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haviors. A larger initial carrier density will evidently lead to a lower resonant frequency
and a smaller displacement response, which is a little similar to the dissipative effect.
Both the derived approximate equations and the corresponding qualitative analysis are
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1 Introduction

Owing to their capacity of facilitating the conversion between mechanical and electric en-
ergies, piezoelectric materials have been manufactured into various kinds of surface acoustic
wave (SAW) and bulk acoustic wave (BAW) devices[1–6], e.g., actuators and sensors for wave
generation and reception[2–3], transformers for raising or lowering voltages[4], energy harvesters
for energy conversion and handling[5], and gyroscopes for detecting the vibration of moving
objects[6]. During the past decades, many efforts have been concentrated on the inner physi-
cal and mechanical properties of these piezoelectric devices, including temperature stability[7],
initial bias[8], material coefficient inhomogeneity[9], dissipation[10], viscous effect[11], and large
deformation and nonlinearity[5]. Simplifying piezoelectric materials into dielectrics (insulators)
is a well-known theoretical methodology[12], in which small electrical conduction is usually ig-
nored. Generally, no real material can be considered as perfect insulators[13], since all existing
materials show certain levels of electrical conduction. Therefore, the zero charge equation of
electrostatics and boundary conditions has been improved[14], which can effectively simulate the
effect of real current. It has been revealed that low ohmic conduction and related dissipative
effects should also be considered in quartz crystals, which are usually treated as good insulators,
especially when the Q values (quality factor) of these devices are calculated[14]. To some extent,
the effect of semi-conduction on the performance of piezoelectric devices is unknown, which is
just the origin of the present contribution. Hence, in the present work, we consider the piezo-
electric semiconductor beam as a research target, and discuss its basic mechanical and physical
behaviors to reveal the semiconduction effect on the behaviors of piezoelectric materials.

As we know, piezoelectric materials belong to anisotropic media, and extension may induce
mechanical deformations, e.g., flexure, shear, and torsion. The deformation in piezoelectric
materials is very complex, and the static and dynamic properties are difficult to be analyzed.
Even for an infinite plate or a finite beam, few exact solutions can be obtained theoretically at
present. In other words, classical three-dimensional (3D) equations are difficult to be used in
the direct analysis of single vibration modes[15], and improvement or approximation should be
provided[16–17]. Hence, under the framework of continuum mechanics, we will propose a double
power series expansion technique in this paper to derive the approximate one-dimensional (1D)
equations of a piezoelectric semiconductor beam. Some necessary stress relaxation relations
are introduced, and the extension, flexure, and shear constitutive relations are revised corre-
spondingly. For piezoelectric semiconductor materials, the carrier diffusion not only contributes
to the current, but also contributes to the carrier drift under an electric field associated with
the ohmic conduction[18]. The current boundary condition is rewritten. Based on the derived
equations, the extensional motion of a ZnO beam is considered as the numerical simulation,
and the effect of the initial carrier density on the extensional behavior is discussed in detail.
The theoretical equations and numerical outcome are general, which can clearly interpret the
inner physical mechanism of the semiconductors in the piezoelectrics and provide theoretical
guidance for further experimental design of piezoelectric semiconductor devices.

2 Basic 3D equations

Similar to piezoelectrics, the basic coupled electro-mechanical behavior of piezoelectric semi-
conductors can be analyzed theoretically in the framework of continuum mechanics[19–20]. We
consider a homogeneous one-carrier piezoelectric semiconductor under a uniform direct current
(DC) electric field Ej with the carrier charge q and the initial steady state carrier density n.
In the linear theory of piezoelectricity, the corresponding displacement component ui, electri-
cal potential function ϕ, and perturbation of the carrier density n should, respectively, satisfy
Newton’s law, Gauss’s law of electrostatics, and the conservation of charge[18–20].

Tij,j + ρfi = ρüi, Di,i = qn, qṅ + Ji,i = 0, (1)
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where Tij , Di, and Ji denote the components of the stress, the electric field, and the electric
current, respectively. ρ is the mass density, and fi is the body force per unit mass. A superim-
posed dot represents differentiation with respect to the time t. The summation convention for
repeated tensor indices is used. Equations (2) and (3) are only suitable for positive holes, which
are just as an example in the present contribution. From the mathematical view, if electrons
are considered, the two equations are still applicable after n (or q) is replaced by −n (or −q).
The generalized constitutive relations of piezoelectric semiconductors are[18–20]

Sij = sijklTkl + ekijEk, Di = eiklTkl + εikEk, Ji = qnμijEj + qnμijEj − qdijNj, (2)

where sijkl and ekij represent the elastic compliances, εik is the piezoelectric constant, μij is the
dielectric permittivity, and dij represents the diffusion constant. For electrons, Eq. (2) should
be improved as follows:

Ji = qnμijEj + qnμijEj + qdijNj.

Here, the strain tensor Sij , electric field Ei, and carrier density gradient Ni are, respectively,
defined by

Sij =
1
2
(ui,j + uj,i), Ei = −ϕ,i, Ni = n,i. (3)

In order to solve the above differential equations, necessary boundary conditions should be
adopted. If the unit outward normal vector of the boundary is denoted by ζ, the mechanical
displacement component ui or the traction vector Tijζj , the electric potential function ϕ or the
normal component of the electric displacement vector Diζi, and the carrier density n or the
normal current Jiζi may be prescribed to obtain the closed-form solution to the problem[21].
The boundary condition containing the normal current Jiζi should be improved into ζi(Ḋi + Ji)
for the piezoelectric semiconductor[12].

