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Abstract Superconvergence has been studied for long, and many different numerical
methods have been analyzed. This paper is concerned with the problem of superconver-
gence for a two-dimensional time-dependent linear Schrödinger equation with the finite
element method. The error estimate and superconvergence property with order O(hk+1)
in the H1 norm are given by using the elliptic projection operator in the semi-discrete
scheme. The global superconvergence is derived by the interpolation post-processing
technique. The superconvergence result with order O(hk+1 + τ 2) in the H1 norm can be
obtained in the Crank-Nicolson fully discrete scheme.

Key words superconvergence, elliptic projection, Schrödinger equation, interpolation
post-processing

Chinese Library Classification O241.82
2010 Mathematics Subject Classification 65M12, 65M15, 65M60

1 Introduction

We shall consider a linear Schrödinger equation as follows. Let Ω ⊂ R
2 be a bounded

rectangular-type domain with a smooth boundary ∂Ω. We find a complex-valued function
u(x, t) defined on Ω × [0, T ] and satisfying






iut(x, t) = −
1

2
∆u(x, t) + V (x)u(x, t) + f(x, t) in Ω × [0, T ],

u(x, t) = 0 on ∂Ω × [0, T ],

u(x, 0) = u0(x) in Ω,

(1)

where u0(x) is a given initial complex-valued function, and the trapping potential function
V (x) is non-negative bounded and real-valued.

The Schrödinger equation is an important equation in quantum mechanics. There are many
numerical methods to solve the Schrödinger equation in the literature, such as the spectral
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method[1–2], the finite difference method[3–5], the finite element method[6–12], the discontinu-
ous Galerkin method[13–15], and the local discontinuous Galerkin method[16–18]. Bao et al.[1]

studied the performance of time-splitting spectral approximations for the general nonlinear
Schrödinger equation in the semiclassical regimes. Han et al.[5] introduced an artificial boundary
condition to reduce the one-dimensional time-dependent Schrödinger equation into an initial-
boundary value problem in a finite computational domain. Antonopoulou et al.[7] considered
an initial and boundary-value problem for a general Schrödinger-type equation posed on a two
space-dimensional noncylindrical domain with mixed boundary conditions. Karakashian and
Makridakis[14] analyzed the convergence of the discontinuous Galerkin method for the nonlin-
ear Schrödinger equation. Guo and Xu[16] presented a fully discrete scheme by discretizing the
space with the local discontinuous Galerkin method and the time with the Crank-Nicholson
scheme to simulate the multi-dimensional Schrödinger equation with wave operator.

Superconvergence has been studied for long. Many different numerical methods have been
analyzed. It is a powerful tool to improve the approximation accuracy and efficiency. There are
numerous studies by many famous scholars[19–22]. At present, superconvergence results were
obtained widely for elliptic, parabolic, Maxwell’s equations, and optimal control problems[23–31].
However, there were not many superconvergence results for the Schrödinger equation[32–36].
In 1998, Lin and Liu[32] studied a time-dependent linear Schrödinger equation and analyzed
the superconvergence error results. In 2014, Shi et al.[33] considered a nonlinear Schrödinger
equation by the finite element method in the triangular anisotropic meshes and proved the
superconvergence result in the semi-discrete scheme. Later, Wang et al.[35] conducted the
superconvergence analysis for a time-dependent Schrödinger equation by using the interpolation
operator and obtained the error result in the H1 norm with O(hp+1) in the semi-discrete

scheme and O(hp+1 + τ
3
2 ) in the Crank-Nicolson scheme, respectively. Recently, Zhou et al.[36]

studied the superconvergence properties of the local discontinuous Galerkin method for the
one-dimensional linear Schrödinger equation.

In this paper, we study a general complex linear Schrödinger equation (1) and extend the
previous work[35]. We analyze the error estimate using the elliptic projection operator. We
obtain the error result with O(hk+1) in the L2 norm and the H1 norm in the semi-discrete finite
element scheme. The global superconvergence result is presented by use of the interpolation
post-processing technique. Next, we analyze the error estimate in the L2 norm with order
O(hk+1 + τ2) in the Crank-Nicolson fully discrete scheme. We extend the idea[37] and certify
that the time-difference of error ηn = Un − Phun has a high order error in the L2 norm, that
is, ‖ηn − ηn−1‖ 6 Cτ(hk+1 + τ2), where Un is the fully discrete solution of Crank-Nicolson
scheme. At last, we obtain the superconvergence result in the H1 norm with O(hk+1 + τ2) on
this basis.

The paper is organized as follows. The notations and the projection operator are given
in Section 2. In Section 3, we present a finite element semi-discrete scheme with bi-k-degree
rectangular elements. Furthermore, we obtain error results with O(hk+1) in the L2 norm and
the H1 norm by use of the elliptic projection operator, respectively. In Section 4, we prove
the global superconvergence result with O(hk+1). In Section 5, we obtain the superconvergence
result in the H1 norm with O(hk+1+τ2) in the Crank-Nicolson fully discrete scheme. In Section
6, numerical examples are given to partly verify the theoretical results.

2 Notation and preliminaries

For an integer m > 0 and 1 6 p 6 ∞, we shall use Wm,p to denote the standard
Sobolev space of complex-valued measurable functions defined on Ω with the norm ‖φ‖p

m,p =∑
|α|6m

‖Dαφ‖p

Lp(Ω). When p = 2, we shall also use the symbol Hm for Wm,2, ‖ · ‖m instead of

‖ · ‖m,2, and ‖ · ‖ instead of ‖ · ‖0,2.
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For complex-valued functions ω(x) and ν(x), we define the inner product (ω, ν) with

(ω, ν) =

∫

Ω

ω(x)ν(x)dx,

where ν denotes the complex conjugate of function ν.
Then, we can define the weak solution u(x, t) of problem (1): find a function u(x, t) ∈ H1

0 (Ω)
such that

{
i(ut, v) = a(u, v) + (f, v), ∀v ∈ H1

0 (Ω), 0 6 t 6 T,

u(x, 0) = u0(x), ∀x ∈ Ω,
(2)

where a(u, v) = 1
2 (∇u,∇v) + (V u, v).

