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Abstract The pulsatile electroosmotic flow (PEOF) of a Maxwell fluid in a parallel flat
plate microchannel with asymmetric wall zeta potentials is theoretically analyzed. By
combining the linear Maxwell viscoelastic model, the Cauchy equation, and the electric
field solution obtained from the linearized Poisson-Boltzmann equation, a hyperbolic par-
tial differential equation is obtained to derive the flow field. The PEOF is controlled by
the angular Reynolds number, the ratio of the zeta potentials of the microchannel walls,
the electrokinetic parameter, and the elasticity number. The main results obtained from
this analysis show strong oscillations in the velocity profiles when the values of the elas-
ticity number and the angular Reynolds number increase due to the competition among
the elastic, viscous, inertial, and electric forces in the flow.
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1 Introduction

Microfluidic devices, e.g., lab-on-a-chip (LOC), intravenous drug delivery systems, and bio-
chemical reactive platforms, are typically polymer-based devices possessing micro and nanoscale
geometric features to hold and manipulate small volumes of biofluids[1]. Such devices serve as
tools for accurately controlling small volumes of liquids for a wide variety of chemical, medical,
environmental, and biological applications[2]. Microfluidic devices require the ability to pump,
control, and manipulate samples. For these types of tasks, electroosmosis has been widely used
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to manipulate the fluid flows in the channels with the lengths of microns, and electroosmosis
has been achieved through the electrostatic interaction between an applied external electric
field and an electrical double layer (EDL)[3]. An EDL is created when an electrolyte comes into
contact with a dielectric material. This interaction generates an electric force near the wall,
thereby driving the fluid motion subsequently transmitted to the bulk fluid through viscous
forces[4]. For transporting biofluids in the mentioned devices, there is need to mathematically
characterize the transport mechanism for the efficient design of analytic systems. However, in
several circumstances, the mathematical modeling in micro-conducts of LOC is conducted by
assuming Newtonian fluids, which does not describe correctly the transport phenomena existing
in such applications. This may be attributed to the fact that, the biofluids in their most general
mathematical form are non-linear and strain-rate dependent, as governed by the material char-
acteristics needed to analyze the response of a particular fluid against any disturbance being
imposed[5].

A considerable amount of research has been conducted on modeling the electroosmotic flows
(EOFs) for Newtonian fluids under transient regimes. Peralta et al.[6] studied the start-up of an
oscillatory electroosmotic flow in a parallel-plate micro-channel, and showed that, with proper
adjustment of the zeta potentials at the channel walls together with a dimensionless frequency,
the velocity profile could be tuned to induce flow recirculation. This result should be useful
in the design of microfluidic mixers. However, microfluidic devices are always used to analyze
biofluids, whose rheological behaviors are very different from those of Newtonian fluids.

In the specialized literature, the transient EOFs of non-Newtonian fluids[7–11] have received
less attention compared with Newtonian fluids. Li et al.[7] studied the transient EOFs of
Maxwell fluids in a micro-parallel channel and in a micro-tube, and showed that, when the nor-
malized relaxation time increased, it took longer for the flow to reach the steady state. Wang
et al.[8] investigated the transient EOFs of the generalized Maxwell fluids with a fractional
derivative in a straight pipe with a circular cross section, and showed the effects of the relax-
ation time, fractional derivative parameter, and the Debye-Hückel parameter on the flow. Jian
et al.[9] and Liu et al.[10] obtained the results regarding the transient EOFs driven by alternat-
ing current (AC) electric fields, and achieved an analytical solution of the time-periodic EOF
for the generalized Maxwell fluids through a rectangular microchannel under the Debye-Hückel
approximation. Bandopadhyay et al.[11] characterized the electroosmotically driven flows for a
linearized Maxwell fluid in presence of modulated surface charge, and studied the non-intuitive
interactions between the patterned interfacial electrokinetics and the flow rheology.

The use of pulsatile flows has also been widely studied[12–13]. However, this concept is
scarce in the specialized literature on the EOFs. Chakraborty et al.[14] and Chakraborty and
Ray[15] primarily conducted the related studies. They analyzed the EOFs driven by pulsating
electric fields in microchannels to characterize and control the periodic mass flow rate. Rojas
et al.[16] recently studied a pulsatile EOF (PEOF) in a circular microchannel with high and low
zeta potentials and slippage at the inner surface of the microchannel, where the fluid motion
was caused by a pulsatile electric field. Some applications of PEOFs correspond to the active
micromixers based on the disturbance induced by pulsatile external fields[17]. In most of the
cases, pressure-driven disturbance can be created by an external actuator. However, instabilities
can also appear due to the variations in the electric fields[18–19]. The instabilities in EOFs
can also be generated due to the variations in the zeta potentials at the microchannel walls,
which can be controlled by the shielding electrodes yielding the field effect[20], by fabricating
microchannels whose wall materials are different[21], or by the variations in the pH of the
solution along the microchannel[22]. Therefore, the techniques used in the aforementioned
papers to induce the changes at the walls, either in the surface or the zeta potentials of the
walls, can modify the electrical potential distribution and thus the electrical body force in the
flow field, allowing significant effects on the characteristics of the flow[23–25].