3 Double power series expansion technique

The considered piezoelectric semiconductor beam with a rectangular cross section is shown
in Fig. 1, where the length is much larger than the width and thickness, i.e., c � a, b. Under this
condition, the reduced 1D equations for the piezoelectric semiconductor beam can be derived
with the mechanical displacement component ui, electrical potential function ϕ, and perturba-
tion of the carrier density n written by the following double power series expansions[22–25]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui =
∞∑

m,p=0

xm
1 xp

2u
(m,p)
i (x3, t),

ϕ =
∞∑

m,p=0

xm
1 xp

2ϕ
(m,p)(x3, t),

n =
∞∑

m,p=0

xm
1 xp

2n
(m,p)(x3, t).

(4)

2b

2a

2cx2

x1
x3

Fig. 1 Theoretical model of a piezoelectric semiconductor beam with a rectangular cross section
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It should be stressed here that, the full mechanical properties of the piezoelectric semicon-
ductor beam have been included by the expansions in Eq. (4) and the general derivation. Some
particular motion for extension can be deduced from this expression. For example, the usual
zeroth-order theory can be obtained easily when the series is truncated with only one term,
i.e., m = p = 0. The first-order theory for the coupled extensional and flexural motion cor-
responds to the cases where m and p are smaller than 2. Similarly, the related higher-order
theory with larger m and p, which could depict various deformations of the cross section, can
also be captured[23–25]. Based on the double power series, the corresponding strain tensor Sij ,
electric field Ei, and carrier density gradient Ni in Eq. (3) can be written as follows:

Sij =
∞∑

m,p=0

xm
1 xp

2S
(m,p)
ij , Ei =

∞∑
m,p=0

xm
1 xp

2E
(m,p)
i , Ni =

∞∑
m,p=0

xm
1 xp

2N
(m,p)
i , (5)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S
(m,p)
ij =

1
2
(u(m,p)

i,j + u
(m,p)
j,i ) + (m + 1)(δ1iu

(m+1,p)
j + δ1ju

(m+1,p)
i )

+ (p + 1)(δ2iu
(m,p+1)
j + δ2ju

(m,p+1)
i ),

E
(m,p)
i = −ϕ

(m,p)
,i − (m + 1)δ1iϕ

(m+1,p)
i − (p + 1)δ2iϕ

(m,p+1)
i ,

N
(m,p)
i = n

(m,p)
,i + (m + 1)δ1in

(m+1,p)
i + (p + 1)δ2in

(m,p+1)
i .

(6)

Correspondingly, the generalized constitutive relations of the piezoelectric semiconductors
can be expressed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
r,s=0

A(mprs)S
(r,s)
ij = sijklT

(m,p)
kl +

∞∑
r,s=0

A(mprs)ekijE
(r,s)
k ,

D
(m,p)
i = eiklT

(m,p)
kl +

∞∑
r,s=0

A(mprs)εikE
(r,s)
k ,

J
(m,p)
i = q

∞∑
r,s=0

A(mprs)(nμijE
(r,s)
j + μijEjn

(r,s) − dijN
(r,s)
j ),

(7)

where the stress resultant T
(m,p)
ij , electric displacement resultant D

(m,p)
i , and electric current

resultant J
(m,p)
i are, respectively, defined by

T
(m,p)
ij =

∫
A

Tijx
m
1 xp

2dA, D
(m,p)
i =

∫
A

Dix
m
1 xp

2dA, J
(m,p)
i =

∫
A

Jix
m
1 xp

2dA. (8)

In the above equations, A = 4ab is the area of the cross section, and

A(mprs) =
∫

A

xm+r
1 xp+s

2 dA =

⎧⎪⎨⎪⎩
4am+r+1bp+s+1

(m + r + 1)(p + s + 1)
, m + r and p + s are even,

0, else.

(9)
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Multiplying Eq. (1) by xm
1 xp

2 and integrating, we can obtain the final 1D governing equations
as follows[16–18,22–25]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T
(m,p)
3i,3 − mT

(m−1,p)
1i − pT

(m,p−1)
2i + F

(m,p)
i = ρ

∞∑
r,s=0

A(mprs)ü
(r,s)
i ,

D
(m,p)
3,3 − mD

(m−1,p)
1 − pD

(m,p−1)
2 + D(m,p) = q

∞∑
r,s=0

A(mprs)n
(r,s),

q
∞∑

r,s=0

A(mprs)ṅ
(r,s) + J

(m,p)
3,3 − mJ

(m−1,p)
1 − pJ

(m,p−1)
2 + J (m,p) = 0,

(10)

where

F
(m,p)
i = T

(m,p)
i + ρf

(m,p)
i , f

(m,p)
i =

∫
A

fix
m
1 xp

2dA.

