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Abstract Forced convection heat transfer of ethylene glycol based nanofluid with Fe3O4

inside a porous medium is studied using the electric field. The control volume based
finite element method (CVFEM) is selected for numerical simulation. The impact of the
radiation parameter (Rd), the supplied voltage (∆ϕ), the volume fraction of nanofluid
(φ), the Darcy number (Da), and the Reynolds number (Re) on nanofluid treatment is
demonstrated. Results prove that thermal radiation increases the temperature gradient
near the positive electrode. Distortion of isotherms increases with the enhance of the
Darcy number and the Coulomb force.
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Nomenclature

Ex, Ey, components of electric field;
De, diffusion number;
SE, Lorentz force number;
u, v, components of velocity;
q, electric charge density;
J , electric current density;
p, pressure;
K, permeability of porous media;
T , temperature;
TC, Curie temperature;
FE, electric force;

Re, Reynolds number;
Da, Darcy number;
Rd, radiation parameter;
PrE, electric Prandtl number;
NE, electric field number;
D, charge diffusion coefficient;
V , velocity;
k, thermal conductivity;
Cp, heat capacity;
qr, radiation heat flux;
m, shape factor.

Greek symbols

φ, volume fraction;
σ, electric conductivity;
ϕ, potential electric field;

ε, dielectric permittivity;
ρ, density;
µ, dynamic viscosity;
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βr, radiation coefficient; σe, stefan Boltzmann coefficient.

Subscripts

s, solid particles;
f, base fluid;
c, cold;

nf, nanofluid;
h, hot.

1 Introduction

Nanofluid can be offered as an applicable way to improve heat transfer. Nanofluid convective
simulation has been investigated by different researchers[1–5]. Sheikholeslami and Sadoughi[6]

reported nanofluid convective flow in existence of melting surface. Sheikholeslami and Rokni[7]

published a review article about various applications of magnetic nanofluid. A comprehensive
review paper was published by Sheikholeslami and Ganji[8] to show importance of nanotechnol-
ogy. The influence of radiation mode was examined by Hayat et al.[9]. The effect of Coulomb
forces on nanofluid behavior was demonstrated by Sheikholeslami and Chamkha[10]. Their out-
puts revealed that the electric field is highly sensible in lower Reynolds numbers. Hassan et
al.[11] showed an innovative model for predicting solar radiation. Nayak et al.[12] reported the
roles of nanofluid radiative heat transfer.

The effect of shape factor on nanofluid properties was considered by Sheikholeslami and
Bhatti[13]. Tao and He[14] presented free convection of nanofluid in an energy storage system.
Makinde et al.[15] demonstrated the nanofluid flow considering non-uniform viscosity. Mezrhab
et al.[16] reported the radiation impact in an enclosure. Sheremet et al.[17] illustrated the
transient ferrofluid flow in a cavity by means of the finite difference method. Some researchers
also used nanofluid as effective working fluid[18–41].

This research aims to model the effects of thermal radiation on nanofluid behavior in exis-
tence of Coulomb forces. The roles of Darcy number, radiation parameter, supplied voltage,
volume fraction of nanofluid, and Reynolds number are demonstrated in results.

2 Problem statement

The ethylene glycol-Fe3O4 nanofluid is utilized. All walls are stationary except for the
bottom wall. Figure 1 demonstrates a sample element and geometry. The influence of Re and
Da on contour of q is demonstrated in Fig. 2. The effect of Re on q is less sensible than Da.
As the Darcy number augments, the shape of isoelectric density lines becomes more complex.
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Fig. 1 (a) Geometry and boundary conditions and (b) a sample triangular element and its corre-
sponding control volume
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3 Governing formula and modeling

3.1 Governing formula

The definition of electric field is[23]

E = −∇ϕ, (1)

q = ∇ · εE, (2)

J = qV −D∇q + σE, (3)

∇ · J +
∂q

∂t
= 0. (4)

The governing formulae are[23]


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∇p

ρnf
=

(
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∂V
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)

=
knf

(ρCp)nf
∇2T −

1

(ρCp)nf

∂qr
∂y

+
J · E

(ρCp)nf
,

T 4 ∼= 4T 3
CT − 3T 4

C, qr = −
4σe

3βr

∂T 4

∂y
,

∇ϕ = −E, q = ∇ · εE,
∂q

∂t
= −∇ · J.