In the present study, we will analyze the PEOF of a biofluid, e.g., blood, under certain
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rheological conditions, e.g., circulating in arteries, which has a behavior similar to that of a
non-Newtonian fluid. The motion of the biofluid is driven by an external pulsatile electric
field, and asymmetric zeta potentials are considered at the microchannel walls. To understand
the fundamental physical aspects of this phenomenon, which can be used for enhancing the
dispersion and the mass transport when the concentration gradients of miscible mass species
are introduced into the flow field[26–28], the basic mechanism is investigated.

2 Theoretical modeling

2.1 Physical model
Figure 1 shows the physical model analyzed in this work. We consider the PEOF of a

symmetric (z : z) electrolyte solution, where z is the valence of the electrolyte in a parallel-plate
microchannel with the height H and the length L (L � H). The flow is driven by a pulsatile
electroosmotic force induced by the simultaneous effect of the EDL formed at the interface
between the liquid and the microchannel surface and an external time-dependent electric field
given by

Ex(t) = E0(1 + ε sin(ωt)),

where t, ω, and ε are the time, the angular frequency, and a dimensionless constant determining
the amplitude of the electric field fluctuations, respectively. E0 and εE0 sin(ωt) represent the
steady and oscillating components of the external electric field, respectively. The origin of the
coordinate system is located at the lower surface of the microchannel. We consider that the
walls of the microchannel have different (asymmetric) zeta potentials, i.e., ζ1 �= ζ2, and the high
concentration of the electric charges is localized near the channel walls within the EDLs, whose
screening lengths are represented by κ−1, where κ ≡ (2e2z2n∞/(εkBT ))1/2[29]. The net charge
density in the EDLs follows the well-known Boltzmann distribution, which remains valid if the
frequency of the external electric field is not very high (e.g., less than 1MHz)[30]. Moreover,
it is assumed that the EDLs on the inner surfaces of the microchannel do not overlap, i.e.,
H � κ−1, and the ends of the microchannel have the same pressure P0.

x
κ

Fig. 1 Sketch of the PEOF induced by a pulsatile electric field Ex(t), where the curves of u represent
the periodic velocity profiles evaluated at different time

2.2 Governing equations
2.2.1 Electric potential

According to Hsu et al.[31], the characteristic time scale of the electro-migration in the EDL
is on the order ranging from 10−8 s to 10−7 s, whereas the characteristic time scale associated
with the evolution of the EOF is on the order ranging from 10−5 s to 10−3 s[32]. Therefore,
the latter time scale is at least two orders of the magnitude of the first time scale. Thus, the
temporal evolution of the hydrodynamic field is considerably slower than that corresponding to
the electrical phenomenon. Under this quasi-steady-state assumption, the distribution of the
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electric potential near the inner surface of the microchannel is governed by Poisson’s equation[4]

as follows:

∂2Φ
∂y2

+
∂2Φ
∂x2

= −ρe

ε
, (1)

where ε is the dielectric permittivity of the liquid. Φ(x, y, t) = φ(x, t) + ψ(y) is the total
electric potential in the microchannel, where φ(x, t) is the local electric potential, which depends
parametrically on the time t, due to the electric field Ex. ψ(y) denotes the electric potential
due to the EDLs. The charge density follows the following Boltzmann distribution:

ρe = −2n∞ze sinh
( zeψ
kBT

)
, (2)

where e, kB, n∞, T , and ψ are the electron charge, the Boltzmann constant, the ionic number
concentration, the absolute temperature, and the electric potential due to the EDL in the
equilibrium state, respectively. Because we are considering a very long microchannel, i.e.,
L� H , the term ∂2Φ

∂x2 in Eq. (1) may be neglected[4]. Then, we have

d2ψ

dy2
=

2n∞ze
ε

sinh
( zeψ
kBT

)
. (3)

To solve Eq. (3), the following boundary conditions are required:{
ψ = ζ1 at y = 0,

ψ = ζ2 at y = H.
(4)

Due to the asymmetry of the wall zeta potentials, the plug-like velocity profile of pure EOFs
will be no longer present, which will lead to a velocity gradient across the transversal section
of the microchannel.
2.2.2 Flow field

To determine the dynamics of the PEOF, we have assumed that the microchannel is very
long, and the analysis focuses on the central region, which is far away from the entry and the
exit of the channel, such that the flow can be assumed to be unidirectional[33]. In the absence
of a pressure gradient, we use the modified Cauchy equation and the Maxwell constitutive
equations[34] given by

ρ
∂u

∂t
= −∂τxy

∂y
+ ρeEx(t), (5)

(
1 + λ1

∂

∂t

)
τxy = −η0 ∂u

∂y
, (6)

where u(y, t) represents the velocity in the x-direction, and ρ, μ, λ1, and τxy are the mass
density, the viscosity of the fluid, the relaxation time, and the shear stress, respectively. In the
present study, the only component of the Maxwell model required to solve the problem is given
by Eq. (5)[35].