Meanwhile, the corresponding surface traction resultant T
(m,p)
i , electric displacement resultant

D(m,p), and electric current resultant J (m,p) of various orders are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T
(m,p)
i = am

∫ b

−b

(
T1i(a) − (−1)mT1i(−a)

)
xp

2dx2

+ bp

∫ a

−a

(
T2i(b) − (−1)pT2i(−b)

)
xm

1 dx1,

D(m,p) = am

∫ b

−b

(
D1(a) − (−1)mD1(−a)

)
xp

2dx2

+ bp

∫ a

−a

(
D2(b) − (−1)pD2(−b)

)
xm

1 dx1,

J (m,p) = am

∫ b

−b

(
J1(a) − (−1)mJ1(−a)

)
xp

2dx2

+ bp

∫ a

−a

(
J2(b) − (−1)pJ2(−b)

)
xm

1 dx1.

(11)

4 1D theory for the piezoelectric semiconductor beam

Corresponding to different truncations of the double power series, different cases degenerated
from the 1D theory will be introduced and explained in detail in the following content.
4.1 Zeroth-order theory for extension

The zeroth-order theory for extension can be deduced easily when the series is truncated
with only one term, i.e., m = p = 0. It is valid when the concerned wavelength is much larger
than the dimensions of the rectangular cross section[26]. The main characteristics of the beam
will be controlled by u

(0,0)
3 , ϕ(0,0), and n(0,0). The major strain component is

S3 = S33 = u
(0,0)
3,3 . (12)

Considering the Poisson effect, other zeroth-order strain components cannot be set to zero.
Nevertheless, they will be eliminated instead. This process is taken as the stress relaxation
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procedure[16,18,24–26]. For convenience, the usual compact matrix notation[24] with u, v =
1, 2, · · · , 6 will be adopted, so that Eq. (7) can be written as follows:

A(0000)S
(0,0)
u = suvT (0,0)

v + A(0000)ekuE
(0,0)
k , (13)

D
(0,0)
i = eiuT (0,0)

u + A(0000)εikE
(0,0)
k , (14)

J
(0,0)
i = qA(0000)(nμijE

(0,0)
j + μijEjn

(0,0) − dijN
(0,0)
j ), (15)

where A(0000) = A = 4ab. Meanwhile, considering that the extension of the beam is mainly
represented by the major stress T

(0,0)
3 and the beam features a slender shape with c � a, b, we

can set[16,18,24–25]

T
(0,0)
1 = T

(0,0)
2 = T

(0,0)
4 = T

(0,0)
5 = T

(0,0)
6 = 0, (16)

which is just the stress relaxation condition. Then, the expression of T
(0,0)
3 can be degenerated

from Eq. (13), i.e.,

T
(0,0)
3 = 4ab(c̃33S

(0,0)
3 − ẽk3E

(0,0)
k ), (17)

where

c̃33 =
1

s33
, ẽk3 =

ek3

s33
.

Furthermore, the corresponding zeroth-order constitutive relations governing D
(0,0)
i and J

(0,0)
i

can be obtained via Eqs. (13)–(17) as follows:

D
(0,0)
i = 4ab(ẽi3S

(0,0)
3 + ε̃ikE

(0,0)
k ), (18)

J
(0,0)
i = 4abq(nμijE

(0,0)
j + μijEjn

(0,0) − dijN
(0,0)
j ), (19)

where

ε̃ik = εik − ei3ek3

s33
.

On the basis of stress relaxation, the final governing equations for the zeroth-order theory of
the piezoelectric semiconductor beam (see Fig. 1) can be summarized as follows:

T
(0,0)
33,3 + F

(0,0)
3 = 4abρü

(0,0)
3 , (20)

D
(0,0)
3,3 + D(0,0) = 4abqn(0,0), (21)

4abqṅ(0,0) + J
(0,0)
3,3 + J (0,0) = 0. (22)

To obtain the closed-form solutions, u
(0,0)
3 or T

(0,0)
3 , ϕ(0,0) or D

(0,0)
3 , and n(0,0) or (Ḋ(0,0)

3 +
J

(0,0)
3 ) need to be prescribed at the end of x3 = ±c.

4.2 First-order theory for the coupled extensional and flexural motions
Actually, if a finite piezoelectric semiconductor beam suffers from the external homogeneous

pressure, extensional motion will occur, accompanied with inevitable flexural and torsional
deformations. This is due to the anisotropy of the material. The piezoelectric semiconductor
beam shown in Fig. 1 is transversely isotropic with the polarization along the z-axis, and does
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not exhibit coupling to torsional modes[24–25]. Therefore, the aforementioned equations can
be reduced to a first-order theory for coupled extensional and flexural motion without torsion.
In this case, the equations containing extension (u(0,0)

3 ), flexure (u(0,0)
1 and u

(0,0)
2 ), and shear

deformations (u(1,0)
3 and u

(0,1)
3 ) with electrical potential functions (ϕ(0,0), ϕ(1,0), and ϕ(0,1)) and

the perturbation of the carrier density (n(0,0), n(1,0), and n(0,1)) can be retained from Eq. (10)
as follows:

T
(0,0)
33,3 + F

(0,0)
3 = 4abρü

(0,0)
3 , (23)⎧⎨⎩T

(0,0)
31,3 + F

(0,0)
1 = 4abρü

(0,0)
1 ,

T
(0,0)
32,3 + F

(0,0)
2 = 4abρü

(0,0)
2 .

