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Abstract This paper is concerned with the flow of two immiscible fluids through a
porous horizontal channel. The fluid in the upper region is the micropolar fluid/the
Eringen fluid, and the fluid in the lower region is the Newtonian viscous fluid. The flow
is driven by a constant pressure gradient. The presence of micropolar fluids introduces
additional rotational parameters. Also, the porous material considered in both regions
has two different permeabilities. A direct method is used to obtain the analytical solu-
tion of the concerned problem. In the present problem, the effects of the couple stress,
the micropolarity parameter, the viscosity ratio, and the permeability on the velocity
profile and the microrotational velocity are discussed. It is found that all the physical
parameters play an important role in controlling the translational velocity profile and the
microrotational velocity. In addition, numerical values of the different flow parameters
are computed. The effects of the different flow parameters on the flow rate and the wall
shear stress are also discussed graphically.
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Nomenclature

Ki, non-dimensional permeability of the
porous medium;

pi, non-dimensional pressure;
x, y, coordinates along the channel;
ui, vi, velocities in the x-direction;
Rei, Reynolds number;
c, micropolarity parameter;
c0, ca, cd, coefficients of angular viscosities;

s, couple stress;
ρi, density of the fluid;
µi, viscosity of the fluid;
ωi, microrotational velocity of the fluid;
µr, dynamic microrotation viscosity of the

micropolar fluid;
λ, viscosity ratio.
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1 Introduction

The study of fluid mechanics has shown vast applications of fluid flow problems in various
fields such as industries, biological processes, engineering fields. The widespread applications
of fluid flow problems are motivating the researchers to work on the fluid flow problem with
different aspects. Most of industrial fluids or fluids with applications in industries, biological
processes etc. are non-Newtonian. The study of immiscible fluids passing through channels
(horizontal or vertical) is emerging as a challenging work for the researchers. Likely, flows of
immiscible fluids through a porous channel have many applications such as the petroleum in-
dustry, the extraction of crude oil through soils, flows through pipes and tubes in environmental
and ecological applications, and blood flows through arteries. The micropolar fluid is a class
of fluids which are described by intrinsic motion of its particles. Eringen[1–3] introduced the
fluids with the substructure. The micropolar fluid is a subclass of polar fluids which possess
the number of governing equations. Classical fluids possess only three degrees of translational
motion, but Eringen fluids possess six degrees of freedom, three translational degrees and three
rotational degrees. Due to independent rotational and translational motions of fluid elements,
the stress and moment stress tensors are no more symmetric. It was found experimentally by
Hoyt and Fabula[4] that the presence of such additives in these fluids results in reduced skin
friction. Ariman et al.[5] reviewed the mechanics of microcontinuum hypothesis. Lukaszewicz[6]

described the theory and applications of micropolar fluids thoroughly. Examples of micropolar
fluids can be found in the above mentioned references, and some of them are the human blood,
the animal blood, liquid crystals, polymer suspensions, colloidal particles and so on. It can
be seen in the work of Philip and Chandra[7] and Ellahi et al.[8] that the problem of blood
flows through the stenosed arteries is considered to be a problem of micropolar fluid flow. They
solved the problem for medical purposes. Chen et al.[9] gave an explanation on the theory of mi-
cropolar fluids and did numerical simulations of the involved governing equations. Ariman and
Cakmak[10] discussed Couette, Poiseuille, and rotational flows of micropolar fluids. They found
the deviation of these basic flows for micropolar fluids compared with that of the flow for classi-
cal Newtonian fluids. The combination of non-Newtonian fluids and porous media is emerging
as a challenge for the practical purposes. Sochi[11] discussed the theory of non-Newtonian fluids
through porous media with various applications. Brinkman[12] gave an extended law of Darcy’s
equation which explains the flow through porous media with high permeability.

