Appl. Math. Mech. -Engl. Ed., 39(9), 1353-1372 (2018)

Applied Mathematics and Mechanics (English Edition)

https://doi.org/10.1007/s10483-018-2369-9

Superconvergence analysis of bi-k-degree rectangular elements for
two-dimensional time-dependent Schrodinger equation®

Jianyun WANG!, Yanping CHEN?f

1. School of Science, Hunan University of Technology, Zhuzhou 412007, Hunan Province, China;
2. School of Mathematical Sciences, South China Normal University,
Guangzhou 510631, China
(Received Dec. 13, 2017 / Revised Apr. 20, 2018)

Abstract  Superconvergence has been studied for long, and many different numerical
methods have been analyzed. This paper is concerned with the problem of superconver-
gence for a two-dimensional time-dependent linear Schrodinger equation with the finite
element method. The error estimate and superconvergence property with order O(th)
in the H' norm are given by using the elliptic projection operator in the semi-discrete
scheme. The global superconvergence is derived by the interpolation post-processing
technique. The superconvergence result with order O(h*** 4 72) in the H' norm can be
obtained in the Crank-Nicolson fully discrete scheme.
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1 Introduction

We shall consider a linear Schrédinger equation as follows. Let Q@ C R? be a bounded
rectangular-type domain with a smooth boundary 0€2. We find a complex-valued function
u(zx,t) defined on Q x [0,T] and satisfying

1
iug(x,t) = —§Au(m,t) +V(x)u(z,t) + f(z,t) in Qx][0,T],
w(@,t) =0 on 992 x [0,T], 1)
u(x,0) =up(x) in Q,
where ug(x) is a given initial complex-valued function, and the trapping potential function
V() is non-negative bounded and real-valued.

The Schrédinger equation is an important equation in quantum mechanics. There are many
numerical methods to solve the Schrédinger equation in the literature, such as the spectral
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method[* 2| the finite difference method® !, the finite element method® 12 the discontinu-
ous Galerkin method™3 %! and the local discontinuous Galerkin method[*¢18]. Bao et al.l!]
studied the performance of time-splitting spectral approximations for the general nonlinear
Schrédinger equation in the semiclassical regimes. Han et al.[%] introduced an artificial boundary
condition to reduce the one-dimensional time-dependent Schrodinger equation into an initial-
boundary value problem in a finite computational domain. Antonopoulou et al.l”) considered
an initial and boundary-value problem for a general Schrodinger-type equation posed on a two
space-dimensional noncylindrical domain with mixed boundary conditions. Karakashian and
Makridakis* analyzed the convergence of the discontinuous Galerkin method for the nonlin-
ear Schrédinger equation. Guo and Xul'l presented a fully discrete scheme by discretizing the
space with the local discontinuous Galerkin method and the time with the Crank-Nicholson
scheme to simulate the multi-dimensional Schrodinger equation with wave operator.

Superconvergence has been studied for long. Many different numerical methods have been
analyzed. It is a powerful tool to improve the approximation accuracy and efficiency. There are
numerous studies by many famous scholars('% 221, At present, superconvergence results were
obtained widely for elliptic, parabolic, Maxwell’s equations, and optimal control problems!?3-31],
However, there were not many superconvergence results for the Schrodinger equation!3236,
In 1998, Lin and Liu®*? studied a time-dependent linear Schrodinger equation and analyzed
the superconvergence error results. In 2014, Shi et al.*3 considered a nonlinear Schrédinger
equation by the finite element method in the triangular anisotropic meshes and proved the
superconvergence result in the semi-discrete scheme. Later, Wang et al.?® conducted the
superconvergence analysis for a time-dependent Schrédinger equation by using the interpolation
operator and obtained the error result in the H!' norm with O(hP*1) in the semi-discrete
scheme and O(hP*1 + T%) in the Crank-Nicolson scheme, respectively. Recently, Zhou et al.[36]
studied the superconvergence properties of the local discontinuous Galerkin method for the
one-dimensional linear Schrédinger equation.

In this paper, we study a general complex linear Schrodinger equation (1) and extend the
previous work[®®). We analyze the error estimate using the elliptic projection operator. We
obtain the error result with O(h**1) in the L2 norm and the H' norm in the semi-discrete finite
element scheme. The global superconvergence result is presented by use of the interpolation
post-processing technique. Next, we analyze the error estimate in the L? norm with order
O(hF*' 4 72) in the Crank-Nicolson fully discrete scheme. We extend the ideal®” and certify
that the time-difference of error n™ = U™ — P,u™ has a high order error in the L? norm, that
is, [ — 0" Y| < Or(h*1 4+ 72), where U™ is the fully discrete solution of Crank-Nicolson
scheme. At last, we obtain the superconvergence result in the H' norm with O(h**! 4 72) on
this basis.