(24)

⎧⎪⎪⎨⎪⎪⎩
T

(1,0)
33,3 − T

(0,0)
13 + F

(1,0)
3 =

4
3
a3bρü

(1,0)
3 ,

T
(0,1)
33,3 − T

(0,0)
23 + F

(0,1)
3 =

4
3
ab3ρü

(0,1)
3 .

(25)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

D
(0,0)
3,3 + D(0,0) = 4abqn(0,0),

D
(1,0)
3,3 − D

(0,0)
1 + D(1,0) =

4
3
a3bqn(1,0),

D
(0,1)
3,3 − D

(0,0)
2 + D(0,1) =

4
3
ab3qn(0,1).

(26)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4abqṅ(0,0) + J
(0,0)
3,3 + J (0,0) = 0,

4
3
a3bqṅ(1,0) + J

(1,0)
3,3 − J

(0,0)
1 + J (1,0) = 0,

4
3
ab3qṅ(0,1) + J

(0,1)
3,3 − J

(0,0)
2 + J (0,1) = 0.

(27)

The corresponding strain components and electric fields of various orders are, respectively,
stated as follows:

S
(0,0)
33 = u

(0,0)
3,3 , 2S

(0,0)
31 = u

(0,0)
1,3 + u

(1,0)
3 , 2S

(0,0)
32 = u

(0,0)
2,3 + u

(0,1)
3 , (28)

S
(1,0)
33 = u

(1,0)
3,3 , S

(0,1)
33 = u

(0,1)
3,3 , (29)

E
(0,0)
3 = −ϕ

(0,0)
,3 , E

(0,0)
1 = −ϕ(1,0), E

(0,0)
2 = −ϕ(0,1), (30)

E
(1,0)
3 = −ϕ

(1,0)
,3 , E

(0,1)
3 = −ϕ

(0,1)
,3 . (31)

Similarly, the relevant zeroth- and first-order gradients of the carrier density are stated, respec-
tively, as follows:

N
(0,0)
3 = n

(0,0)
,3 , N

(0,0)
1 = n(1,0), N

(0,0)
2 = n(0,1), (32)

N
(1,0)
3 = n

(1,0)
,3 , N

(0,1)
3 = n

(0,1)
,3 . (33)

In the zeroth-order constitutive relations, the shear force resultants T
(0,0)
4 and T

(0,0)
5 , which are

caused by flexure, cannot be set to zero, while the other stress resultant components in Eq. (16)
are null[16,18,24–25], i.e.,

T
(0,0)
1 = T

(0,0)
2 = T

(0,0)
6 = 0. (34)
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Equation (34) is the stress relaxation condition for the zeroth-order components, in which the
extension with the Poisson effect has been considered. Introducing α, β = 3, 4, 5 and μ = 1, 2, 6,
it can be expressed as T

(0,0)
μ = 0. Then, Eq. (13) can be rewritten as follows:

4abS(0,0)
α = sαβT

(0,0)
β + 4abekαE

(0,0)
k . (35)

Similarly, Eq. (35) can be expressed in an inverted form as follows:

T (0,0)
α = 4ab(ĉαβS

(0,0)
β − êkαE

(0,0)
k ), (36)

where

ĉαβ =
1

sαβ
, êkα =

ekβ

sαβ
.

Substituting Eq. (36) into Eqs. (14) and (15) yields

D
(0,0)
i = 4ab(êiαS(0,0)

α − ε̂ikE
(0,0)
k ), (37)

J
(0,0)
i = 4abq(nμijE

(0,0)
j + μijEjn

(0,0) − dijN
(0,0)
j ), (38)

where

ε̂ik = εik − eiαekβ

sαβ
.

In the following, the first-order constitutive relations will be introduced. The flexural defor-
mations emerging in the x1- and x2-directions should be considered separately. For example,
the major first-order resultant corresponding to the flexure in the x1-direction is the bending
moment T

(1,0)
3 . Therefore, it is suitable that the following first-order stress resultants are set

to zero[16,18,24–25]:

T
(1,0)
1 = T

(1,0)
2 = T

(1,0)
4 = T

(1,0)
5 = T

(1,0)
6 = 0. (39)

If

m = 1, p = 0, r = 1, s = 0,

the following relations can be obtained from Eq. (7):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A(1010)S

(1,0)
u = suvT

(1,0)
v + A(1010)ekuE

(1,0)
k ,

D
(1,0)
i = eiuT (1,0)

u + A(1010)εikE
(1,0)
k ,

J
(1,0)
i = qA(1010)(nμijE

(1,0)
j + μijEjn

(1,0) − dijN
(1,0)
j ),

(40)

where
A(1010) =

4
3
a3b.

Hence, the first-order constitutive relations in the x1-direction are⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

T
(1,0)
3 =

4
3
a3b(c̃33S

(1,0)
3 − ẽk3E

(1,0)
k ),

D
(1,0)
i =

4
3
a3b(ẽi3S

(1,0)
3 + ε̃ikE

(1,0)
k ),

J
(1,0)
i =

4
3
a3bq(nμijE

(1,0)
j + μijEjn

(1,0) − dijN
(1,0)
j ).