Equation (5) is subject to the following initial and boundary conditions:⎧⎪⎪⎨⎪⎪⎩
u = 0 at t = 0, 0 � y � H,

u = 0 at y = 0, t � 0,

u = 0 at y = H, t � 0.

(7)
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To obtain the momentum equation exclusively in terms of the velocity u(y, t), Eq. (6) is
derived once with respect to the variable y, and the result is substituted in Eq. (5). Then, we
have

ρ
(∂u
∂t

+ λ1
∂2u

∂t2

)
= η0

∂2u

∂y2
+

(
1 + λ1

∂

∂t

)
ρeE0(1 + ε sin (ωt)). (8)

It is a hyperbolic partial differential equation, where the second derivative of u(y, t) with respect
to t requires that Eq. (8) necessarily has a wave-like solution.
2.2.3 Dimensionless governing equations

We rescale the governing equations by introducing the dimensionless variables as follows:

ỹ ≡ y/H, t̃ ≡ t/tc, ψ̃ ≡ ψ/ψc, ũ ≡ u/uHS,

where ψc = kBT/(ze), uHS = −εζ1E0/η0 is the Helmholtz-Smoluchowski equation[29], τ̃xy =
τxyH/(uHSη0), and tc = 1/ω. Because the present analysis is performed for low zeta potentials,
i.e., zeψ/kBT � 25 mV, under the Debye-Hückel linearization, the dimensionless form of the
Poisson-Boltzmann equation (3) becomes

d2ψ̃

dỹ2
= κ̃2ψ̃, (9)

where κ̃ ≡ κH . The dimensionless forms of the boundary conditions associated with Eq. (9)
are given by ⎧⎨⎩ ψ̃ = ζ̃1 at ỹ = 0,

ψ̃ = ζ̃2 at ỹ = 1,
(10)

where
ζ̃1 = ζ1/ψc, ζ̃2 = ζ2/ψc.

Then, the dimensionless version of the momentum equation (8) can be rewritten as follows:

Rω
∂ũ

∂t̃
+ λ̃1R

2
ω

∂2ũ

∂t̃2
=
∂2ũ

∂ỹ2
+

(
1 + λ̃1Rω

∂

∂t̃

)
κ̃2ψ̃(1 + ε sin t̃), (11)

where Rω = ωρH2/η0 is the angular Reynolds number[36]. It represents the ratio of the charac-
teristic diffusive time to the characteristic time associated with the oscillatory electric field, and
determines the importance of the acceleration effects in the fluid relative to the viscous effects
(momentum diffusion). λ̃1 = λ1η0/(ρH2) is the dimensionless relaxation time representing the
competition between the elastic and viscous effects of the fluid, and it is also called the elasticity
number[37].

The dimensionless initial and boundary conditions to solve Eq. (11) are as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ũ = 0 at t̃ = 0, 0 � ỹ � 1,

ũ = 0 at ỹ = 0, t̃ � 0,

ũ = 0 at ỹ = 1, t̃ � 0.

(12)

The equations given by Eqs. (9)–(12) describe the transient PEOF for low zeta potentials.
However, in the present work, we focus only on the determination of the time-periodic PEOF,
which means that the estimated solution corresponds to the stage after the transient component
has died out.
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3 Solution methodology

The solution for the electric field distribution of Eq. (9) subject to the boundary conditions
defined in Eq. (12) is given by

ψ̃ = ζ̃1 (A exp(κ̃ỹ) +B exp(−κ̃ỹ)) , (13)

where

A =
(Rζ − exp(−κ̃)

2 sinh κ̃

)
, B = 1 −A, Rζ =

ζ̃2

ζ̃1
. (14)

Because Eq. (11) and the associated initial and boundary conditions are linear, we can write the
corresponding solution as the sum of two terms, i.e., the response to the steady component of
the electric field and the response to the time-dependent component of the oscillatory electric
field, as follows:

ũ(ỹ, t̃) = ũ(s)(ỹ) + εũ(o)(ỹ, t̃), (15)

where ũ(s)(ỹ) and ũ(o)(ỹ, t̃) represent the steady and oscillating solutions of the velocity field,
respectively. Substituting Eq. (15) into Eq. (11), we have

0 =
d2ũ(s)

dỹ2
+ κ̃2ζ̃1 (A exp(κ̃ỹ) +B exp(−κ̃ỹ)) (16)

with ⎧⎨⎩ ũ(s) = 0 at ỹ = 0,

ũ(s) = 0 at ỹ = 1
(17)

and

Rω
∂ũ(o)

∂t̃
+ λ̃1R

2
ω

∂2ũ(o)

∂t̃2

=
∂2ũ(o)

∂ỹ2
+ κ̃2ζ̃1(A exp(κ̃ỹ) +B exp(−κ̃ỹ))(sin t̃+ λ̃1Rω cos t̃) (18)

with ⎧⎪⎪⎨⎪⎪⎩
ũ(o) = 0 at t̃ = 0 for all ỹ,

ũ(o) = 0 at ỹ = 0,

ũ(o) = 0 at ỹ = 1.