The paper is organized as follows. The notations and the projection operator are given
in Section 2. In Section 3, we present a finite element semi-discrete scheme with bi-k-degree
rectangular elements. Furthermore, we obtain error results with O(h**1) in the L? norm and
the H' norm by use of the elliptic projection operator, respectively. In Section 4, we prove
the global superconvergence result with O(h**1). In Section 5, we obtain the superconvergence
result in the H! norm with O(h**1+472) in the Crank-Nicolson fully discrete scheme. In Section
6, numerical examples are given to partly verify the theoretical results.

2 Notation and preliminaries

For an integer m > 0 and 1 < p < oo, we shall use WP to denote the standard
Sobolev space of complex-valued measurable functions defined on 2 with the norm ||¢[|%, , =
> |\Da¢||’£p(ﬂ). When p = 2, we shall also use the symbol H™ for W™2 || - ||,,, instead of

lal<m
I llm2, and [ - | instead of [ - o..
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For complex-valued functions w(x) and v(x), we define the inner product (w, ) with

(w,v) :/Qw(w)ﬁ(:c)dw,

where 7 denotes the complex conjugate of function v.
Then, we can define the weak solution u(z, t) of problem (1): find a function u(x,t) € Hg ()
such that

{i(ut,v):a(u,v)—i—(f,v), Yo e Hi(Q), 0<t<T, @)

u(x,0) = up(x), Ve,

where a(u,v) = 3(Vu, Vo) + (Vu,v).
Let T'j, be a quasi-uniform rectangular partition of €2 with the mesh size h > 0, and let e be
an arbitrary element of I',. We can define the finite element space of order k as

ViE={ve C(Q) 1 v]c €Qp, VeeTy},

where o
Qp = span{z'y’, 0<1i,j <k}

In addition,
Vot = vk 0 HG ().

Let Voh’k C HZ () be the corresponding finite element space of order k. In general given
w(z,t) € Hi(Q), the elliptic projection Py,w(x,t) € Voh’k can be defined by

a(Pyw,vp) = a(w,vy), Yo, € ViF. (3)
Let 7 = T/N be the time step of the interval [0,T], time nodes t; = jr (j = 0,1,--- ,N),
tips =t + t;)/2, and time elements I; = [t;,¢;4+1] (j =0,1,--- ,N — 1), and set
¢('7tj) = ¢j7
T 3
lollzoray = ([ ot o)

3 Superconvergence analysis for semi-discrete approximation problem

The semi-discrete finite element solution uy (2, t) of problem (1) can be defined: find up(x,t)
€ Voh’k satisfying

{i(wmvh) = aun,v) + (f,on), Yo, € VJF, 0<t<T, ()

up(x,0) = Pyug(z), V€1,
where Pyug(x) € V" is the elliptic projection of ug ().
Lemma 1834 [f for any t € [0, T, the functions u(x,t), us(xz,t), uy (z,t) € H*1(Q), then
Pyu(z,t) € V{"" has the following results:
”u_Phqu < Chk_q+1||u||k+17 q=0,1, (5)
”(U_Phu)th < Chk_q+1||ut||k+17 q=0,1, (6)
1w = Phw)eellq < CR* ™ lugellsr,  a=0,1. (7)
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Lemma 22%  Let u be the solution to the problem (2), and let u; € Voh’k be the interpolation
of u. If w € H*2(Q), then

|(V(u = ur), Vo)l < OB lullesellvll, - Yo € V3" (®)

Theorem 1 If u and uy, are the solutions to the problems (2) and (4), respectively, and
u, ug, ugy € HFTY(Q), there hold

lun = Pyul| < CRE, 9)
||(uh - Phu)tH < ChF+1, (10)

Proof It follows from (2) and (4) that
i((w—un)e,vn) = alu—up,vp), Vo, € Vg™, (11)
Let u —up = p — & with
p=u— Pyu, &=up— Pu. (12)
Then, from (11) and (12), we have
i(pes vn) = (&, vn) = alp, o) — al(&; vn). (13)
From (3), we can obtain
a(p,vp) = 0. (14)
Substituting (14) into (13) yields
i(&t, vn) = i(pe, vn) + a(§; vn). (15)
Taking v, = £ in (15), we have
i(&,€) = i(pt, &) + a(§, §). (16)

Noticing
1d 2 _
5 g I€l7 = Re{ (&, )}

and comparing the imaginary parts of (16), we get

1d

S el = Ref(p1, )} + Im{a(€,€)}

= Re{(pt,¢)}
< Cllpelll€ll- (17)

Combining (6) with (17) yields
d k+1
L < on fufn (15)

Integrating from 0 to ¢ in (18), we have

t
€]l < I1EC,0)] + Ch¥+ / lelsads. (19)
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It follows from (4) that
1€C, 0)[ = 0. (20)

From (19) and (20), we obtain

t
|w<cM“/mem&
0

Therefore, (9) holds. Next, we prove (10). Taking v, = &(-,0) in (15) with ¢ = 0 and combining
(20), we have

i(ét('v 0)5575('5 O)) = l(pt(a O)vgt('v O))

Thus,
€ (-, 0)1I* < llpe (-, O)l1I&: (-, 0)]I,
that is,
1€ )1 < flpe (-5 0)]I- (21)
Combining (6) with (21) gives
€, 0l < CR¥*Hlug (-, 0) 41 (22)