(41)
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Similarly, the major first-order resultant corresponding to the flexure in the x2-direction is the
bending moment T

(0,1)
3 . Therefore, the stress relaxation condition is

T
(0,1)
1 = T

(0,1)
2 = T

(0,1)
4 = T

(0,1)
5 = T

(0,1)
6 = 0. (42)

Correspondingly, the first-order constitutive relations in the x2-direction can be obtained as
follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

T
(0,1)
3 =

4
3
ab3(c̃33S

(0,1)
3 − ẽk3E

(0,1)
k ),

D
(0,1)
i =

4
3
ab3(ẽi3S

(0,1)
3 + ε̃ikE

(0,1)
k ),

J
(0,1)
i =

4
3
ab3q(nμijE

(0,1)
j + μijEjn

(0,1) − dijN
(0,1)
j ).

(43)

Up to now, the 1D equations have been presented in detail for the first-order theory. Totally
speaking, these equations can be classified into three categories, i.e., the dynamic equilibrium
equations, generalized geometric equations, and generalized constitutive equations. The dy-
namic equilibrium equations consist of extension (23), flexure (24) with shear deformations
(25), Gauss’s law of electrostatics (26), and conservation of charge (27). The generalized ge-
ometric equations include the strain-displacement relationships (28) and (29), electric field-
potential function relationships (30) and (31), and the relationships (32) and (33) between the
perturbation of the carrier density and its gradient. The constitutive equations contain the
zeroth-order constitutive relationships (36)–(38) and the first-order constitutive relationships
in the x1- and x2-directions (41)–(43). With successive substitutions, the governing equations
(23)–(27) can be written as eleven equations containing eleven unknowns, i.e., u

(0,0)
3 , u

(0,0)
1 ,

u
(0,0)
2 , u

(1,0)
3 , u

(0,1)
3 , ϕ(0,0), ϕ(1,0), ϕ(0,1), n(0,0), n(1,0), and n(0,1). Similarly, in order to obtain

the closed-form solutions, u
(0,0)
3 or T

(0,0)
3 , u

(0,0)
1 or T

(0,0)
5 , u

(0,0)
2 or T

(0,0)
4 , u

(1,0)
3 or T

(1,0)
3 , u

(0,1)
3

or T
(0,1)
3 , ϕ(m,n) or D

(m,n)
3 , and n(m,n) or (Ḋ(m,n)

3 + J
(m,n)
3 ) should be prescribed at x3 = ±c

with (m, n) = (0, 0), (1, 0), and (0,1) for mechanical and electrical boundary conditions.
4.3 Reduction to elementary flexure

As a reduction of the first-order theory, the case of elementary flexure will be given in this
subsection. For the elementary flexure without shear deformations, the corresponding rotatory
inertia terms ü

(1,0)
3 and ü

(0,1)
3 in Eq. (25) are set to be zero[22–25] so that

T
(1,0)
33,3 − T

(0,0)
13 + F

(1,0)
3 = 0, T

(0,1)
33,3 − T

(0,0)
23 + F

(0,1)
3 = 0. (44)

After eliminating T
(0,0)
13 and T

(0,0)
23 , the dynamic equilibrium equations for elementary flexure

can be obtained as follows:

T
(1,0)
33,33 + F

(0,0)
1 + F

(1,0)
3,3 = 4abρü

(0,0)
1 , T

(0,1)
33,33 + F

(0,0)
2 + F

(0,1)
3,3 = 4abρü

(0,0)
2 . (45)

Correspondingly, the zeroth-order flexural shear strains S
(0,0)
31 and S

(0,0)
32 should be set to be

zero. Therefore,

S
(0,0)
31 =

1
2
(u(0,0)

1,3 + u
(1,0)
3 ) = 0, S

(0,0)
32 =

1
2
(u(0,0)

2,3 + u
(0,1)
3 ) = 0, (46)

S
(1,0)
33 = −u

(0,0)
1,33 , S

(0,1)
33 = −u

(0,0)
2,33 . (47)

Similarly, the theory of extension and elementary flexure also contains three categories
of equations, i.e., the dynamic equilibrium equations, generalized geometric equations, and
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generalized constitutive equations. The dynamic equilibrium equations consist of extension (23),
flexure (45), Gauss’s law of electrostatics (26), and conservation of charge (27). The generalized
geometric equations are composed of extensional strain (28), flexural strains (47), electric field-
potential function relationships (30) and (31), and the relationships (32) and (33) between
the perturbation of the carrier density and its gradient relation. The constitutive equations
are, respectively, the extensional constitutive relationship (36) when α = 3, the relationship
between the shear force and bending moment (44), and other constitutive relationships (37)
and (38). After necessary substitutions and derivations, these equations can be simplified as
nine equations with nine unknowns, i.e., u

(0,0)
3 , u

(0,0)
1 , u

(0,0)
2 , ϕ(0,0), ϕ(1,0), ϕ(0,1), n(0,0), n(1,0),

and n(0,1). Similarly, nine boundary conditions should be prescribed at x3 = ±c.