(19)

3.1 Steady-state solution for ũ(s)

The solution of Eq. (16), together with the boundary conditions given by Eq. (17), is given
by

ũ(s) = −α1 exp(κ̃ỹ) − α2 exp(−κ̃ỹ) + (α1 exp(κ̃) + α2 exp(−κ̃) − 1)ỹ + ζ̃1, (20)

where
α1 = ζ̃1A, α2 = ζ̃1B.
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3.2 Periodic solution for ũ(o)

The periodic solution for the flow field will be a repetitive oscillation, which can be found
from the set of Eqs. (18) and (19) and ignoring the initial condition. To solve this problem, we
define the complementary complex velocity û(1) in a manner such that

ũ(o)(ỹ, t̃) = Im(û(1)),

where Im denotes the imaginary part of the complementary complex velocity. Therefore, in
terms of the complex velocity, Eq. (18) satisfies the following problem:

Rω
∂û(1)

∂t̃
+ λ̃1R

2
ω

∂2û(1)

∂t̃2

=
∂2û(1)

∂ỹ2
+

(
1 + λ̃1Rω

∂

∂t̃

)
κ̃2ζ̃1(A exp(κ̃ỹ) +B exp(−κ̃ỹ)) exp(it̃) (21)

subject to the following boundary conditions:⎧⎨⎩ û(1) = 0 at ỹ = 0,

û(1) = 0 at ỹ = 1.
(22)

To solve Eq. (21), a solution is assumed for û(1) as follows:

û(1) = F (ỹ) exp(it̃), (23)

where i =
√−1 denotes the imaginary number. Substituting Eq. (23) into Eq. (21) yields

d2F

dỹ2
− F (iRω − λ̃1Rω

2) = −κ̃2ζ̃1(A exp(κ̃ỹ) +B exp(−κ̃ỹ))(1 + iλ̃1Rω) (24)

subject to {
F = 0 at ỹ = 0,

F = 0 at ỹ = 1.
(25)

Therefore, the solution F (ỹ), which is obtained from Eq. (24), is given by

F (ỹ) =
κ̃2ζ̃1

κ̃2 − β2
(1 + iλ̃1Rω)

(
− (A exp(κ̃ỹ) +B exp(−κ̃ỹ)) + exp(βỹ)

− expβ − (A exp κ̃+B exp(−κ̃))
sinhβ

sinh(βỹ)
)
, (26)

where
β =

√
iRω(1 + iλ̃1Rω).

By substituting F (ỹ) into Eq. (23), we have

ũ(1) =Im
(
(cos t̃+ i sin t̃ )

κ̃2λ̃1R
2
ω + iκ̃2Rω + κ̃4

(λ̃1R2
ω + κ̃2)2 +R2

ω

ζ̃1(1 + iλ̃1Rω)

· (−(A exp(κ̃ỹ ) +B exp(−κ̃ỹ ))) + exp(βỹ )

− expβ − (A exp κ̃+B exp(−κ̃ ))
sinhβ

sinh(βỹ )
)
. (27)
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Therefore, from Eqs. (27), (20), and (15), the periodic solution for the dimensionless velocity
profile of the PEOF with asymmetric zeta potentials at the wall can be given by

ũ = − α1 exp(κ̃ỹ) − α2 exp(−κ̃ỹ) + (α1 exp κ̃+ α2 exp(−κ̃) − 1)ỹ + ζ̃1

+ εIm
(
(cos t̃+ i sin t̃)

κ̃2λ̃1R
2
ω + iκ̃2Rω + κ̃4

(λ̃1R2
ω + κ̃2)2 +R2

ω

ζ̃1(1 + iλ̃1Rω)

· (−(A exp(κ̃ỹ) +B exp(−κ̃ỹ))) + exp(βỹ)

− expβ − (A exp κ̃+B exp(−κ̃))
sinhβ

sinh(βỹ)
)
. (28)

The procedure to obtain Eq. (28) is straightforward. However, to evaluate this equation for
any value of Rω, MATHEMATICA software[38] is used. To obtain more physical insights about
the nature of the exact solution, in the following paragraphs, we obtain an asymptotic solution
of Eq. (24) for Rω � 1 (low-frequency limit).
3.2.1 Asymptotic solution in the limit Rω � 1

At this point, we consider it important to briefly discuss the magnitudes of the physical
parameters involved in this low-frequency limit. Some typical values of the parameters used in
the EOFs are as follows: 10 μm � H � 100 μm, the strengths of the electric fields are of a few
kilovolts/centimeters, and 0 s−1 � ω � 104 s−1 or higher[39], depending on the configuration
and of the physical phenomenon[11]. According to Refs. [40] and [41], ρ ∼ 103 kg·m−3, and
η0 ∼ 10−3 Pa·s. Therefore, with a suitable combination of the above physical parameters, the
values of Rω � 1 can be estimated.