Nowadays, the two-phase flow in a porous channel is presenting a challenge and motivating
the researchers and engineers. This model is useful in extraction of oil from a porous pipe
with the help of some water, human joints liquids, chemical reactors, gas liquid filtration, dust
collector, sewage treatment, heat pipes, etc.[13]. Berman[14] was the first to study the steady
and laminar fluid flow through the channels with porous walls. Kapur and Shukla[15] did a re-
markable work on the flow of number of immiscible fluids through parallel plates. Shail[16] gave
a practical description of his study by considering steady and incompressible flows of immiscible
fluids in presence of a magnetic field. He numerically found that, if the ratios of viscosities, mag-
netic numbers, and depths are chosen suitably, then there will be an increase in the flow rate by
30%. Vafai and Thiyagaraja[17] analyzed the flow and heat transfer in three interfacial regions
of the porous media. They obtained both theoretical and numerical results for velocity profiles
and temperature profiles. Srinivasan and Vafai[18] extended the work of Muskat and Wyckoff[19]

by considering boundary and inertial effects with Darcy’s law. Chamkha[20] studied MHD flows
of the two-fluid flow problem through porous and non-porous vertical channels. Along with an
analytical solution, he used an implicit finite-difference method to validate the results obtained
with the analytical method. Awartani and Hamdan[21] proposed the problem of the two-phase
model with fluid and solid matrices of porous media. They discussed Poiseuille, Couette, and
Poiseuille-Couette flows and found that there is a decrease in the flow velocity compared with
the flows in absence of the porous structure. Umavathi et al.[22] studied the unsteady and
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laminar flow of two immiscible fluids in a horizontal channel. They considered only one fluid to
be electrically conducting and also discussed heat transfer in the channel. Umavathi et al.[23]

solved the problem of unsteady flows of fluids in the porous region sandwiched between layers
of viscous fluids.

In all the above discussed works, the two immiscible fluids taken in their model were Newto-
nian fluids with different viscosities. Some motivational works were also done for Eringen fluids
through the channels[24–26]. Joneidi et al.[27] explained the work on the flow of micropolar
fluids through the porous channel. They solved equations of flows with high mass transfer by
using an optimal homotopy asymptotic method. An analytical study on the Poiseuille flow for
two immiscible micropolar fluids flows between two horizontal and parallel plates is done by
Murthy and Srinivas[28]. They concluded that micropolar fluids can be used as good lubricants
with an increase in the micropolarity parameter. Murthy et al.[29] considered different models
compared with the above discussed models. They considered immiscible micropolar fluids to
flow between the zones bounded by porous channels, and the viscous fluids were allowed to pass
through porous channels of large and low permeability, respectively. The flow of two immiscible
Newtonian fluids through the channel filled with the porous medium is discussed by Ansari and
Deo[30]. The problem of flow of the reactive fluid through the channel filled with a porous ma-
terial was solved by Adesanya et al.[31] using the Adomian decomposition method. Srinivas and
Murthy[32] discussed the flow of two immiscible micropolar fluids flowing between two porous
beds. They observed the effect of entropy generation on the flow problem by using the first and
the second law of thermodynamics. Kumar et al.[33] considered the flow of micropolar fluids and
Newtonian fluids through the vertical channel. They assumed the flow to be free-convective.
They concluded that the presence of micropolar fluid parameters has remarkable effects on the
velocity profile.

The above works motivate us to discuss the present problem. The model discussed in this
paper originates from the very well-known application of the fluid flow through the porous
channel, which is the filtration of the ground water passing through various porous materials
such as sands, soils, and rocks. The oil recovery process in the petroleum industry involves flows
of more than one phase through the oil reservoir, due to which the power required to pump
oil from the reservoir gets reduced. Most of the industrial fluids or biological fluids cannot be
explained by using the classical Newtonian law of hydrodynamics. These types of fluids include
the micropolar fluid, which deals with the intrinsic motion of its particles. Many authors have
studied blood flows by assuming the blood as a micropolar fluid. Therefore, the blood flow
through the porous tissues can be treated as the flow through porous horizontal channels.