Differentiating (15) with respect to ¢ and taking vy, = &, we can obtain

(&t &) = 1(pees &) + al&e, &o)- (23)

Noticing

| &

||§t|\2 = Re{ (&, &)}

N | =
o,

t

=

and comparing the imaginary parts of (23) yield

1d

5T 16017 = Re{(pur, &)} + Im{a(&, &)}

=Re{(ps, &)}
< Cllpeellll&ell- (24)

From (22) and (25), we get
d k+1
el < CR™ et (25)
Integrating from 0 to ¢ in (25), we can obtain
t
1€l < 116 0)]l + Chk“/ l[wse|[41ds. (26)
0

It follows from (22) and (26) that

t
el < R (s Ol + [ fusllsads).
0
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which completes the proof of (10).
Theorem 2 Let u and up, be the solutions to the problems (2) and (4), respectively, and
w, ug, ugy € H¥TH(Q). Then, we have

llun — Puully < Ch*L (27)
Proof Taking v, =& in (15), we can get
i(gt;ft) = i(ptvgt) + a’(é.vgt)a

that is,
i(€,6) = i(pu, &) + 5 (VE V&) + (VE &), (25)
Noticing
L4 el = Re((ve,v
SVl = Ref(Ve, V)
and comparing the real parts of (28) give
1d
§&||V§||2 =Im{(pt, &) + (&, &)} — Re{(VE, &)}

= Im{(ps, &)} — Re{(VE, &)}
< C(llpell + EDNEA- (29)
From (6), (9), (10), and (29), we can obtain

el < o (30)
Integrating from 0 to ¢ in (30) yields
IVEI* < IVEC,0)]|* + Ch*+2, (31)
Notice
[VE(-, 0)]] = 0. (32)

Substituting (32) into (31) yields
V¢ < CrEFE. (33)
Therefore, (27) follows from (33).

4 Global superconvergence analysis

Let € be a macro element which is the union of four elements e; € I', (i = 1,2,3,4), where
the intersection of €; € T'y, (i = 1,2, 3,4) is nonempty (see Fig. 1).

Zs i Zg o Zy
Ig e3 Ly ey Lo
2 e Zs I 2
I3 e Uy ey ls
Z U Zg ly Z

Fig. 1 Structure of macro element €
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Let the interpolation operator II%, satisfy II3,w € Q2(€), where Q is the space of bi-
quadratic functions, and

Byw(Zi) = w(Z;), (34)
where Z; (i =1,2,---,9) are the nodes of T'y,.
When k > 2, let TI2fw € Qa4 (€) such that
135 w(Z;) = w(Zy), (35)
/l (I3Fw — w)vdl =0, Yo € Py_o(ly), (36)
[ @i = wyedsdy =0, v € Qualer (37)

where Z; (i = 1,2,---,9) are the nodes of 'y, I; (i = 1,2,---,12) are the edges of T'y, ¢; (i =
1,2,3,4) are the elements of T'j,, Py_o is the set of polynomials of order k — 2, and Q_2(€) is
the polynomials of order k — 2 in x and y.

Lemma 32922 The interpolation operator 1125 is defined in (34)—(37) such that

M3kwr = 2w, Yw € C(€), (38)
T3 Fw — wlz < CA™ T w|ryre 1<r <2k, 1=0,1, (39)
IT3kolle < Cllvllie, Ywe VM, 1=0,1, (40)

where wy € VF s the interpolant of w.
Lemma 4 Let u and up be the solutions to the problems (2) and (4), respectively. If
u € H**2(Q), and uy,uy € H1(Q), then

lun — urly < CR*HY, (41)

where uy is the interpolant of wu.
Proof From (14), we can obtain

a(u — Ppu,up, —uy) =0,
that is,
(V(u— Pyu), V(up, —ur)) = —(V(u — Pyu), up, — uy). (42)
It is easy to check

(V(up —ur), V(up —ur)) =(V(up — Pru), V(up —ug)) — (V(u — Pyu), V(up — ur))
+ (V(u —uy), V(up — ur)). (43)

Combining (42) with (43) yields
lun, — uz|? = (V(up — Pou), V(up —ur)) + (V(u — Pyu),up — ug)
+ (V(u —ur), V(up —ur))

< lun = Prullaflun — urly + Cllu — Paul|[lun — us]]
+ (V(u —wuy), V(up —ug)). (44)
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It follows from (5) that

lu = Pyul| < CH**Hfufl s, (45)
and from (8), we have
(V(u—ur), V(up = ur)) < OO jullpralun — urls. (46)
In addition,
lun — urll < [lun — urll1- (47)

Substituting (27) and (45)—(47) into (44), we can get
up, — wrlf < CF + Bl + P fulljpo)[Jun — w1 (48)
By the Poincaré inequality, we can obtain
un —urlli < Clup — urls. (49)

Therefore, (48) and (49) show the validity of (41).
Theorem 3 Let u and up, be the solutions to the problems (2) and (4), respectively. If
u € H*2(Q), and ug, uy € H*1(Q), then

lu = T035un s < CR*, (50)

where H%Z is the interpolation post-processing operator.
Proof It follows from (40) and (41) that

M35 un — M3furlls < Cllun —urlly < CH*MY (51)
From (38) and (39), we have
T35 —ully = 135w — ully < CH*HL. (52)
Notice
llu = 5 un |1 < | T55un — T3Rurlly + [ T3k ur — ull1. (53)
Therefore, (50) follows from (51)—(53).
5 Superconvergence analysis in fully discrete scheme

For the function series U™(x) (n = 0,1,---), let

Ut = LUt (@) - U(a)),

T

Un-i—% _ %(Un-i-l(m) +U™z)).