Let us consider Eq. (24) in the limit Rω � 1 together with the symmetric case of zeta
potentials, i.e., ζ̃1 = ζ̃2. First, we propose an asymptotic expansion as follows:

F = F0(ỹ) +RωF1(ỹ) +R2
ωF2(ỹ) +O(R3

ω). (29)

Here, we have assumed up to the terms of O(R2
ω) in the expansion (29) because in the dimen-

sionless momentum governing equation, Eq. (21), the asymptotic solution of this equation, will
appear when the terms of O(R2

ω) are retained.
Substituting Eq. (29) into Eq. (24), we can obtain the following set of equations.
(i) The leading-order problem is given by

d2F0

dỹ2
= −ζ̃1κ̃2 (A exp(κ̃ỹ) +B exp(−κ̃ỹ)) (30)

with the boundary conditions

F0(0) = 0, F0(1) = 0. (31)

The solution for this order is given by

F0 = ζ̃1(−A (exp(κ̃ỹ) − ỹ exp κ̃+ ỹ − 1) +B (− exp(−κ̃ỹ) + ỹ exp(−κ̃) − ỹ + 1) . (32)

(ii) The O(R1
ω) problem is

d2F1

dỹ2
= iF0 (33)

with the boundary conditions

F1(0) = 0, F1(1) = 0. (34)
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The solution of F1 is

F1 = − iζ̃1 exp(−κ̃(1 + ỹ))
6κ̃2

(Π1 + Π2), (35)

where Π1 and Π2 are defined as follows:⎧⎨⎩ Π1 =A exp(κ̃(1+ỹ))((ỹ − 1)(κ̃2ỹ2−2κ̃2ỹ + 6)−ỹ exp κ̃(κ̃2(ỹ2−1)+6)+6 exp(κ̃ỹ)),

Π2 =B(6 exp κ̃+(ỹ−1) exp(κ̃(1+ỹ))(κ̃2ỹ2−2κ2ỹ+6)−ỹ exp(κ̃ỹ)(κ̃2(ỹ2−1)+6)).
(36)

(iii) At the order O(R2
ω), the problem is given by

d2F2

dỹ2
= iF1 − λ̃1F0 (37)

with the boundary conditions

F2(0) = 0, F2(1) = 0. (38)

The solution of order R2
ω is

F2 =
ζ̃1 exp(−κ̃(ỹ + 2))

360κ̃4
(Π3 + Π4), (39)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Π3 = A(l1 − l2 + l3),

Π4 = B(l3 − l4 − l5),

l1 = 360 exp(2κ̃(1 + ỹ))(1 + κ̃2λ̃1),

l2 = ỹ exp(κ(3 + ỹ))(360 + 60κ̃2(6λ̃1 + ỹ2 − 1) + κ̃4(ỹ2 − 1)(60λ̃1 + 3ỹ2 − 7)),

l3 = (ỹ − 1) exp(κ̃(ỹ + 2))(−12κ̃4ỹ3 + 3κ̃4ỹ4 + 360(κ̃2λ+ 1))

+ ỹ2(κ̃4(60λ+ 8) + 60κ̃2) − 8κ̃2ỹ(κ̃2(15λ− 1) + 15),

l4 = 360 exp(2κ̃)(1 + κ̃2λ̃1),

l5 = ỹ exp(κ̃(1 + ỹ))(360 + 60κ̃2(6λ̃1 + ỹ2 − 1) + κ̃4(ỹ2 − 1)(60λ̃1 + 3ỹ2 − 7)).

(40)

4 Results and discussion

In this section, we present and discuss the results obtained for the PEOF of Maxwell fluids
with asymmetric low zeta potentials at the microchannel walls. To describe the results, all
variables and parameters are presented in dimensionless form. The hydrodynamic behavior of
the PEOF is described in terms of the dimensionless parameters involved in the study. To
estimate the values of the dimensionless parameters, we use the common values of the physical
parameters reported in Ref. [42], some of which have already been presented in Subsection 3.2.1.
For the numerical calculations, we select a suitable combination of values for the following
physical parameters: 1 nm � κ−1 � 300 nm[43], |ζ1| � 25mV, and |ζ2| � 25mV. The relaxation
time can assume to be in the range of 10−4 s � λ1 � 103 s[44]. However, according to Liu
et al.[10], in order to ensure the validity of the fundamental assumption of undisturbed EDL,
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the relaxation time λ1 should be smaller than the oscillating period of the electric field 2π/ω.
Thus, the product of the external electric field frequency and the relaxation time should be
smaller than 2π, i.e., λ1ω < 2π. In terms of the dimensionless parameters used in this analysis,
the above restriction can be written as follows:

λ̃1Rω < 2π.