In the present work, we consider a model of two-fluid flows through the horizontal porous
channel. The steady, incompressible, and fully-developed flow of micropolar and Newtonian
fluids takes place through the porous channel. The flow is driven by the constant pressure
gradient, and it is in absence of any body and couple forces. The solutions obtained are used
to interpret the effects of the couple stress, the micropolarity parameter, the viscosity ratio,
and the permeability on the velocity profile, the microrotational velocity, the flow rate, and the
wall shear stress.

2 Mathematical formulation

Here, we consider the flow of two immiscible fluids through a horizontal porous channel
with an impermeable rigid boundary. It is assumed that the non-Newtonian micropolar fluid
is flowing in the upper layer, and the Newtonian fluid is flowing in the lower region. Let
u = u(u1, u2, u3) be the velocity of the Newtonian fluid and v = v(v1, v2, v3) be the velocity
of the non-Newtonian micropolar fluid in the horizontal porous channel.

The governing equations for both regions are given as follows:
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(i) For the Newtonian region,

Dρ

Dt
= −ρ∇ · u, (1)

ρ
(∂u

∂t
+ (u · ∇)u

)

= −∇p + µ∇2u −
µ

K
u + ρf . (2)

(ii) For the micropolar region,

Dρ

Dt
= −ρ∇ · v, (3)

ρ
Dv

Dt
= −∇p + (λ + µ − µr)∇divv + (µ + µr)∇

2v + 2µr∇× ω −
µ

K
v + ρf , (4)

ρI
Dω

Dt
= 2µr(∇× v − 2ω) + (c0 + cd − ca)∇divω + (ca + cd)∇2ω + ρg, (5)

where λ and µ are the usual viscosity coefficients such that µ > 0 and 3λ+2µ > 0. µr is known
as the dynamic microrotation viscosity, c0, ca, and cd are the coefficients of angular viscosities,
p is the pressure applied along the direction of the flow, ω is the microrotational velocity, ρ
is the density of the fluid, f and g are the external forces, and u and v are the velocities of
Newtonian and micropolar fluids, respectively.

Fig. 1 Mathematical model of flow of immiscible fluids through porous channel

Let us consider that the immiscible fluids flows are steady, incompressible, and fully-
developed, and the flow is driven by a constant pressure gradient. It is also assumed that
there is no external forces and body couple forces. We also consider that the flow is in the
x-direction only with microrotation along the z-direction. Let ρi, Ki, µi, and pi (i = 1, 2) be
the density, permeability, viscosity, and pressure of Newtonian and non-Newtonian micropolar
fluids, respectively.

Then, the governing equations (1)–(5) of motion will be reduced as follows:

(i) For the Newtonian region,

∂u1

∂x
= 0, (6)

µ1

∂2u1

∂y2 −
µ1

K1

u1 =
∂p1

∂x
. (7)
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(ii) For the micropolar region,

∂v1

∂x
= 0, (8)

(µ2 + µr)
∂2v1

∂y2 + 2µr

∂ω3

∂y
−

µ2

K2

v1 =
∂p2

∂x
, (9)

2µr

(∂v1

∂y
− 2ω3

)

+ (ca + cd)
∂2ω3

∂y2 = 0, (10)

where the symbol − denotes the dimensional form of the flow quantity.

3 Solution of problem

To find the solution of the above problem, let us define the following non-dimensional vari-
ables:

x =
x

h
, y =

y

h
, u1 =

u1

U0
, v1 =

v1

U0
, ω3 =

ω3h

U0
, Ki =

Ki

h2
,

Rei =
ρiU0h

µi

, c =
µr

µ2

, s =
2µrh

2

ca + cd
, pi =

pi

ρiU2
0

(i = 1, 2).