Then, the Crank-Nicolson fully discrete finite element solution U™(z) € VJ"* (n = 0,1,--- , N)
to the problem (1) can be defined by

QU™ 2, ) = a(U™ 2, o) + (772, wn),  Voi, € VgF,
U%(x) = Puuo(x).
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Theorem 4 Let u(x,t) be the solution to the problem (2), and let the function series

U"™(x) be the solution to the problem (54). Then, we have
U™ — Pyu|| < CR*Y 4+ C72.
Proof From (2) and (54), we can get
i( ?% _ 8tU”+%,vh) — a(u”+% _ U"+%,vh).
Let u—U = p — n with
p=u—Pyu, n=U-—-PFPu.
Combining (56) with (57) and (14), we have
i((?m"Jr%,vh) — i(atp"Jr%,vh) — i(u;hL% — 8tu"+%,vh) = a(n”+%,vh).

Taking vj, = 7”2 in (58), we can obtain

O™ 0™ E) — i@ ) <) Gt ) = aly R ),

Notice
5. P = [1"]%) = Re{ (@™ 2, 7"+ 2)}.

Comparing the imaginary parts of (59) yields

1 1 1 1 1 1
oz (™ 12 = 1l 1%) = Ref(@ep™ 2,0 2) 4 (u"# = Qpu™+2 "+ 2))

1

1
<@ 2™ ) () = g )|

< (10 3 + lup 2 = Dt |2 |
= %(Haw%n -l E = R ) o
< %(Hatp”*%n g2 = ) (™ + )
Thus,
I = ™ < Cr(l@ep™ 5| + g ™2 = ur+3 ).
It follows from (5) that
0™ 3| = [|0u™ 2 — 3 Pyu 5|

= r Wt —u") — 7N (P = Pu®)|
= U@ = ) = Pyt — )|
< CTflhqul”unqu _ un”kJrl

tn+1
_ CT—lh’HlH/ ut(-,t)H dt
tn k+1

1

oy
<CT*1hk+1/ e 8) |1 dt.

ln

(55)

(61)
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In addition,

1
luy 2 — gunt |

1 tn+% ) Tt ,
:ZH/ (t—tn) ut”("t)dt""/ (t —tnt1) uttt(',t)dtH
t"l

tn+%

1 totl T 2 tnt1 2
[ G et [ (3t
[2% t

n+%

tnt1
-
2 o]
t'Vl
tnit
<CT/ e (- )| dt. (62)
t

n

Substituting (61) and (62) into (60), we have

tnt1
I = < ot [ )

tn

tni1
+ CT2 /t ||’U/ttt(,t)Hdt (63)

n

Summing up for n in (63) yields

tn
™l = 1l < Ch’”l/ [[s (5 ) |41t
0

tn
+CT2/ e £)]|dt. (64)
0

From (54), we can see

In°ll = 0. (65)

Therefore, (55) follows from (64) and (65).

Lemma 5 Let u(x,t) be the solution to the problem (2), and let the function series U™ (x)
be the solution to the problem (54). Then, the time-difference of error n™ = U™ — P,u™ has a
high order error

In"™ =" < C(RFFT + 7). (66)
Proof It follows from (2) that

/Ot(i(ut, v) — a(u,v) — (f,v))dt =0, Yo e ViF (67)
Integrating (67) in I,, by trapezoid and mid-point formulae, respectively, we can obtain
i(u™t —um v) — %OL(u"Jrl +u"v) = T(fn+%av) + 77 (v) + 15 (v), (68)
where
1 (v) = 0(72)/1 [ feelll[vllde, (69)

r3(v) = 0(72)/ (wsell2 + [[Viugl )0l de. (70)