In addition, in the typical applications of AC-driven electroosmotic flows, the range of the
angular frequency is very broad. For instance, in Ref. [45], 0 � Rω � 100, 0 s−1 � ω � 104 s−1,
ρ = 103 kg·m−3, the radius of the microchannel R = 100 μm, and η0 = 10−3 Pa·s. In Ref. [42],
103 s−1 � ω � 105 s−1. In the following calculations, 0 � Rω � 7.

(i) Asymptotic solution
From examining Eq. (24), the qualitative nature of the relationship between ũ and the ex-

ternal electric field Ex(t) can be observed by considering the limiting case of Rω � 1. It is
evident that in such an asymptotic limit, the inertial and elastic terms in this equation can be
neglected. Thus, the solution for ũ will have the form ũ ∼ F (ỹ) sin t̃. This result is verified by
the asymptotic solution conducted in Subsection 3.2.1. As can be appreciated, in Eq. (30), the
velocity profiles are in-phase with the signals of the external electric field for all time, while the
elastic effect is not appreciated in the leading and first-order solutions, i.e., O(1) and O(R1

ω),
respectively (see Eqs. (30) and (33)). We can observe that in this asymptotic limit, the elastic
effects appear up to the terms of O(R2

ω), which are very small. In Fig. 2, we present a com-
parison between the asymptotic and the exact solutions for the dimensionless velocity profiles
given by Eqs. (29) and (28), respectively, and find a very good agreement. We note that the
asymptotic solution is valid up to values of Rω = 0.3 (see Fig. 2). For Rω � 1, a plug-like veloc-
ity Helmholtz-Smoluchowski EOF velocity profile is expected when symmetric zeta potentials
are assumed. All the velocity variations are restricted to very narrow EDL regions close to the
walls. The above can be explained from the definition of Rω if we consider the values of the
parameter of O(1), which means that the diffusion time ρH2/η0 and the imposed time scale of
the periodic electric field 1/ω are of the same order.

 π
 π

π
π

Fig. 2 Comparison of the asymptotic solution (points) given by Eq. (29) for the velocity profiles
with the exact solution (lines) given by Eq. (28), where the profiles are evaluated at several

dimensionless times et (= π/4, π/2, 3π/2, 2π), eκ = 50, ε = 0.5, eλ1 = 0.5, and Rω = 0.3

(ii) Periodic stage of the Newtonian fluid and asymmetric zeta potentials
For λ̃1 = 0, the PEOF of a Newtonian fluid with asymmetric wall zeta potentials is recovered

(see Fig. 3). Figure 3 shows the effects of the parameterRζ on the dimensionless velocity profiles,
where the periodic solution of the dimensionless velocity profiles ũ(ỹ, t̃) given by Eq. (28) is
plotted as a function of the dimensionless transversal coordinate ỹ, κ̃ = 50, ε = 0.5, Rω = 5,
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and Rζ = (1.0, 0.5,−1.0,−0.5). The results are obtained by use of the MATHEMATICA
software[38]. From the figure, we can see that, for Rω = 5, the velocity profiles are not uniform
through the transversal coordinate due to the effect of the parameter Rω (see Fig. 3(a)), the
magnitude of the velocity near the upper wall is smaller than that at the lower wall due to
the fact that the electroosmotic force is larger at ỹ = 0 (see Fig. 3(b)), which is caused by the
corresponding zeta potential. The results agree well with those reported by Afonso et al.[24].
Moreover, when the ratio of the zeta potentials Rζ changes from symmetric (Rζ = 1.0) to
anti-symmetric (Rζ = −1.0), the corresponding dimensionless velocity profiles vary from fully
symmetric to fully anti-symmetric. Figures 3(c) and 3(d) also show that any negative value of
Rζ will result in an inverse flow.