Therefore, the governing equations (6)–(10) will become as follows.
(i) For the Newtonian region,

∂u1

∂x
= 0, (11)

∂2u1

∂y2
−

1

K1
u1 = Re1

∂p1

∂x
. (12)

(ii) For the micropolar region,

∂v1

∂x
= 0, (13)

∂2v1

∂y2
+

2c

1 + c

∂ω3

∂y
−

1

(1 + c)K2
v1 =

Re2

1 + c

∂p2

∂x
, (14)

∂2ω3

∂y2
− s

∂v1

∂y
− 2sω3 = 0, (15)

where c is the micropolarity parameter.
By solving Eq. (12), we have

u1 = C1e
Ay + C2e

−Ay −
Re1P

A2
, (16)

v1 = C3e
αy + C4e

−αy + C5e
βy + C6e

−βy − Re2K2P, (17)

ω3 = −η(C3e
αy − C4e

−αy) − ξ(C5e
βy − C6e

−βy), (18)

where A2 = 1
K1

, P is the constant pressure, because of which flows take place in both regions
of the porous horizontal channel, C1, C2, C3, C4, C5, and C6 are the arbitrary constants, and

α =

√

(2sK2 + 1) +
√

(2sK2 − 1)2 − 8sK2c

2K2(1 + c)
, η =

α3K2(1 + c) + α(2scK2 − 1)

4scK2
,

β =

√

(2sK2 + 1) −
√

(2sK2 − 1)2 − 8sK2c

2K2(1 + c)
, ξ =

β3K2(1 + c) + β(2scK2 − 1)

4scK2
.
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In order to find the solution of the boundary value problem, it is necessary to specify the
suitable boundary conditions. The suitable boundary conditions in the non-dimensional form,
which are physically and mathematically consistent, can be taken as follows.

No-slip boundary conditions at the walls of channel, i.e.,

v1 = 0 at y = 1, (19)

u1 = 0 at y = −1, (20)

ω3 = 0 at y = 1. (21)

The constant cell rotational velocity[5], i.e.,

dω3

dy
= 0 at y = 0. (22)

The continuity of velocity and stress at the interface of two immiscible fluids, i.e.,

u1 = v1 at y = 0, (23)

τ1 = τ2 or (1 + c)
dv1

dy
+ 2cω3 = λ

du1

dy
at y = 0. (24)

With the values of u1, v1, and ω3 in Eqs. (19)–(24), we have

C3e
α + C4e

−α + C5e
β + C6e

−β − Re2K2P = 0, (25)

C1e
−A + C2e

A −
Re1P

A2
= 0, (26)

− η(C3e
α − C4e

−α) − ξ(C5e
β − C6e

−β) = 0, (27)

αη(C3 + C4) − βξ(C5 + C6) = 0, (28)

C1 + C2 − C3 − C4 − C5 − C6 −
Re1P

A2
+ Re2K2P = 0, (29)

− AλC1 + AλC2 + (α(c + 1) − ηc)C3 + (ηc − α(c + 1))C4

+ (β(c + 1) − cξ)C5 + (cξ − β(c + 1))C6 = 0. (30)

By solving the above system of equations with the help of MATHEMATICA 10.3, we can obtain
the arbitrary constants C1, C2, C3, C4, C5, and C6, whose values are cumbersome, which may
lose the interest of the readers. Therefore, these constants are not presented here. Substituting
these values of arbitrary constants into Eqs. (16)–(18), we can obtain the values of the flow
velocity of Newtonian and micropolar fluids in their respective regions.

Other important fluid flow quantities which are discussed in this paper are the wall shear
stress and the volume flow rate.

The wall shear stress on the upper wall is given as

τw1 = (1 + c)
dv1

dy
+ 2cω3. (31)

By substituting the values of v1 and ω3 into Eq. (31), we get

τw1 =(c + 1)(α(eαyC3 − e−αyC4) + β(eβyC5 − e−βyC6))

+ 2c((−η)(eαyC3 − e−αyC4) − ξ(eβyC5 − e−βyC6)). (32)

Similarly, we can evaluate the wall shear stress on the lower wall,

τw2 = Aλ(eAyC1 − e−AyC2), (33)
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where λ = µ1