n



Superconvergence analysis of bi-k-degree rectangular elements 1363
From (54), we have
(Ut — U ) — ga(U”“ LU 0) = 7(f7E ). (71)
Combining (68) with (71) yields
i(u"tt — Ut — (u" - U™),v) — %a(u"Jrl — U™ " U™, 0)
=71 (v) + 75 (v). (72)
From (57), (14), and (72), we get
i ) = Tl 4 0) = 1 () + B ) + () (73)
where
ry(v) =i(p" T - p"v) = i/ (pt, v)dt. (74)
I'Vl
Further, combining (7) and (74) gives
@) =l =] [ o= [ o
I, In-1
—om) [ leuvlde
In+1In—1
—O(h ) [ unfea o (75)
In+1In—1
Substituting n by n — 1 in (73), we have
. n n— T n n— n— n— n—
(" = ") = el ") =) + T () s (v). (76)
Let
6nJrl — nnJrl _ 7’]"
We can see
() = () = e e (77)
Subtracting (76) from (73) and combining (77) yield
(et — e v) — %a(e"Jrl + € v) =rp(v), (78)
where
3
ri(v) =Y () =} (v)) (79)
i=1
From (69), (70), (75), and (79), we can obtain
R @] <Y I (v) = ()]
i=1
<Cri ) [ (il + s
In+1In—1
+ [Vurell + [Juee || o41) 0]l 2. (80)
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Taking v = €"*1 + €™ in (78), we get
(et — e et 4 em) — %a(enJrl +e e ey = (et ). (81)
Comparing the imaginary parts of (81), we have

e 1% = e H* = Re{ (" — €™, "™ + )}

= In{rf (e + )

< (et +e)]. (82)
Combining (80) with (82) gives
[ = [le"=H|* < Or(h*+ + 72)/ (I feeell + leeeell2
Lot T,
+ Vsl + el e[| € + €?[|de. (83)

Without loss of generality, we assume that there is an integer 1 < K < NN such that

K n
1= max_ "] (84)

Summing up for n from 2 to K in (83) and combining (84), we have

12 < e + Cr(h** + 72) /I(Hfmll + lluteel2
Vsl + lweel g )de] €. (85)
Taking n = 1 in (64) and combining (65) yield
le' = lIn'll < Cr(h*t +72). (86)
Substituting (86) into (85) and using Young’s inequality, we can get
le®[l < Cr(A*F +72). (87)

Therefore, (66) follows from (84) and (87).
Theorem 5 Let u(x,t) be the solution to the problem (2), and let the function series
U"™(x) be the solution to the problem (54). Then, we have

|U™ — Pou||y < ChFY 4+ 2. (88)
Proof Taking vj, = 8"+ 2 in (58), we have
(@™, 0™ 3) — 18" E, ™ E) — i(up T E — GpuntE, Dyt
= S (V" V0 ) - (Vo D), (59)
Notice

(1971~ [977%) = Re{(Vr™+ 3, V™ +4)}.
Comparing the real parts of (89), we get
%(HW"“H2 — V) = Im{ (@™ 3, ™ E) + (w2 - Bt Byt ))

— Re{(Vy™* 2, 8" 2)},



Superconvergence analysis of bi-k-degree rectangular elements 1365

that is,
ntd il o il
V"2 = [IVn" |2 = 4rIm{ (9™ %, O™ 2) + (u 77 — B3, 0yt 2)}
=2V (ln" P = ™) (90)

Summing up for n in (90) and combining (65), we have

n—1

IV )2 < € S 10 5 ||l — |
j=0
n—1 _+l o ) )
+ O3l = 9 E [l — || + Cly | (91)
j=0

Substituting (61), (66), (62), and (55) into (91), we can obtain
IV ||* < (CR*t + C72)?,
that is,
[Vn"|| < ChF 4 C7,

which completes the proof.

Similar to Theorem 3, we can obtain the following result.

Theorem 6  Assume that u(x,t) is the solution to the problem (2), and the function series
U"™(x) is the solution to the problem (54). Then, we have the global superconvergence estimate

lu" = TERU™ |y < CRM 472, (92)

where H%’g is the interpolation post-processing operator.
6 Numerical examples

In this section, we carry out some numerical examples with £ = 1 and k = 2 to demonstrate
the validity of the theoretical analysis.
Example 1 We consider the following linear Schrédinger equation:

iug(x, t) = —%Au(m,t) +u(x,t) + f(z,t) in Qx][0,1],

u(z,t) =0 on 90 x [0,1], (93)

u(x,0) =up(x) in §Q,
where Q = [0, 1] x [0, 1], and let the function f(x,t) be chosen that
u(z,y,t) =e' (1 +1i)(1 —2)(1 — y)sinzsiny

is the exact solution.