(5)

Fig. 2 Electric density distributions injected by the bottom electrode when ∆ϕ = 10 kV, φ = 0.05,
and Rd = 0.8 (color online)
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(ρCp)nf , µnf , and ρnf are[26]











(ρCp)nf = (ρCp)sϕ+ (1 − φ)(ρCp)f ,

µ = A1 +A2(∆ϕ) +A3(∆ϕ)2 +A4(∆ϕ)3,

ρnf = ρf(1 − φ) + ρsφ.

(6)

Properties of Fe3O4 and C2H6O2 are illustrated in Table 1[26]. Table 2 shows the coefficient
values of Ai (i = 1, 2, 3, 4)[7]. knf can be obtained from

knf

kf
=

−m(kf − kp)φ+ (kp − kf)φ +mkf + kp + kf

mkf + (kf − kp)φ+ kf + kp
. (7)

Table 3 depicts various shape factors.

Table 1 Thermo physical properties of ethylene glycol and nanoparticles

ρ/(kg·m−3) Cp/(J·kg−1
·K−1) k/(W·m−1

·K−1)

Ethylene glycol 1 110 2 400 0.26
Fe3O4 5 200 670 6

Table 2 Coefficient values of Eq. (6)

Coefficient value φ = 0 φ = 0.05

A1 1.060 3×101 9.533 1
A2 –2.698×10−3 –3.411 9×10−3

A3 2.908 2×10−6 5.522 8×10−6

A4 –1.187 6×10−8 –4.134 4×10−8

Table 3 Values of shape factor of different shapes of nanoparticles

m

Spherical
 

3.0

Platelet 5.7

Cylinder  4.8

Brick 3.7

Therefore, the final partial differential equations are
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E = −∇ϕ, q = ∇ · εE, ∇ · J = −
∂q

∂t
,

(8)
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(9)
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Ψ and Ω are employed in order to diminish the pressure gradient,

v = −
∂ψ

∂x
, ω =

∂v

∂x
−
∂u

∂y
,

∂ψ

∂y
= u, Ψ =

ψL

ULid
, Ω =

ω

LULid
. (10)

The local Nusselt number Nuloc and the average Nusselt number Nuave over the bottom wall
are

Nuloc =
(knf

kf

)(

1 +
4

3
Rd

(knf

kf

)−1)∂Θ

∂Y
, (11)

Nuave =
1

L

∫ rout

rin

Nulocdx. (12)

3.2 CVFEM

In order to estimate scalars, we utilize linear interpolation in the triangular element (see
Fig. 1(b)). A Gauss-Seidel tool is employed to obtain the final answer after discretization[29].

4 Mesh study and code validation

Various mesh sizes are tested to find the independent result of the mesh. Table 4 demon-
strates an example. This table indicates that the size of 81×241 can be selected. The CVFEM
code is validated by comparing the results with those published in Refs. [23] and [25] (see Fig. 3).
Good agreement can be found.

Table 4 Comparison of Nuave along lid wall for different grid resolutions at Rd = 0.8, Re = 6 000,

Da = 105, ∆ϕ = 10kV, φ = 0.05, and Pr = 6.8

Size 51 × 151 61 × 181 71 × 211 81 × 241 91 × 271 101 × 301

Nuave 6.299 867 6.307 856 6.309 132 6.318 96 6.319 06 6.319 87

Fig. 3 (a) Comparison of the local Nusselt number over the lid wall between the present results and

numerial results of Moallemi and Jang[26] at Re = 500, Rd = 0.4, and Pr = 1; (b) comparison
of the average Nusselt number between the present results and numerical results of Khanafer
et al.[24] at Gr = 104, φ = 0.1, and Pr = 6.8 (Cu-water)