π
π
π
π
π

π
π
π
π
π

π
π
π
π
π

π
π
π
π
π

Fig. 3 Dimensionless velocity profiles for the Newtonian fluid case (eλ1 = 0) evaluated at different

dimensionless time et (= π/4, π/2, π, 3π/2, and 2π), showing the periodic stages of the
pulsating electroosmotic flow for symmetric and asymmetric zeta potentials. The results are
presented for a low zeta potential (25 mV) and the fixed values of Rω = 5, κ = 50, and ε = 0.5

(iii) Effects of the relaxation time on the PEOF with asymmetric zeta potentials
In Fig. 4, we plot the velocity profiles for the PEOF of a Maxwell fluid (λ̃1 > 0.00) as

a function of the dimensionless transversal coordinate ỹ, where κ̃ = 50, ε = 0.5, Rω = 5,
Rζ = (1.0, 0.5,−1.0,−0.5), and λ̃1 = 0.50. The fluid motion begins near the walls of the
microchannel, where the electroosmotic force is acting, and propagates into the central region
of the channel through momentum diffusion. This physical behaviors agree well with those
reported by Escandón et al.[35]. Besides, the behaviors of the asymmetric zeta potentials on
the velocity profiles are similar to those presented in Fig. 3.
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Fig. 4 Dimensionless velocity profiles for the Maxwell fluid case (eλ1 = 0.50) evaluated at different

dimensionless time et (= π/4, π/2, π, 3π/2, 2π), showing the periodic stages of the pulsating
electroosmotic flow for symmetric and asymmetric zeta potentials. The results are presented
for a low zeta potential (25 mV) and fixed values of Rω = 5, κ = 50, and ε = 0.5

In Fig. 5, the velocity field and the associated memory effects of the PEOF of a Maxwell
fluid are plotted, where κ̃ = 50, Rω = 5, ε = 0.5, and Rζ = 1.0 with low and symmetric
zeta potentials are assumed. All the velocity profiles are evaluated at t̃ = π/2. For a given
value of Rω, when the dimensionless relaxation time λ̃1 increases, the velocity profiles will
oscillate rapidly. At the same time, the amplitudes of the PEOF velocity decrease gradually.
This is because that the diffusion time scale is much greater than the oscillation time period.
Therefore, there is no sufficient time for the momentum to diffuse far into the central region
of the microchannel, and the PEOF velocity variations are restricted only to a thin layer near
the two microchannel walls. Note that for the Newtonian fluid case (λ̃1 = 0.00), a uniform
profile is present across the microchannel, whereas for λ̃1 > 0.00, the elastic effects will affect
the velocity profiles, causing wave motions, which are due to the fading and elastic memory
phenomena of the viscoelastic fluids[10]. Conversely, increasing the values of the relaxation
time more easily leads to the variation in the velocity profiles caused by the external pulsatile
electric field because of the shear thinning effect of the Maxwell fluids. Shear thinning is an
effect, in which the viscosity decreases with the increase in the rate of the shear stress. Thus,
the amplitude of the waves in the velocity profiles becomes smaller with the gradual increase
in the relaxation time. However, with the increase in the relaxation time, the elasticity of the
fluid becomes notable, and the velocity variations can be expanded to the whole flow field since
the elasticity is a physical property of the whole fluid, from which we can easily find that higher
angular Reynolds number Rω results in quicker oscillation of the velocity profiles.
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λ
λ
λ
λ

Fig. 5 Effects of the elasticity number eλ1 on the dimensionless velocity profiles, where eκ = 50,
ε = 0.5, and Rω = 5

Figure 6 shows the effects of the relative amplitude of the sinusoidal electric signal on the
velocity profiles. Here, we have considered ε = (0.0, 0.2, 0.5, 1.0). All curves are plotted at
the selected dimensionless time t̃ = π/2 for κ̃ = 50, Rω = 5, and Rζ = 1.0. The solid line
corresponds to the case of a direct current (DC)-driven EOF of a Maxwell fluid, and shows
a plug-like behavior. The above can be inferred from Eq. (28), where the contribution of the
oscillating electric field is null by making ε = 0.0. In such a case, in the periodic stage,
the velocity profiles do not depend on the rheological characteristics of the Maxwell fluid. In
contrast, when ε increases, the amplitude of the waves in the velocity profiles increases.

  
  
  
  

Fig. 6 Effects of the oscillatory electric field amplitude ε on the dimensionless velocity profiles, where

eκ = 50, eλ1 = 0.50, and Rω = 5

(iv) Effects of Rω and κ̃ on the flow field
The effects of Rω and κ̃ on the velocity profiles of a Maxwell fluid are shown in Figs. 7(a),

7(b), 7(c), and 7(d). By comparing these figures against the case of a pure EOF (λ̃1 = 0.00)
and considering the values of both Rω > 1 and κ̃ � 1, we can see that the velocity profiles
show a wave motion in contrast to a pure EOF, where plug-like velocity profiles are found.
Evidently, this behavior could be used as a benchmark for designing microfluidic devices, where
micromixing is needed, at higher frequencies, viscoelastic fluids are expected to give better
mixing and dispersion as compared with a Newtonian fluid. Moreover, in this direction, the
flow is in an oscillating stage, the fluid motion begins near the surface of the microchannel
where the electroosmotic force is acting, and the effect of the electroosmotic force propagates
into the central region of the microchannel due to momentum diffusion. However, elastic forces
always exist, which will affect the aforementioned wave motion all time as long as Rω > 1.
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Fig. 7 Dimensionless velocity profiles for the Maxwell fluid case (eλ1 = 0.50) evaluated at various

dimensionless time et (= π/4, π/2, π, 3π/2, 2π), showing the periodic stages of the pulsating
electroosmotic flow for a symmetric zeta potential (Rζ = 1.0) for different values of Rω and
κ. The results are presented for a low zeta potential (25mV) and a fixed value of ε = 0.5