µ2

.
By using the values of arbitrary constants, i.e., C1, C2, C3, C4, C5, and C6, respectively, we

can obtain the wall shear stress on the wall of the horizontal porous channel,

τw1|y=1 =(c + 1)P (αξ − βη)(Ak2Re2((e
α − 1)(e2β + 1)βξ((eα + 1)(e2A − 1)cη

− (eα − 1)A(e2A + 1)λ) + α((e2α + 1)(eβ − 1)η(A(e2A + 1)(eβ − 1)λ − (e2A − 1)

· (eβ + 1)cξ) + (e2A − 1)β(c + 1)((e2α + 1)(e2β − 1)η − (e2α − 1)(e2β + 1)ξ)))

− 2(eA − 1)2λRe1(αη(−e2α+β) − αeβη + eαβξ + βξeα+2β))/(A(4α2(e2A − 1)

· (c + 1)ηξeα+β + α((e2A − 1)β(−c − 1)((e2α + 1)(e2β + 1)η2 − 2(e2α − 1)

· (e2β − 1)ηξ + (e2α + 1)(e2β + 1)ξ2) + η((e2A − 1)(−c)ξ((e2α − 1)(e2β − 1)ξ

− η(−4eα+β + e2(α+β) + e2α + e2β + 1)) − A(e2A + 1)λ((e2α + 1)(e2β − 1)η

− (e2α − 1)(e2β + 1)ξ))) + βξ(e2(α+β)(η − ξ)(Aλ + cη) − (η − ξ)e2(α+A+β)

· (cη − Aλ) + 4ηeα+2A+β(β + βc − cξ) − e2α(η + ξ)(Aλ + cη) + e2(α+A)(η + ξ)

· (cη − Aλ) + e2(A+β)(η + ξ)(Aλ + cη) − e2β(η + ξ)(cη − Aλ) − e2A(η − ξ)

· (Aλ + cη) + (η − ξ)(cη − Aλ) − 4ηeα+β(β + βc − cξ)))), (34)

τw2|y=−1 = − eAPλ((4(c + 1)eα(−1 + eβ)2ηξα2 + 2(cηξ((−1 + e2α)(−1 + e2β)ξ

− (1 + eα)2(−1 + eβ)2η) − (c + 1)β(−(1 + e2α)(−1 + eβ)2η2 + 2(−1 + e2α)

· (−1 + e2β)ξη − (−1 + eα)2(1 + e2β)ξ2))α + 2(−1 + eα)βηξ(ceα+2β(η − ξ)

+ c(ξ − η) − ceα(η + ξ) + ce2β(η + ξ) − 2eβ(cβ + β − cξ) + 2eα+β

· (cβ + β − cξ)))k2Re2A
2 + (−4(c + 1)e−A+α+β(−1 + eA)2ηξα2 + ((c + 1)e−Aβ

· ((1 + e2α)(1 + e2β)η2 − 2(−1 + e2α)(−1 + e2β)ξη + (1 + e2α)(1 + e2β)ξ2)

· (−1 + eA)2 + η(ce−A(−1 + eA)2ξ((−1 + e2α)(−1 + e2β)ξ − (1 + e2α + e2β

− 4eα+β + e2(α+β))η) − AeA(−1 + e−2A)λ((1 + e2α)(−1 + e2β)η − (−1 + e2α)

· (1 + e2β)ξ)))α + e−A(−1 + eA)βξ(eA(cη + Aλ)(η − ξ) − e2(α+β)(cη + Aλ)

· (η − ξ) − (cη − Aλ)(η − ξ) + eA+2(α+β)(cη − Aλ)(η − ξ) + e2α(cη + Aλ)

· (η + ξ) − eA+2β(cη + Aλ)(η + ξ) − eA+2α(cη − Aλ)(η + ξ) + e2β(cη − Aλ)

· (η + ξ) + 4eα+βη(cβ + β − cξ) − 4eA+α+βη(cβ + β − cξ)))Re1)/(A(−4(c + 1)