5 Results and discussion

Electrohydrodynamic nanofluid forced convection in presence of thermal radiation is re-
ported. The porous enclosure is filled with Fe3O4-ethylene glycol and has one lid wall. Roles of
the Darcy number (Da = 102 to 105), the supplied voltage (∆ϕ = 0kV to 10kV), the volume
fraction of Fe3O4 (φ = 0% to 5%), the radiation parameter (Rd = 0 to 0.8), and the Reynolds
number (Re = 3 000 to 6 000) are illustrated graphically.
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At first, the impact of the shape factor on the rate of heat transfer is reported in Table 5. In
this table, various shapes of nanoparticles are utilized. The maximum Nu happens by platelet.
Therefore, platelet nanoparticles are utilized for more investigation.

Table 5 Effect of shape of nanoparticles on the Nusselt number when Rd = 0.8, Re = 6000, ∆ϕ =
10 kV, and φ = 0.05

Shape
Da

102 105

Spherical 3.697 271 6.084 579
Brick 3.740 571 6.147 401

Cylinder 3.805 097 6.239 713
Platelet 3.855 149 6.318 966

Figures 4–7 depict the impacts of Da,Re, and ∆ϕ on isotherms and streamlines. At low Re,
there is one clockwise vortex in streamline. The midpoint of main vortex is near the positive
electrode. Augmenting the Darcy number leads to generation of the second eddy which rotates
counter clockwise and the center of main eddy shift to upper side. Applying the electric field
causes the strength of the main vortex to enhance and shift the midpoint of the eddy to
upper side. Isotherms become more disturbed when ∆ϕ 6= 0kV. Thermal plume appears by
increasing the Reynolds number. Also, by augmenting Re, ψmax augments. As the Coulomb
force increases, the secondary eddy diminishes and the strength of main eddy enhances.

Fig. 4 Effects of Darcy number on streamlines and isotherms when Re = 3000, ∆ϕ = 0 kV, φ = 0.05,

and Rd = 0.8 (color online)
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Fig. 5 Effects of Darcy number on streamlines and isotherms when Re = 3 000, ∆ϕ = 10kV, φ =
0.05, and Rd = 0.8 (color online)

Fig. 6 Effects of Darcy number on streamlines and isotherms when Re = 6000, ∆ϕ = 0kV, φ = 0.05,
Rd = 0.8 (color online)
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Fig. 7 Effects of Darcy number on streamlines and isotherms when Re = 6 000, ∆ϕ = 10kV, φ =
0.05, Rd = 0.8 (color online)

Nuave versus Re,Da,Rd, and ∆ϕ is depicted in Fig. 8. The related formula is

Nuave = − 2.26 + 0.08∆ϕ+ 2.01Re∗ + 1.05 lg Da+ 3.25Rd

− 0.036∆ϕRe∗ + 0.023∆ϕ lg Da

+ 0.15∆ϕRd − 0.31Re∗ lg Da

− 0.64Re∗Rd + 0.41 lg DaRd

+ 0.015∆ϕ2 − 0.2(Re∗)2 − 0.14(lg Da)2 + 1.46R2
d, (13)

where Re∗ = 0.001Re. In absence of the Coulomb force, the Nusselt number augments with
the increase of Reynolds number, while an opposite behavior is reported in existence of such
forces. The electric field helps the convective mode enhance. Therefore, Nuave augments with
the increase of ∆ϕ. Thermal radiation enhances the temperature gradient near the lid wall.
The influence of Darcy number is the same as the radiation parameter. Therefore, Nuave is an
increasing function of Rd and Da.

6 Conclusions

Forced convection and radiation of nanofluid inside a lid driven permeable media in existence
of electric field are modeled. Outputs are reported for different values of Da, Rd, φ, ∆ϕ,
and Re. Outputs demonstrate that the shape of isotherms becomes more complex with the
augment of Da, Rd, and Coulomb forces. Applying the electric field makes the secondary eddy
to diminish. The temperature gradient enhances with the increase in the radiation parameter.
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Fig. 8 Effects of Da, ∆ϕ, Rd, and Re on average Nusselt number (color online)
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