Let Γh be a quasi-uniform rectangular partition of Ω with the mesh size h > 0, and let e be
an arbitrary element of Γh. We can define the finite element space of order k as

V h,k = {v ∈ C(Ω) : v|e ∈ Qp, ∀e ∈ Γh},

where
Qp = span{xiyj , 0 6 i, j 6 k}.

In addition,

V h,k
0 = V h,k ∩ H1

0 (Ω).

Let V h,k
0 ⊂ H1

0 (Ω) be the corresponding finite element space of order k. In general given

w(x, t) ∈ H1
0 (Ω), the elliptic projection Phw(x, t) ∈ V h,k

0 can be defined by

a(Phw, vh) = a(w, vh), ∀vh ∈ V h,k
0 . (3)

Let τ = T/N be the time step of the interval [0, T ], time nodes tj = jτ (j = 0, 1, · · · , N),
tj+ 1

2
= (tj+1 + tj)/2, and time elements Ij = [tj , tj+1] (j = 0, 1, · · · , N − 1), and set

φ(·, tj) = φj ,

‖φ‖L2(0,T ;Ω) =
(∫ T

0

‖φ(·, t)‖2
Ωdt

) 1
2

.

3 Superconvergence analysis for semi-discrete approximation problem

The semi-discrete finite element solution uh(x, t) of problem (1) can be defined: find uh(x, t)

∈ V h,k
0 satisfying

{
i(uht, vh) = a(uh, vh) + (f, vh), ∀vh ∈ V h,k

0 , 0 6 t 6 T,

uh(x, 0) = Phu0(x), ∀x ∈ Ω,
(4)

where Phu0(x) ∈ V h,k
0 is the elliptic projection of u0(x).

Lemma 1[34] If for any t ∈ [0, T ], the functions u(x, t), ut(x, t), utt(x, t) ∈ Hk+1(Ω), then

Phu(x, t) ∈ V h,k
0 has the following results:

‖u − Phu‖q 6 Chk−q+1‖u‖k+1, q = 0, 1, (5)

‖(u − Phu)t‖q 6 Chk−q+1‖ut‖k+1, q = 0, 1, (6)

‖(u − Phu)tt‖q 6 Chk−q+1‖utt‖k+1, q = 0, 1. (7)
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Lemma 2[20] Let u be the solution to the problem (2), and let uI ∈ V h,k
0 be the interpolation

of u. If u ∈ Hk+2(Ω), then

|(∇(u − uI),∇v)| 6 Chk+1‖u‖k+2‖v‖1, ∀v ∈ V h,k
0 . (8)

Theorem 1 If u and uh are the solutions to the problems (2) and (4), respectively, and

u, ut, utt ∈ Hk+1(Ω), there hold

‖uh − Phu‖ 6 Chk+1, (9)

‖(uh − Phu)t‖ 6 Chk+1. (10)

Proof It follows from (2) and (4) that

i((u − uh)t, vh) = a(u − uh, vh), ∀vh ∈ V h,k
0 . (11)

Let u − uh = ρ − ξ with

ρ = u − Phu, ξ = uh − Phu. (12)

Then, from (11) and (12), we have

i(ρt, vh) − i(ξt, vh) = a(ρ, vh) − a(ξ, vh). (13)

From (3), we can obtain

a(ρ, vh) = 0. (14)

Substituting (14) into (13) yields

i(ξt, vh) = i(ρt, vh) + a(ξ, vh). (15)

Taking vh = ξ in (15), we have

i(ξt, ξ) = i(ρt, ξ) + a(ξ, ξ). (16)

Noticing
1

2

d

dt
‖ξ‖2 = Re{(ξt, ξ)}

and comparing the imaginary parts of (16), we get

1

2

d

dt
‖ξ‖2 = Re{(ρt, ξ)} + Im{a(ξ, ξ)}

= Re{(ρt, ξ)}

6 C‖ρt‖‖ξ‖. (17)

Combining (6) with (17) yields

d

dt
‖ξ‖ 6 Chk+1‖ut‖k+1. (18)

Integrating from 0 to t in (18), we have

‖ξ‖ 6 ‖ξ(·, 0)‖ + Chk+1

∫ t

0

‖ut‖k+1ds. (19)
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It follows from (4) that

‖ξ(·, 0)‖ = 0. (20)

From (19) and (20), we obtain

‖ξ‖ 6 Chk+1

∫ t

0

‖ut‖k+1ds.

Therefore, (9) holds. Next, we prove (10). Taking vh = ξt(·, 0) in (15) with t = 0 and combining
(20), we have

i(ξt(·, 0), ξt(·, 0)) = i(ρt(·, 0), ξt(·, 0)).

Thus,

‖ξt(·, 0)‖2
6 ‖ρt(·, 0)‖‖ξt(·, 0)‖,

that is,

‖ξt(·, 0)‖ 6 ‖ρt(·, 0)‖. (21)

Combining (6) with (21) gives

‖ξt(·, 0)‖ 6 Chk+1‖ut(·, 0)‖k+1. (22)

Differentiating (15) with respect to t and taking vh = ξt, we can obtain

i(ξtt, ξt) = i(ρtt, ξt) + a(ξt, ξt). (23)

Noticing

1

2

d

dt
‖ξt‖

2 = Re{(ξtt, ξt)}

and comparing the imaginary parts of (23) yield

1

2

d

dt
‖ξt‖

2 = Re{(ρtt, ξt)} + Im{a(ξt, ξt)}

= Re{(ρtt, ξt)}

6 C‖ρtt‖‖ξt‖. (24)

From (22) and (25), we get

d

dt
‖ξt‖ 6 Chk+1‖utt‖k+1. (25)

Integrating from 0 to t in (25), we can obtain

‖ξt‖ 6 ‖ξt(·, 0)‖ + Chk+1

∫ t

0

‖utt‖k+1ds. (26)

It follows from (22) and (26) that

‖ξt‖ 6 Chk+1
(
‖ut(·, 0)‖k+1 +

∫ t

0

‖utt‖k+1ds
)
,
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which completes the proof of (10).
Theorem 2 Let u and uh be the solutions to the problems (2) and (4), respectively, and

u, ut, utt ∈ Hk+1(Ω). Then, we have

‖uh − Phu‖1 6 Chk+1. (27)