5 Static analysis of the extensional motion

As an application of the 1D equations, the static extensional motion of the piezoelectric
semiconductor beam is considered firstly. Equations (20)–(22) can be reduced to

T
(0,0)
33,3 = 0, D

(0,0)
3,3 = 4abqn(0,0), J

(0,0)
3,3 = 0. (48)

Assuming that E3 = 0 and substituting the generalized constitutive equations for the zeroth-
order theory, i.e., Eqs. (17)–(19), into Eq. (48), we can get the following dynamic equilibrium
equations: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c̃33S
(0,0)
3,3 − ẽ33E

(0,0)
3,3 = 0,

ẽ33S
(0,0)
3,3 + ε̃33E

(0,0)
3,3 = qn(0,0),

nμ33E
(0,0)
3,3 − d33n

(0,0)
,33 = 0.

(49)

S
(0,0)
3 , E

(0,0)
3 , and n(0,0) can be decoupled easily from Eq. (49). Therefore,

n
(0,0)
,33 = k2n(0,0), (50)

where

k2 =
qnμ33

κ33d33
, κ33 = ε̃33 +

ẽ2
33

c̃33
.

For the positive hole, i.e., q > 0, the solution can be obtained easily as follows:

n(0,0) = C1 sinh(kx3), (51)

where C1 is an undetermined coefficient, and only the symmetric mode in the x3-direction is
considered. Conversely, if the electron with q < 0 is considered, the second and third expressions
in Eq. (49) should be rewritten as follows:

ẽ33S
(0,0)
3,3 + ε̃33E

(0,0)
3,3 = −qn(0,0), nμ33E

(0,0)
3,3 + d33n

(0,0)
,33 = 0. (52)

Using the same procedure, the same expression as Eq. (51) can be derived. Taking the
positive hole as an example, the electrical potential and displacement components are stated,
respectively, as follows:

ϕ(0,0) = − q

k2κ33
C1 sinh (kx3) − C2x3, (53)

u
(0,0)
3 =

ẽ33

c̃33

q

k2κ33
C1 sinh (kx3) + C3x3, (54)
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where C2 and C3 are integration constants. Correspondingly,⎧⎪⎪⎪⎨⎪⎪⎪⎩
T

(0,0)
33 = 4ab(c̃33C3 − ẽ33C2),

D
(0,0)
3 = 4ab

( q

k
C1 cosh (kx3) + ẽ33C3 + ε̃33C2

)
,

J
(0,0)
3 = 4abqnμ33C2.

(55)

Only the symmetric extensional modes are considered, and the boundary condition at x3 = c
(see Fig. 1) is sufficient for solving the static problem. If the symmetric deformation is caused
by the carrier density perturbation n0 at the boundary x3 = c, i.e.,

n(0,0)
∣∣∣
x3=c

= n0, (56)

which requires

C1 =
n0

sinh(kc)
. (57)

(i) For the electrical open case, D
(0,0)
3 should satisfy

D
(0,0)
3

∣∣∣
x3=c

= 0. (58)

Therefore,

q

k
C1 cosh(kc) + ẽ33C3 + ε̃33C2 = 0. (59)

(ii) However, when the edge is electrically shorted, the electric potential equals zero, i.e.,

ϕ(0,0)
∣∣∣
x3=c

= 0. (60)

Then, the integration constant C2 is

C2 = − qn0

k2κ33c
. (61)

(iii) When the two ends at x3 = ±c are free, T
(0,0)
33 vanishes at both ends, i.e.,

T
(0,0)
33

∣∣∣
x3=c

= 0, (62)

which requires

C3 =
ẽ33

c̃33
C2. (63)

In fact, it is identically zero along the whole beam.
(iv) If the end of the piezoelectric semiconductor beam is fixed at x3 = ±c, u

(0,0)
3 is confined

as follows:

u
(0,0)
3

∣∣∣
x3=c

= 0, (64)

which means

C3 = − ẽ33

c̃33

qn0

k2κ33c
. (65)
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In general, the boundary conditions come in four types: electrically open and free ends (OF),
electrically shorted and free ends (SF), electrically open and simply supported ends (OS), and
electrically shorted and simply supported ends (SS). The four cases will be discussed in detail
in the following section.

For the numerical results, the parameters of the plate of ZnO beam are as follows[18,28–30]:⎧⎨⎩ c̃33 = 211 GPa, ẽ33 = 1.32 C · m−2, ε̃33 = 8.85 × 10−11 F · m−1,

ρ = 5 700 kg · m−3, q = 1.602 × 10−19 C, μ33 = 1 350 cm2 · V−1 · s−1,

and d33 = μ33k
′T/q, where k′ is the Boltzmann constant, and T = 300 K is the absolute

temperature[21]. The length is 10 cm with the external n0 fixed to 1 × 1016 m−3.
Figure 2 shows the static displacement distribution along the x3-direction for different

boundary conditions. The cases of SF, OS, and SS have the same displacement distribution,
which can be proven from Eqs. (54), (61), (63), and (65). The amplitude of OF is smaller than
those of the aforementioned three cases. The deformations are mainly focused on the end of
the piezoelectric semiconductor beam. At the region of |x3| < 4 cm, the displacement almost
remains at zero. Meanwhile, the initial carrier density n has a significant effect on the displace-
ment distribution (see Fig. 3). A large n leads to a small amplitude, which implies dissipation
as a result of semiconduction.