· eα+β(−1 + e2A)ηξα2 + ((c + 1)(−1 + e2A)β((1 + e2α)(1 + e2β)η2 − 2(−1 + e2α)

· (−1 + e2β)ξη + (1 + e2α)(1 + e2β)ξ2) + η(c(−1 + e2A)ξ((−1 + e2α)(−1 + e2β)ξ

− (1 + e2α + e2β − 4eα+β + e2(α+β))η) + A(1 + e2A)λ((1 + e2α)(−1 + e2β)η

− (−1 + e2α)(1 + e2β)ξ)))α + βξ((Aλ − cη)(η − ξ) + e2A(cη + Aλ)(η − ξ)

− e2(α+β)(cη + Aλ)(η − ξ) + e2(A+α+β)(cη − Aλ)(η − ξ) + e2α(cη + Aλ)(η + ξ)

− e2(A+β)(cη + Aλ)(η + ξ) − e2(A+α)(cη − Aλ)(η + ξ) + e2β(cη − Aλ)(η + ξ)

+ 4eα+βη(cβ + β − cξ) − 4e2A+α+βη(cβ + β − cξ)))). (35)
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The total volume flow rate is defined as

Q =

∫ 1

0

v1dy +

∫ 0

−1

u1dy. (36)

With Eq. (36), we get

Q =
PRe1

A2
+

(1 − e−A)C1

A
+

(eA − 1)C2

A
+

(eα − 1)C3

α

+
(1 − e−α)C4

α
+

(eβ − 1)C5

β
+

(1 − e−β)C6

β
− K2PRe2. (37)

By substituting the values of the arbitrary constants, i.e., C1, C2, C3, C4, C5, and C6, respec-
tively, we can evaluate the expression for the volume flow rate.

4 Results and discussion

4.1 Effect of micropolarity parameter or cross viscosity on velocity profile and

microrotation

From Figs. 2–3, it is interpreted that the translational velocity and the microrotational
velocity decrease with an increase in the micropolarity parameter c. From Fig. 2, we conclude
that the translational velocities in both regions (micropolar fluid region and Newtonian region)
decrease towards the wall of the porous channel. The rate of decrease in the translational
velocity is larger in the micropolar fluid region in comparison with that in the Newtonian
region. The above effect is because of the increase in the cross viscosity or the micropolarity
parameter and hence the more involvement of the particles into the rotation. Due to more
involvement of particles, the momentum gets transferred into the rotation which results in
the decreasing linear velocity. The abrupt decrease in the microrotational velocity near the
wall of the micropolar fluid region is observed (see Fig. 3). The similar nature of variation in
the translational and the microrotational velocities with the micropolarity parameter was also
discussed by Murthy and Srinivas[28].

Fig. 2 Effect of micropolarity parameter c

on velocity profile when s = 5, K1 =
1.5, K2 = 2.5, λ = 0.8, P = −0.7,
Re1 = 1.2, and Re2 = 1.6

Fig. 3 Effect of micropolarity parameter c on
microrotation ω when s = 5, K1 = 1.5,
K2 = 2.5, λ = 0.8, P = −0.7, Re1 = 1.2,
and Re2 = 1.6

4.2 Effect of couple stress on velocity profile and microrotation

The effects of the couple stress parameter on the velocity profile and microrotation are shown
in Figs. 4 and 5. From these figures, it is observed that both translational and microrotational
velocities increase with the increase in the couple stress parameter of the micropolar fluid.
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The rate of increase in the translational velocity with respect to the couple stress parameter is
lower compared with that of the microrotational velocity. The translational velocity is almost
the same for different values of the couple stress parameter near the wall of the porous hori-
zontal channel (see Fig. 4). From Fig. 5, it is also observed that the microrotational velocity
increases and then decreases towards the wall of the porous horizontal channel for larger values
of the couple stress parameter. Although, for lower values of the couple stress parameter, the
microrotational velocity always decreases towards the wall of the porous horizontal channel.