Proof Taking vh = ξt in (15), we can get

i(ξt, ξt) = i(ρt, ξt) + a(ξ, ξt),

that is,

i(ξt, ξt) = i(ρt, ξt) +
1

2
(∇ξ,∇ξt) + (V ξ, ξt). (28)

Noticing

1

2

d

dt
‖∇ξ‖2 = Re{(∇ξ,∇ξt)}

and comparing the real parts of (28) give

1

2

d

dt
‖∇ξ‖2 = Im{(ρt, ξt) + (ξt, ξt)} − Re{(V ξ, ξt)}

= Im{(ρt, ξt)} − Re{(V ξ, ξt)}

6 C(‖ρt‖ + ‖ξ‖)‖ξt‖. (29)

From (6), (9), (10), and (29), we can obtain

d

dt
‖∇ξ‖2

6 Ch2k+2. (30)

Integrating from 0 to t in (30) yields

‖∇ξ‖2
6 ‖∇ξ(·, 0)‖2 + Ch2k+2. (31)

Notice

‖∇ξ(·, 0)‖ = 0. (32)

Substituting (32) into (31) yields

‖∇ξ‖ 6 Chk+1. (33)

Therefore, (27) follows from (33).

4 Global superconvergence analysis

Let ẽ be a macro element which is the union of four elements ei ∈ Γh (i = 1, 2, 3, 4), where
the intersection of ei ∈ Γh (i = 1, 2, 3, 4) is nonempty (see Fig. 1).

Fig. 1 Structure of macro element ee
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Let the interpolation operator Π2
2h satisfy Π2

2hw ∈ Q2(ẽ), where Q2 is the space of bi-
quadratic functions, and

Π2
2hw(Zi) = w(Zi), (34)

where Zi (i = 1, 2, · · · , 9) are the nodes of Γh.
When k > 2, let Π2k

2hw ∈ Q2k(ẽ) such that

Π2k
2hw(Zi) = w(Zi), (35)

∫

li

(Π2k
2hw − w)vdl = 0, ∀v ∈ Pk−2(li), (36)

∫

ei

(Π2k
2hw − w)vdxdy = 0, ∀v ∈ Qk−2(ei), (37)

where Zi (i = 1, 2, · · · , 9) are the nodes of Γh, li (i = 1, 2, · · · , 12) are the edges of Γh, ei (i =
1, 2, 3, 4) are the elements of Γh, Pk−2 is the set of polynomials of order k − 2, and Qk−2(ẽ) is
the polynomials of order k − 2 in x and y.

Lemma 3[20,22] The interpolation operator Π2k
2h is defined in (34)–(37) such that

Π2k
2hwI = Π2k

2hw, ∀w ∈ C(ẽ), (38)

‖Π2k
2hw − w‖l,ee 6 Chr+1−l‖w‖r+1,ee, 1 6 r 6 2k, l = 0, 1, (39)

‖Π2k
2hv‖l,ee 6 C‖v‖l,ee, ∀v ∈ V h,k, l = 0, 1, (40)

where wI ∈ V h,k is the interpolant of w.
Lemma 4 Let u and uh be the solutions to the problems (2) and (4), respectively. If

u ∈ Hk+2(Ω), and ut, utt ∈ Hk+1(Ω), then

‖uh − uI‖1 6 Chk+1, (41)

where uI is the interpolant of u.
Proof From (14), we can obtain

a(u − Phu, uh − uI) = 0,

that is,

(∇(u − Phu),∇(uh − uI)) = −(V (u − Phu), uh − uI). (42)

It is easy to check

(∇(uh − uI),∇(uh − uI)) = (∇(uh − Phu),∇(uh − uI)) − (∇(u − Phu),∇(uh − uI))

+ (∇(u − uI),∇(uh − uI)). (43)

Combining (42) with (43) yields

|uh − uI |
2
1 = (∇(uh − Phu),∇(uh − uI)) + (V (u − Phu), uh − uI)

+ (∇(u − uI),∇(uh − uI))

6 ‖uh − Phu‖1‖uh − uI‖1 + C‖u − Phu‖‖uh − uI‖

+ (∇(u − uI),∇(uh − uI)). (44)
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It follows from (5) that

‖u − Phu‖ 6 Chk+1‖u‖k+1, (45)

and from (8), we have

(∇(u − uI),∇(uh − uI)) 6 Chk+1‖u‖k+2‖uh − uI‖1. (46)

In addition,

‖uh − uI‖ 6 ‖uh − uI‖1. (47)

Substituting (27) and (45)–(47) into (44), we can get

|uh − uI |
2
1 6 C(hk+1 + hk+1‖u‖k+1 + hk+1‖u‖k+2)‖uh − uI‖1. (48)

By the Poincaré inequality, we can obtain

‖uh − uI‖1 6 C|uh − uI |1. (49)

Therefore, (48) and (49) show the validity of (41).
Theorem 3 Let u and uh be the solutions to the problems (2) and (4), respectively. If

u ∈ Hk+2(Ω), and ut, utt ∈ Hk+1(Ω), then

‖u − Π2k
2huh‖1 6 Chk+1, (50)

where Π2k
2h is the interpolation post-processing operator.

Proof It follows from (40) and (41) that

‖Π2k
2huh − Π2k

2huI‖1 6 C‖uh − uI‖1 6 Chk+1. (51)

From (38) and (39), we have

‖Π2k
2huI − u‖1 = ‖Π2k

2hu − u‖1 6 Chk+1. (52)

Notice

‖u − Π2k
2huh‖1 6 ‖Π2k

2huh − Π2k
2huI‖1 + ‖Π2k

2huI − u‖1. (53)

Therefore, (50) follows from (51)–(53).

5 Superconvergence analysis in fully discrete scheme

For the function series Un(x) (n = 0, 1, · · · ), let

∂tU
n+ 1

2 =
1

τ
(Un+1(x) − Un(x)),

Un+ 1
2 =

1

2
(Un+1(x) + Un(x)).