Figure 8 compares the periodic evolution of the dimensionless velocity profiles ũ as functions
of the dimensionless coordinate ỹ for fixed values of Rζ = −1.0, ε = 0.5, and λ̃1 = 0.50 for two
cases of Rω and κ̃. In Fig. 8(a), Rω = 1.0 and κ̃ = 10 are used, and the second case in Fig. 8(d)
uses Rω = 7 and κ̃ = 100. Here, the anti-symmetric behavior of the velocity can be observed.
Similar to Fig. 7, oscillations in the velocity profiles exist in Figs. 7(c) and 7(d) for large values
of κ̃.

(v) Volumetric flow rate
The instantaneous dimensionless volumetric flow rate Q and the time-averaged volumetric

flow rate 〈Q〉 can be evaluated as follows:

Q =
Q

Qc
=

∫ 1

0

u(y, t̃ )dy, (41)

〈Q〉 =
1
2π

∫ 2π

0

(∫ 1

0

u(y, t̃ )dy
)
dt̃, (42)

where
Qc = 2ucH.

By substituting the velocity profile derived in the analysis and after integrating the above
equations, Q is obtained and plotted in Fig. 9. The oscillatory behaviors of the volumetric
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Fig. 8 Dimensionless velocity profiles for the Maxwell fluid case (eλ1 = 0.50) evaluated at various

dimensionless time et (= π/4, π/2, π, 3π/2, 2π), showing the periodic stages of the pulsating
electroosmotic flow for asymmetric zeta potential (Rζ = −1.0), for different Rω and κ. The
results are presented for a low zeta potential (25 mV) and a fixed value of ε = 0.5

Fig. 9 Dimensionless instantaneous volumetric flow rate for eλ1 = (0.00, 0.50, 1.25), where κ = 50,

ε = 0.5, Rζ = 1, black curves present the results when λ̃1 = 0.00, red curves present the

results when λ̃1 = 0.50, and blue curves present the results when λ̃1 = 1.25 (color online)

flow rate as a function of the dimensionless time for low zeta potentials and for three different
values of the dimensionless relaxation time λ̃1 = (0.00, 0.50, 1.25) are depicted, where κ̃ = 50,
ε = 0.5, and Rζ = 1.0, and Rω(= 5, 7). The cycles of Q depend on the frequency of the applied
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electric field, and as expected, when λ̃1 increases, there is a decrease in the oscillation between
the frequency and the volumetric flow rate.

5 Conclusions

In this work, an analytical solution for the PEOF of Maxwell fluids in a parallel-plate
microchannel under asymmetric zeta potentials is analyzed. Through the solution, the following
conclusions can be drawn:

(i) In the asymptotic limit of Rω � 1, the velocity profiles are in-phase with the signal of
the external electric field for all time, and the elastic effect is not appreciable.

(ii) The mathematical model allows the behavior of the PEOF with symmetric and asym-
metric zeta potentials to be determined.

(iii) The negative values of Rζ produce an inverse flow, causing asymmetric velocity profiles.
(iv) Compared with the PEOFs of Newtonian fluids, the wave motions in the velocity profiles

of Maxwell fluids are observed, even if κ̃� 1.
The analytical model developed in this work is of importance because it can describe the

flow behavior of the PEOF of biofluids and is useful as a benchmark for designing microfluidic
devices. The solution derived in this work may be extended to analyzing the mass transport in
EOFs[41] and studing the dispersion of solutes in microchannels. In addition, the results could
be used for studying the instability in channels where biofluids are being transported. Such
PEOFs may also be useful for improving the performance of micromixing due to the transversal
transport of solutes and Taylor dispersion.
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[35] Escandón, J., Jiménez, E., Hernández, C., Bautista, O., and Méndez, F. Transient electroosmotic
flow of Maxwell fluids in a slit microchannel with asymmetric zeta potencials. European Journal
of Mechanics-B/Fluids, 53, 180–189 (2015)

[36] Happel, J. and Brenner, H. Low Reynolds Number Hydrodynamics with Special Applications to
Particulate Media (Vol. 1), Springer, Dordrecht (2012)

[37] Yoo, J. Y. and Joseph, D. D. Hyperbolicity and change of type in the flow of viscoelastic fluids
through channels. Journal of Non-Newtonian Fluid Mechanics, 19, 15–41 (1985)

[38] Wolfram Research Inc. Mathematica, Wolfram Research, Inc., Champaign, Illinois (2016)
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