Fig. 4 Effect of couple stress s on velocity
profile when c = 0.6, K1 = 1.5, K2 =
2.5, λ = 0.8, P = −0.7, Re1 = 1.2,
and Re2 = 1.6

Fig. 5 Effect of couple stress s on microrotation
when c = 0.6, K1 = 1.5, K2 = 2.5, λ =
0.8, P = −0.7, Re1 = 1.2, and Re2 = 1.6

For s = 1, the microrotational velocity (see Fig. 5) of the micropolar fluid has a very low
value compared with those for s = 2, 3, 4.

4.3 Effect of viscosity ratio on velocity profile and microrotation

The effects of viscosity ratio on the velocity and microrotation are shown in Figs. 6–7, which
show that the translational velocity and the microrotational velocity both increase with the
increase in the viscosity ratio. The variations in the translational velocity and the microrota-
tional velocity are observed to be maximum near the micropolar-Newtonian fluid interface and
minimum near the wall of the porous channel. The microrotational velocity slightly increases
and then decreases rapidly towards the wall of the porous channel.

Fig. 6 Effect of viscosity ratio λ on velocity
when s = 2, c = 0.6, K1 = 1.5, K2 =
1.7, P = −0.7, Re1 = 2, and Re2 = 3

Fig. 7 Effect of viscosity ratio λ on microrota-
tion when s = 2, c = 0.6, K1 = 1.5,
K2 = 1.7, P = −0.7, Re1 = 2, and
Re2 = 3
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4.4 Effect of permeability on velocity profile and microrotation

The effects of permeability for both regions of the porous horizontal channel on the velocity
profile and microrotation are discussed in Figs. 8 and 9. From Fig. 8, we conclude that the
translational velocity is minimum throughout the regions of the porous channel, when the
permeabilities of both regions are equal, and it is maximum near the micropolar-Newtonian
fluid interface, when the permeability of the region I is smaller than that of the region II,
i.e., K1 < K2. However, the microrotational velocity is maximum when the permeability of
the region I is larger than that of the region II, i.e., K1 > K2, and it is minimum when the
permeability of the region I is smaller than that of the region II, i.e., K1 < K2 (see Fig. 9).

＞

＜

Fig. 8 Effect of permeabilities K1 and K2

on velocity when s = 2, c = 0.6, λ =
0.8, P = −0.7, Re1 = 2, and Re2 = 3

＞

＜

Fig. 9 Effect of permeabilities K1 and K2 on
microrotation when s = 2, c = 0.6, λ =
0.8, P = −0.7, Re1 = 2, and Re2 = 3

4.5 Effect of couple stress and micropolarity parameter on flow rate

The influence of the couple stress and the micropolarity parameter on the flow rate is
presented in Fig. 10. From this figure, we conclude that the flow rate increases with the increase
in the couple stress and decreases with the increase in the micropolarity parameter. The
nature of variation in the flow rate is almost the same for different values of the micropolarity
parameter.

Fig. 10 Effect of couple stress and micropolarity parameter on flow rate when K1 = 1.5, K2 = 1.7,
λ = 0.4, P = −0.7, Re1 = 2.1, and Re2 = 2

4.6 Effect of viscosity ratio and permeability on flow rate

The variation of the flow rate with the viscosity ratio and permeability is shown in Fig. 11,
which shows that the flow rate increases with the increase in the viscosity ratio. From Fig. 11,
it is also observed that the permeability of both regions of the horizontal porous channel plays
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an important role in controlling the flow rate. The flow rate is maximum when the permeability
of the porous region I is larger than that of the porous region II, and it is minimum when the
permeability of the porous region I is equal to that of the porous region II.

＞

＜

Fig. 11 Effect of permeability and viscosity ratio on flow rate when s = 2, c = 0.6, λ = 0.4, P = −0.7,
Re1 = 2.1, and Re2 = 2

4.7 Effect of couple stress, micropolarity parameter, viscosity ratio, and perme-

ability on wall shear stress of both regions

Numerical results of the wall shear stress are shown in Tables 1, 2, and 3, respectively.
It is observed that the wall shear stress for the micropolar fluid on the upper wall decreases

with the increase in the couple stress, although the wall shear stress for the Newtonian fluid on
the lower wall increases with the increase in the couple stress (see Table 1), whether K1 < K2,
K1 > K2, or K1 = K2.