Then, the Crank-Nicolson fully discrete finite element solution Un(x) ∈ V h,k
0 (n = 0, 1, · · · , N)

to the problem (1) can be defined by

{
i(∂tU

n+ 1
2 , vh) = a(Un+ 1

2 , vh) + (fn+ 1
2 , vh), ∀vh ∈ V h,k

0 ,

U0(x) = Phu0(x).
(54)



Superconvergence analysis of bi-k-degree rectangular elements 1361

Theorem 4 Let u(x, t) be the solution to the problem (2), and let the function series

Un(x) be the solution to the problem (54). Then, we have

‖Un − Phun‖ 6 Chk+1 + Cτ2. (55)

Proof From (2) and (54), we can get

i(u
n+ 1

2

t − ∂tU
n+ 1

2 , vh) = a(un+ 1
2 − Un+ 1

2 , vh). (56)

Let u − U = ρ − η with

ρ = u − Phu, η = U − Phu. (57)

Combining (56) with (57) and (14), we have

i(∂tη
n+ 1

2 , vh) − i(∂tρ
n+ 1

2 , vh) − i(u
n+ 1

2

t − ∂tu
n+ 1

2 , vh) = a(ηn+ 1
2 , vh). (58)

Taking vh = ηn+ 1
2 in (58), we can obtain

i(∂tη
n+ 1

2 , ηn+ 1
2 ) − i(∂tρ

n+ 1
2 , ηn+ 1

2 ) − i(u
n+ 1

2

t − ∂tu
n+ 1

2 , ηn+ 1
2 ) = a(ηn+ 1

2 , ηn+ 1
2 ). (59)

Notice

1

2τ
(‖ηn+1‖2 − ‖ηn‖2) = Re{(∂tη

n+ 1
2 , ηn+ 1

2 )}.

Comparing the imaginary parts of (59) yields

1

2τ
(‖ηn+1‖2 − ‖ηn‖2) = Re{(∂tρ

n+ 1
2 , ηn+ 1

2 ) + (u
n+ 1

2

t − ∂tu
n+ 1

2 , ηn+ 1
2 )}

6 |(∂tρ
n+ 1

2 , ηn+ 1
2 )| + |(u

n+ 1
2

t − ∂tu
n+ 1

2 , ηn+ 1
2 )|

6 (‖∂tρ
n+ 1

2 ‖ + ‖u
n+ 1

2

t − ∂tu
n+ 1

2 ‖)‖ηn+ 1
2 ‖

=
1

2
(‖∂tρ

n+ 1
2 ‖ + ‖u

n+ 1
2

t − ∂tu
n+ 1

2 ‖)‖ηn+1 + ηn‖

6
1

2
(‖∂tρ

n+ 1
2 ‖ + ‖u

n+ 1
2

t − ∂tu
n+ 1

2 ‖)(‖ηn+1‖ + ‖ηn‖).

Thus,

‖ηn+1‖ − ‖ηn‖ 6 Cτ(‖∂tρ
n+ 1

2 ‖ + ‖u
n+ 1

2

t − ∂tu
n+ 1

2 ‖). (60)

It follows from (5) that

‖∂tρ
n+ 1

2 ‖ = ‖∂tu
n+ 1

2 − ∂tPhun+ 1
2 ‖

= ‖τ−1(un+1 − un) − τ−1(Phun+1 − Phun)‖

= τ−1‖(un+1 − un) − Ph(un+1 − un)‖

6 Cτ−1hk+1‖un+1 − un‖k+1

= Cτ−1hk+1
∥∥∥

∫ tn+1

tn

ut(·, t)
∥∥∥

k+1
dt

6 Cτ−1hk+1

∫ tn+1

tn

‖ut(·, t)‖k+1dt. (61)
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In addition,

‖u
n+ 1

2

t − ∂tu
n+ 1

2 ‖

=
1

2τ

∥∥∥
∫ t

n+1
2

tn

(t − tn)2uttt(·, t)dt +

∫ tn+1

t
n+1

2

(t − tn+1)
2uttt(·, t)dt

∥∥∥

6
1

2τ

∥∥∥
∫ t

n+1
2

tn

(τ

2

)2

uttt(·, t)dt +

∫ tn+1

t
n+ 1

2

(τ

2

)2

uttt(·, t)dt
∥∥∥

=
τ

8

∥∥∥
∫ tn+1

tn

uttt(·, t)dt
∥∥∥

6Cτ

∫ tn+1

tn

‖uttt(·, t)‖dt. (62)

Substituting (61) and (62) into (60), we have

‖ηn+1‖ − ‖ηn‖ 6 Chk+1

∫ tn+1

tn

‖ut(·, t)‖k+1dt

+ Cτ2

∫ tn+1

tn

‖uttt(·, t)‖dt. (63)

Summing up for n in (63) yields

‖ηn‖ − ‖η0‖ 6 Chk+1

∫ tn

0

‖ut(·, t)‖k+1dt

+ Cτ2

∫ tn

0

‖uttt(·, t)‖dt. (64)

From (54), we can see

‖η0‖ = 0. (65)

Therefore, (55) follows from (64) and (65).
Lemma 5 Let u(x, t) be the solution to the problem (2), and let the function series Un(x)

be the solution to the problem (54). Then, the time-difference of error ηn = Un − Phun has a

high order error

‖ηn − ηn−1‖ 6 Cτ(hk+1 + τ2). (66)

Proof It follows from (2) that
∫ t

0

(i(ut, v) − a(u, v) − (f, v))dt = 0, ∀v ∈ V h,k
0 . (67)

Integrating (67) in In by trapezoid and mid-point formulae, respectively, we can obtain

i(un+1 − un, v) −
τ

2
a(un+1 + un, v) = τ(fn+ 1

2 , v) + rn
1 (v) + rn

2 (v), (68)

where

rn
1 (v) = O(τ2)

∫

In

‖ftt‖‖v‖dt, (69)

rn
2 (v) = O(τ2)

∫

In

(‖utt‖2 + ‖V utt‖)‖v‖dt. (70)
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From (54), we have

i(Un+1 − Un, v) −
τ

2
a(Un+1 + Un, v) = τ(fn+ 1

2 , v). (71)