We have solved the Schrodinger equation on the uniformly rectangular meshes with the
mesh size h by the bilinear finite element. First, we calculate the errors with fixing 7 = 1074
by varying h. The error results are presented in Tables 1-4, where Order;, Orders, Orders, and
Order, denote the convergence orders of |[ur —U™||, |[u—U"||1, ||lur —U™||1, and |ju—113,U"1,
respectively. Moreover, we have shown convergence orders by slopes in Figs. 2—5. Results in all
tables show O(h) in ||u — U™||1, and O(h?) convergence rate clearly in ||uy — U™, ||ur — U"||1,
and ||u — 3, U"|;.
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Table 1 Numerical results at ¢t = 0.01 obtained with 7 = 10~ in Example 1
Mesh lur —U™| Order1 |lu—U"||1 Orders |luy —U™||l1 Orders |lu—TI2,U™||1 Ordery
h=1/8 9.9357x107° - 3.3771x1072 - 6.2778x10~4 - 1.7558x1073 -
h=1/16 2.5160x107° 1.982 1.6790x10~2 1.008 1.6956x10~% 1.888  4.4138x10~*  1.992
h=1/32 6.3085x10~% 1.996 8.3827x10~3 1.002 4.3226x10~° 1.972 1.1028x10~*  2.001
h=1/64 1.5782x10~% 1.999 4.1898x10~3 1.001 1.0848x10~5 1.994 2.7565x10~°>  2.000
Table 2 Numerical results at ¢ = 0.1 obtained with 7 = 107* in Example 1
Mesh lur —U™||  Order: |lu—U"||l1 Orders |ur —U"||1 Orders |lu—1II2, U"||l1 Ordery
h=1/8 7.4107x10~* - 3.6917x1072 - 3.6604x1073 - 4.2636x1073 -
h=1/16 1.8832x10~* 1.976 1.8367x1072 1.007 9.4003x10~% 1.961 1.0656x10~3  2.001
h=1/32 4.7298x107% 1.993 9.1716x10~3 1.002 2.3603x10~% 1.994 2.6585x10~*  2.003
h=1/64 1.1840x107° 1.998 4.5844x10~3 1.001 5.9199x10~° 1.995 6.6513x10~>  1.999
Table 3 Numerical results at ¢t = 0.5 obtained with 7 = 10~ in Example 1
Mesh lur —U™| Order1 |lu—U"||1 Orders |luy —U™||]1 Orders |lu—TI2,U™||; Ordery
h=1/8 8.1293x10~4 - 5.496 6x 1072 - 4.3017x1073 - 5.266 5x 1073 -
h=1/16 2.0388x10~* 1.995 2.7386x1072 1.005 1.0057x103 2.097 1.2577x1073  2.066
h=1/32 5.0843x107% 2.004 1.3681x1072 1.001 2.4988x10~% 2.009 3.1505x10~%  1.997
h=1/64 1.2719x107% 1.999 6.8388x10~3 1.000 6.2097x10~5 2.009 7.8531x10~°  2.004
Table 4 Numerical results at ¢ = 1.0 obtained with 7 = 10™* in Example 1
Mesh luy —U™||  Order; |lu—U"||l1 Orders [u; —U"||1 Orders |lu—1I2,U"|l1 Ordery
h=1/8 2.2407x1073 - 9.0525x 1072 - 1.0416x10~2 - 1.1400x 102 -
h=1/16 5.8743x10~* 1.932 4.5140x1072 1.004 2.7423x1073 1.925 29351x10~3  1.958
h=1/32 1.4809x10~% 1.988 2.2554x102 1.001 6.8316x10~% 2.005 7.2953x10~%  2.008
h=1/64 3.7118x107% 1.996 1.1275x1072 1.000 1.7124x10~% 1.996 1.8269x10~%  1.998
10711 1071J)'
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Fig. 2 Logoferrors at t = 0.01 with 7 = 10™*
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Fig. 3 Log of errors at t = 0.1 with 7 = 10™*

To test the convergence rate in terms of 7, we fix the time step 7 = h. The error results
are shown in Tables 5 and 6. In addition, we also show the convergence orders by slopes in
Figs. 6 and 7. Results show the convergence rate O(72) clearly in ||uy — U"||, |[ur — U"||1, and
Ju — T3, U" 1.
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at t = 0.5 obtained with 7 = h in Example 1

Mesh [lur —U™|| Ordery [lur —U™||1 Orders lu — 112, U™ |1 Ordery
h=1/16 2.3683x107% - 1.206 3x1073 - 1.4383x1073 -
h=1/32 5.549 9% 1075 2.093 2.9039x10~4 2.055 3.4131x10~4 2.075
h=1/64 1.266 7x 1072 2.131 6.0799x107° 2.256 7.906 6x 107> 2.110
h=1/128 3.1574x10~6 2.004 1.5300x 105 1.991 1.966 5x10~° 2.007

Table 6 Numerical results at ¢ = 1.0 obtained with 7 = h in Example 1

Mesh [lur —U™|| Ordery [lur —U™|1 Orders lu—T12, U™ |1 Ordery
h=1/16 6.6849x10~4 - 3.1022x1073 - 3.2531x1073 -
h=1/32 1.5319x10~4 2.126 7.0814x10~4 2.131 7.5231x10~4 2.112
h=1/64 3.7462x10~° 2.032 1.7432x10~% 2.022 1.856 1104 2.019
h=1/128 9.2826x10~6 2.013 4.2735%x10~° 2.028 4.5631x10~° 2.024

1072 107!

o ||u,—U'2"'||1
—o- llu-1135,U" 1l

1074 -

10

10~

Fig. 6 Log of errors at ¢t = 0.5 with 7 = h
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1
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1
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Fig. 7 Log of errors at t = 1.0 with 7 = h

Example 2 We consider the problem (93) with = [—1,1] x [-1, 1], and function f(x,t)
is chosen corresponding to the exact solution

u(z,y,t) =e'z(l+2)(1 —z)(1+y)(1 — y) + ie'zsin(rz) sin(7y).
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Similarly, we have solved the Schrédinger equation by the bilinear finite element. We cal-
culate the errors with fixing 7 = 10~ by varying h. The error results at the time level
t, = 0.01,0.1,0.5,1.0 are presented in Tables 7—10, respectively. Results in all tables show O(h)
in ||lu—U"||1, and O(h?) convergence rate clearly in ||ur —U™||, ||lur —U™||1, and |Ju—1I3,U"|1.