  

Fig. 2 Static displacement distribution along
the x3-direction for different boundary
conditions

 
 

 

⎯
⎯
⎯
⎯

Fig. 3 Effects of the initial carrier density n
on the static displacement distribution
along the x3-direction (OS condition)

6 Dynamic analysis of the extensional motion

Typically, wave devices, which are made of piezoelectric materials or semiconductors, are
very small with the size on the order of centimeter, sometimes even on the order of millime-
ter. Investigating the dynamic properties of piezoelectric semiconductor beams seems to be
more valuable. Taking the aforementioned 1D extensional motion as an example, the dynamic
behavior of the piezoelectric semiconductor beam can be controlled by the following equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c̃33u
(0,0)
3,33 + ẽ33ϕ

(0,0)
,33 = ρü

(0,0)
3 ,

ẽ33u
(0,0)
3,33 − ε̃33ϕ

(0,0)
,33 = qn(0,0),

ṅ(0,0) − nμ33ϕ
(0,0)
,33 − d33n

(0,0)
,33 = 0.

(66)
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A solution of Eq. (66) can be explored as follows[30–33]:

u
(0,0)
3 = A exp(ξx3 + iωt), ϕ(0,0) = B exp(ξx3 + iωt), n(0,0) = C exp(ξx3 + iωt), (67)

where A, B, and C are undetermined constants. ξ and ω stand for the circular frequency and
the wavenumber, respectively. This solution must satisfy the governing equation (66), which
leads to three homogeneous linear equations for A, B, and C, i.e.,⎧⎪⎪⎪⎨⎪⎪⎪⎩

(c̃33ξ
2 + ρω2)A + ẽ33ξ

2B = 0,

ẽ33ξ
2A − ε̃33ξ

2B − qC = 0,

nμ33ξ
2B + (d33ξ

2 − iω)C = 0.

(68)

For the nontrivial solutions of A, B, and C, the determinant of the coefficient matrix of
Eq. (3) should be equal to zero, from which an algebraic equation about ξ can be deduced as
follows: (

− ξ4 +
( c̃33

c33

qnμ33

ε̃33d33
− ω2ρ

c33
+

iω
d33

)
ξ2 +

ρω2

c33

( qnμ33

ε̃33d33
+

iω
d33

))
ξ2 = 0, (69)

where

c33 =
ẽ2
33

ε̃2
33

.

Equation (69) comprises six roots, i.e.,

ξ1,2 = 0, ξ3,4 = ±
√

−B′ +
√

B′2 − 4A′C′

2A′ , ξ5,6 = ±
√

−B′ −√
B′2 − 4A′C′

2A′ , (70)

where

A′ = 1, B′ =
c̃33

c33

qnμ33

ε̃33d33
− ω2ρ

c33
+

iω
d33

, C′ =
ω2ρ

c33

( qnμ33

ε̃33d33
+

iω
d33

)
. (71)

Considering the structural and loading symmetry, only three roots are enough to construct the
solution. Assume

λ1 = ξ1 = 0, λ2 = ξ3 =

√
−B′ +

√
B′2 − 4A′C′

2A′ , λ3 = ξ5 =

√
−B′ −√

B′2 − 4A′C′

2A′ . (72)

Then, Eq. (67) can be written as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u

(0,0)
3 = α2A2 sinh(λ2x3) + α3A3 sinh(λ3x3),

ϕ(0,0) = A1x3 + A2 sinh(λ2x3) + A3 sinh(λ3x3),

n(0,0) = β2A2 sinh(λ2x3) + β3A3 sinh(λ3x3),

(73)

where the common term of exp(iωt) has been omitted for brevity,

αm = − ẽ33λ
2
m

c̃33λ2
m + ρω2

, βm =
nμ33λ

2
m

iω − d33λ2
m

, m = 2, 3, (74)
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and A1, A2, and A3 can be determined with the aid of the boundary conditions. Then, the
stress resultant T

(0,0)
33 , electric displacement resultant D

(0,0)
3 , and current resultant J

(0,0)
3 can

be calculated through⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T
(0,0)
33 =4ab((c̃33α2 + ẽ33)λ2A2 cosh(λ2x3)

+ (c̃33α3 + ẽ33)λ3A3 cosh(λ3x3) + ẽ33A1),

D
(0,0)
3 =4ab((ẽ33α2 − ε̃33)λ2A2 cosh(λ2x3)

+ (ẽ33α3 − ε̃33)λ3A3 cosh(λ3x3) − ε̃33A1),

J
(0,0)
3 = − 4abq((nμ33 + d33β2)λ2A2 cosh(λ2x3)

+ (nμ33 + d33β3)λ3A3 cosh(λ3x3) + nμ33A1).