Combining (68) with (71) yields

i(un+1 − Un+1 − (un − Un), v) −
τ

2
a(un+1 − Un+1 + un − Un, v)

= rn
1 (v) + rn

2 (v). (72)

From (57), (14), and (72), we get

i(ηn+1 − ηn, v) −
τ

2
a(ηn+1 + ηn, v) = rn

1 (v) + rn
2 (v) + rn

3 (v), (73)

where

rn
3 (v) = i(ρn+1 − ρn, v) = i

∫

In

(ρt, v)dt. (74)

Further, combining (7) and (74) gives

|rn
3 (v) − rn−1

3 (v)| =
∣∣∣
∫

In

(ρt, v)dt −

∫

In−1

(ρt, v)dt
∣∣∣

= O(τ)

∫

In+In−1

|(ρtt, v)|dt

= O(τhk+1)

∫

In+In−1

‖utt‖k+1‖v‖dt. (75)

Substituting n by n − 1 in (73), we have

i(ηn − ηn−1, v) −
τ

2
a(ηn + ηn−1, v) = rn−1

1 (v) + rn−1
2 (v) + rn−1

3 (v). (76)

Let
ǫn+1 = ηn+1 − ηn.

We can see

(ηn+1 + ηn) − (ηn + ηn−1) = ǫn+1 + ǫn. (77)

Subtracting (76) from (73) and combining (77) yield

i(ǫn+1 − ǫn, v) −
τ

2
a(ǫn+1 + ǫn, v) = rn

h(v), (78)

where

rn
h(v) =

3∑

i=1

(rn
i (v) − rn−1

i (v)). (79)

From (69), (70), (75), and (79), we can obtain

|rn
h(v)| 6

3∑

i=1

|rn
i (v) − rn−1

i (v)|

6 Cτ(hk+1 + τ2)

∫

In+In−1

(‖fttt‖ + ‖uttt‖2

+ ‖V uttt‖ + ‖utt‖k+1)‖v‖dt. (80)
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Taking v = ǫn+1 + ǫn in (78), we get

i(ǫn+1 − ǫn, ǫn+1 + ǫn) −
τ

2
a(ǫn+1 + ǫn, ǫn+1 + ǫn) = rn

h(ǫn+1 + ǫn). (81)

Comparing the imaginary parts of (81), we have

‖ǫn‖2 − ‖ǫn−1‖2 = Re{(ǫn+1 − ǫn, ǫn+1 + ǫn)}

= Im{rn
h(ǫn+1 + ǫn)}

6 |rn
h(ǫn+1 + ǫn)|. (82)

Combining (80) with (82) gives

‖ǫn‖2 − ‖ǫn−1‖2
6 Cτ(hk+1 + τ2)

∫

In+In−1

(‖fttt‖ + ‖uttt‖2

+ ‖V uttt‖ + ‖utt‖k+1)‖ǫ
n+1 + ǫn‖dt. (83)

Without loss of generality, we assume that there is an integer 1 6 K 6 N such that

‖ǫK‖ = max
16n6N

‖ǫn‖. (84)

Summing up for n from 2 to K in (83) and combining (84), we have

‖ǫK‖2
6 ‖ǫ1‖2 + Cτ(hk+1 + τ2)

∫

I

(‖fttt‖ + ‖uttt‖2

+ ‖V uttt‖ + ‖utt‖k+1)dt‖ǫK‖. (85)

Taking n = 1 in (64) and combining (65) yield

‖ǫ1‖ = ‖η1‖ 6 Cτ(hk+1 + τ2). (86)

Substituting (86) into (85) and using Young’s inequality, we can get

‖ǫK‖ 6 Cτ(hk+1 + τ2). (87)

Therefore, (66) follows from (84) and (87).
Theorem 5 Let u(x, t) be the solution to the problem (2), and let the function series

Un(x) be the solution to the problem (54). Then, we have

‖Un − Phun‖1 6 Chk+1 + Cτ2. (88)

Proof Taking vh = ∂tη
n+ 1

2 in (58), we have

i(∂tη
n+ 1

2 , ∂tη
n+ 1

2 ) − i(∂tρ
n+ 1

2 , ∂tη
n+ 1

2 ) − i(u
n+ 1

2

t − ∂tu
n+ 1

2 , ∂tη
n+ 1

2 )

=
1

2
(∇ηn+ 1

2 ,∇∂tη
n+ 1

2 ) + (V ηn+ 1
2 , ∂tη

n+ 1
2 ). (89)

Notice

1

2τ
(‖∇ηn+1‖2 − ‖∇ηn‖2) = Re{(∇ηn+ 1

2 ,∇∂tη
n+ 1

2 )}.

Comparing the real parts of (89), we get

1

4τ
(‖∇ηn+1‖2 − ‖∇ηn‖2) = Im{(∂tρ

n+ 1
2 , ∂tη

n+ 1
2 ) + (u

n+ 1
2

t − ∂tu
n+ 1

2 , ∂tη
n+ 1

2 )}

− Re{(V ηn+ 1
2 , ∂tη

n+ 1
2 )},
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that is,

‖∇ηn+1‖2 − ‖∇ηn‖2 = 4τIm{(∂tρ
n+ 1

2 , ∂tη
n+ 1

2 ) + (u
n+ 1

2

t − ∂tu
n+ 1

2 , ∂tη
n+ 1

2 )}

− 2V (‖ηn+1‖2 − ‖ηn‖2). (90)

Summing up for n in (90) and combining (65), we have

‖∇ηn‖2
6 C

n−1∑

j=0

‖∂tρ
j+ 1

2 ‖‖ηj+1 − ηj‖

+ C

n−1∑

j=0

‖u
j+ 1

2

t − ∂tu
j+ 1

2 ‖‖ηj+1 − ηj‖ + C‖ηn‖2. (91)

Substituting (61), (66), (62), and (55) into (91), we can obtain

‖∇ηn‖2
6 (Chk+1 + Cτ2)2,

that is,
‖∇ηn‖ 6 Chk+1 + Cτ2,

which completes the proof.
Similar to Theorem 3, we can obtain the following result.
Theorem 6 Assume that u(x, t) is the solution to the problem (2), and the function series

Un(x) is the solution to the problem (54). Then, we have the global superconvergence estimate

‖un − Π2k
2hUn‖1 6 Chk+1 + τ2, (92)

where Π2k
2h is the interpolation post-processing operator.