Table 1 Values of wall shear stress when c = 1.0, λ = 0.4, P = −0.7, Re1 = 2.1, and Re2 = 2

s
K1 < K2 K1 > K2 K1 = K2

τw1 τw2 τw1 τw2 τw1 τw2

2.00 1.251 5 0.417 0 1.240 9 0.419 6 1.238 1 0.415 4

5.00 1.251 0 0.424 3 1.204 4 0.426 8 1.201 8 0.422 5

7.00 1.206 8 0.427 8 1.195 6 0.430 3 1.193 0 0.425 9

9.00 1.202 1 0.430 7 1.190 7 0.433 2 1.188 1 0.428 7

11.00 1.199 3 0.433 3 1.187 6 0.435 6 1.185 0 0.431 2

Table 2 shows that the wall shear stress for the micropolar fluid on the upper wall increases
with the increase in the micropolarity parameter, and the wall shear stress for the Newtonian
fluid on the lower wall decreases with the increase in the micropolarity parameter. It means
that the particle rotation has a noticeable effect on the wall shear stress in the three cases of
permeability, i.e., K1 < K2, K1 > K2, and K1 = K2.

Table 2 Values of wall shear stress when s = 3.0, λ = 0.4, P = −0.7, Re1 = 2.1, and Re2 = 2

c
K1 < K2 K1 > K2 K1 = K2

τw1 τw2 τw1 τw2 τw1 τw2

0.10 1.191 5 0.473 2 1.176 2 0.475 3 1.172 5 0.469 8

0.50 1.217 9 0.445 5 1.205 1 0.447 9 1.202 0 0.443 0

0.80 1.228 7 0.429 2 1.217 3 0.431 6 1.214 0 0.427 2

1.20 1.237 0 0.411 7 1.227 1 0.414 2 1.224 0 0.410 1

1.50 1.240 4 0.400 9 1.251 5 0.403 5 1.229 0 0.399 7
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The effect of the viscosity ratio on the wall shear stress is discussed in Table 3. It shows
that the wall shear stress on the upper and lower walls of the porous channel increases with the
increase in the viscosity ratio for all the cases of permeability.

From the above discussion, we also conclude that the wall shear stress on the upper wall of
the porous channel is larger than that on the lower wall, when the permeability of both regions
of porous channel is different.

Table 3 Values of wall shear stress when s = 3.0, c = 1.0, P = −0.7, Re1 = 2.1, and Re2 = 2

λ
K1 < K2 K1 > K2 K1 = K2

τw1 τw2 τw1 τw2 τw1 τw2

0.20 1.209 0 0.206 5 1.196 5 0.207 4 1.195 0 0.205 5

0.40 1.233 0 0.419 9 1.223 0 0.422 4 1.220 0 0.418 2

0.60 1.254 0 0.638 5 1.244 6 0.643 1 1.240 8 0.636 0

0.80 1.271 0 0.860 9 1.262 9 0.867 8 1.258 1 0.857 2

1.20 1.298 0 0.314 2 1.292 1 1.326 7 1.285 5 0.310 0

5 Conclusions

The problem of fully-developed and steady flows of two immiscible fluids (micropolar-
Newtonian) through the horizontal porous channel is solved with the direct method. During
the analysis, it is noticed that the value of the translational velocity in the upper region of
the horizontal porous channel is small compared with that in the lower region of the horizon-
tal porous channel. This result can be used in practical applications. It is observed that the
permeability of both regions of horizontal porous channels can be used to control the velocity
profile, flow rate, and wall shear stress. It is also found that the viscosity ratio and couple stress
promote the velocity profile, and the micropolarity parameter suppresses the velocity.
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