Then, we take the time step 7 = h. The error results are listed in Tables 11 and 12. Results
show the convergence rate O(72) clearly in ||u; — U"||, |[ur — U™||1, and |ju — 112, U"||; as well,
which are coincident with theoretical results.

The profiles of the exact solution and the numerical solution at ¢ = 1.0 on the 64 x 64 mesh
grid are plotted in Figs. 8-11.

Table 7 Numerical results at ¢t = 0.01 obtained with 7 = 10~* in Example 2

Mesh lury —U™||  Order; |lu—U"||l1 Orders [u; —U"||1 Orders |lu—1I2,U"||1 Ordery

h=1/8 1.3695x1073 - 4.3513x1071 - 8.8605x1073 - 8.3676x10~2 -

h=1/16 3.4678x10~* 1.982 2.1675x10~! 1.005 2.2779x1073 1.960 2.1245x1072  1.978
h=1/32 86958x10~° 1.996 1.0827x10~' 1.001 5.7318x10~* 1.991 5.3302x10~3  1.995
h=1/64 2.1756x107% 1.999 5.4123x10~2 1.000 1.4353x10~% 1.998 1.3337x1073  1.999

Table 8 Numerical results at ¢ = 0.1 obtained with 7 = 10~* in Example 2

Mesh lur —U™||  Order: |lu—U"||l1 Orders |ur —U"||1 Orders |lu—1II2, U"|l1 Ordery

h=1/8 1.2188x1072 - 4.7595%x10~1 - 7.0779%x1072 - 1.156 1x10~1 -

h=1/16 3.0903x1073 1.980 2.3714x10"! 1.005 1.7818x10~2 1.990 2.9078x1072  1.991
h=1/32 7.7531x10~* 1.995 1.1847x10~' 1.001 4.4659x10~3 1.996 7.2819x10~3  1.998
h=1/64 1.9400x10~* 1.999 5.9220x1072 1.000 1.1171x1073 1.999 1.8211x10=3  2.000

Table 9 Numerical results at t = 0.5 obtained with 7 = 10~ in Example 2

Mesh lur —U™||  Order: |lu—U"||l1 Orders |ur —U"||1 Orders |lu—1II3,U||1 Ordery

h=1/8 2.0535x10~2 - 7.0896x10~! - 1.1175x10~! - 1.7606x 107! -

h=1/16 5.1357x1073 1.999 3.5363x10~' 1.004 2.7709x10~2 2.012 4.4016x10~2  2.000
h=1/32 1.2836x10~3 2.000 1.7671x10~! 1.001 6.9144x10~3 2.003 1.1005x10-2  2.000
h=1/64 3.2085x10~* 2.000 8.8343x1072 1.000 1.7270x10~3 2.001 2.7508x10~3  2.000

Table 10 Numerical results at ¢t = 1.0 obtained with 7 = 10™* in Example 2

Mesh lur —U™| Order1 |lu—U"||1 Orders |luy —U™||l1 Orders |lu—TI2,U™||y Ordery

h=1/8 2.1954x1072 - 1.1672 - 1.2333x10 1 - 2.5572x10~1 -

h=1/16 6.0520x107% 1.859 5.8284x10~' 1.002 3.3824x10~2 1.866 6.5942x1072  1.955
h=1/32 1.5509x1073 1.964 2.9132x10~! 1.001 8.6926x10~3 1.960 1.6636x1072  1.987
h=1/64 3.9009x10~* 1.991 1.4565x10~! 1.000 2.1879x1073 1.990 4.1682x10~3  1.997

Table 11 Numerical results ¢ = 0.5 obtained with 7 = h in Example 2

Mesh lur — U™|| Order; lur = U™ Orders lu — 112, U™ |y Ordery
h=1/16 4.3946x1073 - 2.3066x 102 - 4.1306x10~2 -
h=1/32 1.2460x1073 1.818 6.700 11073 1.784 1.0876x10~2 1.925
h=1/64 3.1896x10~4 1.966 1.7114x1073 1.969 2.7413x1073 1.988

h=1/128 8.0206x10~° 1.992 4.3034x10~4 1.992 6.8686x10~4 1.997
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Table 12 Numerical results at ¢ = 1.0 obtained with 7 = h in Example 2

Mesh [lur —U™|| Ordery [lur —U™||1 Orders lu — 2, U™ Ordery
h=1/16 7.2718%x1073 - 4.1379x1072 - 7.0050%x 1072 -
h=1/32 1.6874x1073 2.108 9.5410x1073 2.117 1.708 3x102 2.036
h=1/64 4.0062x1074 2.075 2.2545x1073 2.081 4.2027x1073 2.023
h=1/128 9.8441x107° 2.025 5.523 7x107% 2.029 1.0449x1073 2.008

u(x, y)

Fig. 8 Real parts of exact solution (color on- Fig. 9 Imaginary parts of exact solution
line) (color online)

U'(x, y)
U@, y)

1.0

-0.5

-1.0

Fig. 10 Real parts of numerical solution Fig. 11 Imaginary parts of numerical solu-
(color online) tion (color online)

Example 3 We consider the problem (93) with = [—1,1] x [—1, 1], and function f(x,t)
is chosen corresponding to the same exact solution with Example 2.

