of slider-crank mechanism
with a revolute clearance joint. The normal force of the contact points between the journal
and the bearing is expressed as a nonlinear function of the penetration depth and penetration
velocity. The tangential force is described by the Coulomb dry friction model, which has
stick friction characteristics. The dynamic equations of the system are obtained by using the
Lagrange equations of the first kind and the Baumgarte stabilization method. The static
frictional force is solved via the trial-and-error algorithm and the LCP algorithm to compare
the simulation results. The results generated by using the Coulomb dry friction model are
compared with those yielded by the modified Coulomb friction model.

The study shows that due to stick friction, the slider-crank mechanism with a revolute
clearance joint may exhibit stick-slip motion, and can balance at some special positions, while
the mechanism with ideal joints cannot. Because of the difference between the static and kinetic
friction coefficients for the Coulomb dry friction model, the relative tangential velocity of the
contact points, the contact forces, and the driving crank torque may oscillate severely when the
contact points move from stick to slip.
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