6 Numerical examples

In this section, we carry out some numerical examples with k = 1 and k = 2 to demonstrate
the validity of the theoretical analysis.

Example 1 We consider the following linear Schrödinger equation:





iut(x, t) = −
1

2
∆u(x, t) + u(x, t) + f(x, t) in Ω × [0, 1],

u(x, t) = 0 on ∂Ω × [0, 1],

u(x, 0) = u0(x) in Ω,

(93)

where Ω = [0, 1]× [0, 1], and let the function f(x, t) be chosen that

u(x, y, t) = et(1 + i)(1 − x)(1 − y) sinx sin y

is the exact solution.
We have solved the Schrödinger equation on the uniformly rectangular meshes with the

mesh size h by the bilinear finite element. First, we calculate the errors with fixing τ = 10−4

by varying h. The error results are presented in Tables 1–4, where Order1, Order2, Order3, and
Order4 denote the convergence orders of ‖uI −Un‖, ‖u−Un‖1, ‖uI −Un‖1, and ‖u−Π2

2hUn‖1,
respectively. Moreover, we have shown convergence orders by slopes in Figs. 2–5. Results in all
tables show O(h) in ‖u−Un‖1, and O(h2) convergence rate clearly in ‖uI −Un‖, ‖uI −Un‖1,
and ‖u − Π2

2hUn‖1.
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Table 1 Numerical results at t = 0.01 obtained with τ = 10−4 in Example 1

Mesh ‖uI − Un‖ Order1 ‖u − Un‖1 Order2 ‖uI − Un‖1 Order3 ‖u − Π2
2h

Un‖1 Order4

h = 1/8 9.935 7×10−5 – 3.377 1×10−2 – 6.277 8×10−4 – 1.755 8×10−3 –

h = 1/16 2.516 0×10−5 1.982 1.679 0×10−2 1.008 1.695 6×10−4 1.888 4.413 8×10−4 1.992

h = 1/32 6.308 5×10−6 1.996 8.382 7×10−3 1.002 4.322 6×10−5 1.972 1.102 8×10−4 2.001

h = 1/64 1.578 2×10−6 1.999 4.189 8×10−3 1.001 1.084 8×10−5 1.994 2.756 5×10−5 2.000

Table 2 Numerical results at t = 0.1 obtained with τ = 10−4 in Example 1

Mesh ‖uI − Un‖ Order1 ‖u − Un‖1 Order2 ‖uI − Un‖1 Order3 ‖u − Π2
2h

Un‖1 Order4

h = 1/8 7.410 7×10−4 – 3.691 7×10−2 – 3.660 4×10−3 – 4.263 6×10−3 –

h = 1/16 1.883 2×10−4 1.976 1.836 7×10−2 1.007 9.400 3×10−4 1.961 1.065 6×10−3 2.001

h = 1/32 4.729 8×10−5 1.993 9.171 6×10−3 1.002 2.360 3×10−4 1.994 2.658 5×10−4 2.003

h = 1/64 1.184 0×10−5 1.998 4.584 4×10−3 1.001 5.919 9×10−5 1.995 6.651 3×10−5 1.999

Table 3 Numerical results at t = 0.5 obtained with τ = 10−4 in Example 1

Mesh ‖uI − Un‖ Order1 ‖u − Un‖1 Order2 ‖uI − Un‖1 Order3 ‖u − Π2
2h

Un‖1 Order4

h = 1/8 8.129 3×10−4 – 5.496 6×10−2 – 4.301 7×10−3 – 5.266 5×10−3 –

h = 1/16 2.038 8×10−4 1.995 2.738 6×10−2 1.005 1.005 7×10−3 2.097 1.257 7×10−3 2.066

h = 1/32 5.084 3×10−5 2.004 1.368 1×10−2 1.001 2.498 8×10−4 2.009 3.150 5×10−4 1.997

h = 1/64 1.271 9×10−5 1.999 6.838 8×10−3 1.000 6.209 7×10−5 2.009 7.853 1×10−5 2.004

Table 4 Numerical results at t = 1.0 obtained with τ = 10−4 in Example 1

Mesh ‖uI − Un‖ Order1 ‖u − Un‖1 Order2 ‖uI − Un‖1 Order3 ‖u − Π2
2h

Un‖1 Order4

h = 1/8 2.240 7×10−3 – 9.052 5×10−2 – 1.041 6×10−2 – 1.140 0×10−2 –

h = 1/16 5.874 3×10−4 1.932 4.514 0×10−2 1.004 2.742 3×10−3 1.925 2.935 1×10−3 1.958

h = 1/32 1.480 9×10−4 1.988 2.255 4×10−2 1.001 6.831 6×10−4 2.005 7.295 3×10−4 2.008

h = 1/64 3.711 8×10−5 1.996 1.127 5×10−2 1.000 1.712 4×10−4 1.996 1.826 9×10−4 1.998

Fig. 2 Log of errors at t = 0.01 with τ = 10−4 Fig. 3 Log of errors at t = 0.1 with τ = 10−4

To test the convergence rate in terms of τ , we fix the time step τ = h. The error results
are shown in Tables 5 and 6. In addition, we also show the convergence orders by slopes in
Figs. 6 and 7. Results show the convergence rate O(τ2) clearly in ‖uI − Un‖, ‖uI − Un‖1, and
‖u − Π2

2hUn‖1.
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Fig. 4 Log of errors at t = 0.5 with τ = 10−4 Fig. 5 Log of errors at t = 1.0 with τ = 10−4