The domain 2 is uniformly divided into families I'y, of quadrilaterals with mesh size h, and
V2 is the biquadratic rectangular element space defined on I'j,. The Schrédinger equation is
solved by the biquadratic rectangular element. We calculate the errors with fixing 7 = 1072 by
varying h. The error results at time level ¢,, = 0.1,0.2,0.5,1.0 are presented in Tables 13-16,
respectively. Results in all tables also show O(h?) in ||u — U™||;, and O(h®) convergence rate
clearly in |ju — U™|| and |jur — U™||1, which are consistent with our theoretical analysis. In
addition, the results show O(h?) in ||u; — U™||. When k > 2, there is the superclose property
also in the L? norm between the numerical solution with the interpolant of exact solution.
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Table 13 Numerical results at ¢t = 0.1 obtained with + = 1073
Mesh [lu —U™|| Order  |lur —U™||  Ordery lu—U™|1  Ordera |lur —U™||1 Orders

h=1/4 2.8434x1073 - 3.0951x107% - 9.091 1x1072 - 4.9860x1073 -

h=1/8 3.6930x10~* 2945 2.0733x107° 3.900 2.3106x10~2 1.976 6.7424x10~* 2.887
h=1/16 4.6680x10~° 2.984 1.2780x10% 4.020 5.7986x1073 1.995 7.8974x10~5 3.094
h=1/32 5.8523x107% 2996 7.2122x1078  4.147 1.4510x1073 1.999 3.9969x10~6  4.304

Table 14 Numerical results at t = 0.2 obtained with + = 1073
Mesh [lu—TU™|| Order  |lur —U™||  Ordery lu—U"™||1  Ordera |lur —U™||1 Orders

h=1/4 3.0812x1073 —  4.3760x107% - 1.004 7x10~1 - 7.1099x1073 -

h=1/8 4.0784x10™% 2917 2.6292x107° 4.057 2.5536x1072 1.976 6.8993x10~%  3.365
h=1/16 5.1558x107° 2.984 1.6869x10~% 3.962 6.4084x1073 1.995 9.2336x10~°  2.902
h=1/32 6.4665x10~% 2995 1.0013x10~7 4.075 1.6036x1073 1.999 7.0384x10~6  3.714

Table 15 Numerical results at ¢t = 0.5 obtained with + = 1073
Mesh [lu—TU™|| Order  |lur —U™||  Ordery lu—=U™|1  Ordera |lur —U™||1 Orders

h=1/4 4.2589x1073 —  4.3852x10™¢ - 1.3557x10~1 - 5.2243x1073 -

h=1/8 55136x107% 2.949 29882x107° 3.875 3.4468x1072 1.976 7.9431x107% 2.718
h=1/16 6.9627x107% 2985 1.9090x1076 3.968 8.6503x1073 1.994 1.0669x10~* 2.896
h=1/32 87270x1076 2996 1.2394x10~7 3.945 2.1646x1073 1.999 1.4431x10~5 2.886

Table 16 Numerical results at t = 1.0 obtained with + = 1073
Mesh lu— U™ Order  |luy —U™||  Order; lu—U"1  Ordera |luy —U™||1  Orders

h=1/4 6.9955x10~3 ~  6.2494x10~¢ - 2.2348x1071 - 1.026 8x10~2 -

h=1/8 9.0956x10~% 2943 4.0484x10~° 3.948 5.6826x1072 1.976 1.2887x103  2.994
h=1/16 1.1487x10~% 2985 24265x107% 4.060 1.4262x1072 1.994 1.3386x10~%  3.267
h=1/32 1.4392x107% 2.997 1.5049x10~7 4.011 3.5688x1073  1.999 1.4348x107>  3.222

7 Conclusions

In this paper, we consider a two-dimensional time-dependent linear Schrédinger equation
with the finite element method. We present the finite element semi-discrete scheme and the
Crank-Nicolson fully discrete scheme in the rectangular Lagrange type finite element space of
order k. We also obtain the superconvergence result in the H' norm by use of the elliptic
projection in the semi-discrete scheme and the fully discrete scheme, respectively. Some nu-
merical examples with the order Kk = 1 and k = 2 are provided to partly verify our theoretical
results. In the future, we shall try to study the problem of superconvergence in the L? norm
for the two-dimensional time-dependent Schrédinger equation and the superconvergence in the
H' norm for the three-dimensional Schrédinger equation with the finite element method.
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