(75)

Similar to the static analysis, the symmetric vibration mode is excited by the carrier density
perturbation n0 exp(iωt) at the boundary x3 = c. This boundary condition is sometimes difficult
to achieve in practice. Nevertheless, investigating and understanding the effect of semiconductor
properties is still important and beneficial, which can interpret the inner physical mechanism
of semiconductor in piezoelectrics. Therefore,

β2A2 sinh(λ2c) + β3A3 sinh(λ3c) = n0. (76)

The boundary conditions are as follows:
(i) For the electrically open case, Eq. (58) requires

(ẽ33α2 − ε̃33)λ2A2 cosh(λ2c) + (ẽ33α3 − ε̃33)λ3A3 cosh(λ3c) − ε̃33A1 = 0. (77)

(ii) For the electrically shorted case, Eq. (60) can be reduced to

A1c + A2 sinh(λ2c) + A3 sinh(λ3c) = 0. (78)

(iii) When the two ends at x3 = ±c are free, Eq. (62) is equal to

(c̃33α2 + ẽ33)λ2A2 cosh(λ2c) + (c̃33α3 + ẽ33)λ3A3 cosh(λ3c) + ẽ33A1 = 0. (79)

(iv) If the piezoelectric semiconductor beam is simply supported at x3 = ±c, the following
relation can be obtained by use of Eq. (64):

α2A2 sinh(α2c) + α3A3 sinh(α3c) = 0. (80)

The displacement signal calculated at x3 = 0.5c versus the driving frequency for differ-
ent boundary conditions are shown in Fig. 4, from which we can conclude that the displace-
ments assume their own maxima at resonant frequencies. Hence, the piezoelectric semiconduc-
tor beam can be viewed as a resonant device, which has better performance at a particular
frequency[32–33]. As pointed out, the maximum amplitude of the first resonance is not shown
exactly in Fig. 4. However, the first peak value is larger than the others. Actually, the corre-
sponding modes for high resonances have nodal points along the length direction, which will
lead to some voltage cancelation in a piezoelectric semiconductor beam and furthermore smaller
displacement response[34]. Meanwhile, the boundary conditions have significant effects on the
dynamic properties of the beam. As shown in Figs. 4(a) and 4(b), six symmetric resonances
can be identified in the region of ω � 2.4 × 106 rad · s−1 when the ends at x3 = ±c are free
from traction. However, if the ends at x3 = ±c are simply supported (see Fig. 4(c)), only three
resonances can be observed under the same condition. Moreover, the resonance frequency of
OF is larger than that of SF (see Figs. 4(a) and 4(b)).



1D dynamic equations of a piezoelectric semiconductor beam 699

ω ω

ω

Fig. 4 Resonance of excited displacement signal at x3 = 0.5c versus the driving frequency for different
boundary conditions

Actually, the length of the piezoelectric semiconductor beam will have a significant effect on
the resonance frequencies. Usually, a long beam features a relatively low resonance frequency,
which has been proved by Fig. 5. Fortunately, the resonance amplitude is insensitive to the
length parameter (see Fig. 5). To some extent, the insensitivity is beneficial for the design of a
piezoelectric semiconductor beam. The length can be chosen freely according to the external
frequency of the beam, which will not reduce the displacement response.

ω

Fig. 5 Effects of c on the first resonance at x3 = 0.5c under the SF condition (color online)
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As a result of the displacement signal achieving its maximum at the first resonance, the
effect of the initial carrier density n on the first resonance for the extensional vibration is
mainly explored in the following discussion. Both the resonant frequency and the resonance
amplitude are sensitive to the initial carrier density n (see Fig. 6). A large n implies great
dissipation as a result of the semiconduction, and leads to a weak resonance with a small
amplitude. In order to depict the effect of the semiconduction more visually, Fig. 7 presents the
variation trend of resonance frequency and resonance amplitude of the excited displacement
signal at x3 = 0.5c versus the initial carrier density n when the ends at x3 = ±c are electrically
shorted and traction free. The two curves sharply decrease first and then approach some special
values when n increases. The resonance amplitude of excited displacement is not zero when
the initial carrier density n � 1 × 1015 m−3. For instance, when the initial carrier density is
assumed to be n = 1 × 1015 m−3, the amplitude of the excited displacement is 4.12 × 10−10 m,
and when n = 5 × 1015 m−3, the amplitude is 8.3 × 10−11 m. However, our results show that
the corresponding displacement magnitude is 2.064× 10−8 m when n = 2 × 1013 m−3.

⎯
⎯
⎯
⎯
⎯

⎯
⎯
⎯
⎯
⎯

ω ω

Fig. 6 Effects of n on the first resonance of the excited displacement signal at x3 = 0.5c under
different boundary conditions (color online)

ω

⎯

Fig. 7 Resonance frequency and amplitude of the excited displacement signal at x3 = 0.5c versus the
initial carrier density n under the SF condition

7 Conclusions

Totally speaking, the reduced 1D equations of a piezoelectric semiconductor beam with a
rectangular cross section are proposed with the aid of a double power series expansion tech-
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nique. These equations are general and widely applicable, which can be degenerated to a
number of special cases, e.g., extensional motion, coupled extensional and flexural motion with
shear deformations, and elementary flexural motion without shear deformations. Based on
these equations, numerical simulations are carried out sequentially to explore the effects of the
semiconduction on the static deformation and dynamic extensional behaviors of a slender ZnO
beam. It has been revealed that both the resonance frequency and the displacement response
evidently decrease, owing to the initial carrier density existing in piezoelectric semiconductor
media. The equations derived in the present contribution and the qualitative results about the
semiconduction in the piezoelectrics can be viewed as the benchmark for further theoretical and
experimental investigation.
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