Table 5 Numerical results at t = 0.5 obtained with τ = h in Example 1

Mesh ‖uI − Un‖ Order1 ‖uI − Un‖1 Order3 ‖u − Π2
2h

Un‖1 Order4

h = 1/16 2.368 3×10−4 – 1.206 3×10−3 – 1.438 3×10−3 –

h = 1/32 5.549 9×10−5 2.093 2.903 9×10−4 2.055 3.413 1×10−4 2.075

h = 1/64 1.266 7×10−5 2.131 6.079 9×10−5 2.256 7.906 6×10−5 2.110

h = 1/128 3.157 4×10−6 2.004 1.530 0×10−5 1.991 1.966 5×10−5 2.007

Table 6 Numerical results at t = 1.0 obtained with τ = h in Example 1

Mesh ‖uI − Un‖ Order1 ‖uI − Un‖1 Order3 ‖u − Π2
2h

Un‖1 Order4

h = 1/16 6.684 9×10−4 – 3.102 2×10−3 – 3.253 1×10−3 –

h = 1/32 1.531 9×10−4 2.126 7.081 4×10−4 2.131 7.523 1×10−4 2.112

h = 1/64 3.746 2×10−5 2.032 1.743 2×10−4 2.022 1.856 1×10−4 2.019

h = 1/128 9.282 6×10−6 2.013 4.273 5×10−5 2.028 4.563 1×10−5 2.024

Fig. 6 Log of errors at t = 0.5 with τ = h Fig. 7 Log of errors at t = 1.0 with τ = h

Example 2 We consider the problem (93) with Ω = [−1, 1] × [−1, 1], and function f(x, t)
is chosen corresponding to the exact solution

u(x, y, t) = etx(1 + x)(1 − x)(1 + y)(1 − y) + ietx sin(πx) sin(πy).
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Similarly, we have solved the Schrödinger equation by the bilinear finite element. We cal-
culate the errors with fixing τ = 10−4 by varying h. The error results at the time level
tn = 0.01, 0.1, 0.5, 1.0 are presented in Tables 7–10, respectively. Results in all tables show O(h)
in ‖u−Un‖1, and O(h2) convergence rate clearly in ‖uI −Un‖, ‖uI −Un‖1, and ‖u−Π2

2hUn‖1.
Then, we take the time step τ = h. The error results are listed in Tables 11 and 12. Results

show the convergence rate O(τ2) clearly in ‖uI −Un‖, ‖uI −Un‖1, and ‖u−Π2
2hUn‖1 as well,

which are coincident with theoretical results.
The profiles of the exact solution and the numerical solution at t = 1.0 on the 64× 64 mesh

grid are plotted in Figs. 8–11.

Table 7 Numerical results at t = 0.01 obtained with τ = 10−4 in Example 2

Mesh ‖uI − Un‖ Order1 ‖u − Un‖1 Order2 ‖uI − Un‖1 Order3 ‖u − Π2
2h

Un‖1 Order4

h = 1/8 1.369 5×10−3 – 4.351 3×10−1 – 8.860 5×10−3 – 8.367 6×10−2 –

h = 1/16 3.467 8×10−4 1.982 2.167 5×10−1 1.005 2.277 9×10−3 1.960 2.124 5×10−2 1.978

h = 1/32 8.695 8×10−5 1.996 1.082 7×10−1 1.001 5.731 8×10−4 1.991 5.330 2×10−3 1.995

h = 1/64 2.175 6×10−5 1.999 5.412 3×10−2 1.000 1.435 3×10−4 1.998 1.333 7×10−3 1.999

Table 8 Numerical results at t = 0.1 obtained with τ = 10−4 in Example 2

Mesh ‖uI − Un‖ Order1 ‖u − Un‖1 Order2 ‖uI − Un‖1 Order3 ‖u − Π2
2h

Un‖1 Order4

h = 1/8 1.218 8×10−2 – 4.759 5×10−1 – 7.077 9×10−2 – 1.156 1×10−1 –

h = 1/16 3.090 3×10−3 1.980 2.371 4×10−1 1.005 1.781 8×10−2 1.990 2.907 8×10−2 1.991

h = 1/32 7.753 1×10−4 1.995 1.184 7×10−1 1.001 4.465 9×10−3 1.996 7.281 9×10−3 1.998

h = 1/64 1.940 0×10−4 1.999 5.922 0×10−2 1.000 1.117 1×10−3 1.999 1.821 1×10−3 2.000

Table 9 Numerical results at t = 0.5 obtained with τ = 10−4 in Example 2

Mesh ‖uI − Un‖ Order1 ‖u − Un‖1 Order2 ‖uI − Un‖1 Order3 ‖u − Π2
2h

Un‖1 Order4

h = 1/8 2.053 5×10−2 – 7.089 6×10−1 – 1.117 5×10−1 – 1.760 6×10−1 –

h = 1/16 5.135 7×10−3 1.999 3.536 3×10−1 1.004 2.770 9×10−2 2.012 4.401 6×10−2 2.000

h = 1/32 1.283 6×10−3 2.000 1.767 1×10−1 1.001 6.914 4×10−3 2.003 1.100 5×10−2 2.000

h = 1/64 3.208 5×10−4 2.000 8.834 3×10−2 1.000 1.727 0×10−3 2.001 2.750 8×10−3 2.000

Table 10 Numerical results at t = 1.0 obtained with τ = 10−4 in Example 2

Mesh ‖uI − Un‖ Order1 ‖u − Un‖1 Order2 ‖uI − Un‖1 Order3 ‖u − Π2
2h

Un‖1 Order4

h = 1/8 2.195 4×10−2 – 1.167 2 – 1.233 3×10−1 – 2.557 2×10−1 –

h = 1/16 6.052 0×10−3 1.859 5.828 4×10−1 1.002 3.382 4×10−2 1.866 6.594 2×10−2 1.955

h = 1/32 1.550 9×10−3 1.964 2.913 2×10−1 1.001 8.692 6×10−3 1.960 1.663 6×10−2 1.987

h = 1/64 3.900 9×10−4 1.991 1.456 5×10−1 1.000 2.187 9×10−3 1.990 4.168 2×10−3 1.997

Table 11 Numerical results t = 0.5 obtained with τ = h in Example 2

Mesh ‖uI − Un‖ Order1 ‖uI − Un‖1 Order3 ‖u − Π2
2h

Un‖1 Order4

h = 1/16 4.394 6×10−3 – 2.306 6×10−2 – 4.130 6×10−2 –

h = 1/32 1.246 0×10−3 1.818 6.700 1×10−3 1.784 1.087 6×10−2 1.925

h = 1/64 3.189 6×10−4 1.966 1.711 4×10−3 1.969 2.741 3×10−3 1.988

h = 1/128 8.020 6×10−5 1.992 4.303 4×10−4 1.992 6.868 6×10−4 1.997
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Table 12 Numerical results at t = 1.0 obtained with τ = h in Example 2

Mesh ‖uI − Un‖ Order1 ‖uI − Un‖1 Order3 ‖u − Π2
2h

Un‖1 Order4

h = 1/16 7.271 8×10−3 – 4.137 9×10−2 – 7.005 0×10−2 –

h = 1/32 1.687 4×10−3 2.108 9.541 0×10−3 2.117 1.708 3×10−2 2.036

h = 1/64 4.006 2×10−4 2.075 2.254 5×10−3 2.081 4.202 7×10−3 2.023

h = 1/128 9.844 1×10−5 2.025 5.523 7×10−4 2.029 1.044 9×10−3 2.008

Fig. 8 Real parts of exact solution (color on-
line)

Fig. 9 Imaginary parts of exact solution
(color online)

Fig. 10 Real parts of numerical solution
(color online)

Fig. 11 Imaginary parts of numerical solu-
tion (color online)

Example 3 We consider the problem (93) with Ω = [−1, 1] × [−1, 1], and function f(x, t)
is chosen corresponding to the same exact solution with Example 2.

The domain Ω is uniformly divided into families Γh of quadrilaterals with mesh size h, and
V h,2 is the biquadratic rectangular element space defined on Γh. The Schrödinger equation is
solved by the biquadratic rectangular element. We calculate the errors with fixing τ = 10−3 by
varying h. The error results at time level tn = 0.1, 0.2, 0.5, 1.0 are presented in Tables 13–16,
respectively. Results in all tables also show O(h2) in ‖u − Un‖1, and O(h3) convergence rate
clearly in ‖u − Un‖ and ‖uI − Un‖1, which are consistent with our theoretical analysis. In
addition, the results show O(h4) in ‖uI − Un‖. When k > 2, there is the superclose property
also in the L2 norm between the numerical solution with the interpolant of exact solution.
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Table 13 Numerical results at t = 0.1 obtained with τ = 10−3

Mesh ‖u − Un‖ Order ‖uI − Un‖ Order1 ‖u − Un‖1 Order2 ‖uI − Un‖1 Order3

h = 1/4 2.843 4×10−3 – 3.095 1×10−4 – 9.091 1×10−2 – 4.986 0×10−3 –

h = 1/8 3.693 0×10−4 2.945 2.073 3×10−5 3.900 2.310 6×10−2 1.976 6.742 4×10−4 2.887

h = 1/16 4.668 0×10−5 2.984 1.278 0×10−6 4.020 5.798 6×10−3 1.995 7.897 4×10−5 3.094

h = 1/32 5.852 3×10−6 2.996 7.212 2×10−8 4.147 1.451 0×10−3 1.999 3.996 9×10−6 4.304

Table 14 Numerical results at t = 0.2 obtained with τ = 10−3

Mesh ‖u − Un‖ Order ‖uI − Un‖ Order1 ‖u − Un‖1 Order2 ‖uI − Un‖1 Order3

h = 1/4 3.081 2×10−3 – 4.376 0×10−4 – 1.004 7×10−1 – 7.109 9×10−3 –

h = 1/8 4.078 4×10−4 2.917 2.629 2×10−5 4.057 2.553 6×10−2 1.976 6.899 3×10−4 3.365

h = 1/16 5.155 8×10−5 2.984 1.686 9×10−6 3.962 6.408 4×10−3 1.995 9.233 6×10−5 2.902

h = 1/32 6.466 5×10−6 2.995 1.001 3×10−7 4.075 1.603 6×10−3 1.999 7.038 4×10−6 3.714

Table 15 Numerical results at t = 0.5 obtained with τ = 10−3

Mesh ‖u − Un‖ Order ‖uI − Un‖ Order1 ‖u − Un‖1 Order2 ‖uI − Un‖1 Order3

h = 1/4 4.258 9×10−3 – 4.385 2×10−4 – 1.355 7×10−1 – 5.224 3×10−3 –

h = 1/8 5.513 6×10−4 2.949 2.988 2×10−5 3.875 3.446 8×10−2 1.976 7.943 1×10−4 2.718

h = 1/16 6.962 7×10−5 2.985 1.909 0×10−6 3.968 8.650 3×10−3 1.994 1.066 9×10−4 2.896

h = 1/32 8.727 0×10−6 2.996 1.239 4×10−7 3.945 2.164 6×10−3 1.999 1.443 1×10−5 2.886

Table 16 Numerical results at t = 1.0 obtained with τ = 10−3

Mesh ‖u − Un‖ Order ‖uI − Un‖ Order1 ‖u − Un‖1 Order2 ‖uI − Un‖1 Order3

h = 1/4 6.995 5×10−3 – 6.249 4×10−4 – 2.234 8×10−1 – 1.026 8×10−2 –

h = 1/8 9.095 6×10−4 2.943 4.048 4×10−5 3.948 5.682 6×10−2 1.976 1.288 7×10−3 2.994

h = 1/16 1.148 7×10−4 2.985 2.426 5×10−6 4.060 1.426 2×10−2 1.994 1.338 6×10−4 3.267

h = 1/32 1.439 2×10−5 2.997 1.504 9×10−7 4.011 3.568 8×10−3 1.999 1.434 8×10−5 3.222

7 Conclusions

In this paper, we consider a two-dimensional time-dependent linear Schrödinger equation
with the finite element method. We present the finite element semi-discrete scheme and the
Crank-Nicolson fully discrete scheme in the rectangular Lagrange type finite element space of
order k. We also obtain the superconvergence result in the H1 norm by use of the elliptic
projection in the semi-discrete scheme and the fully discrete scheme, respectively. Some nu-
merical examples with the order k = 1 and k = 2 are provided to partly verify our theoretical
results. In the future, we shall try to study the problem of superconvergence in the L2 norm
for the two-dimensional time-dependent Schrödinger equation and the superconvergence in the
H1 norm for the three-dimensional Schrödinger equation with the finite element method.
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