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Abstract A polymeric gel is an aggregate of polymers and solvent molecules, which can
retain its shape after a large deformation. The deformation behavior of polymeric gels
was often described based on the Flory-Rehner free energy function without considering
the influence of chain entanglements on the mechanical behavior of gels. In this paper,
a new hybrid free energy function for gels is formulated by combining the Edwards-
Vilgis slip-link model and the Flory-Huggins mixing model to quantify the time-dependent
concurrent process of large deformation and mass transport. The finite element method
is developed to analyze examples of swelling-induced deformation. Simulation results are
compared with available experimental data and show good agreement. The influence of
entanglements on the time-dependent deformation behavior of gels is also demonstrated.
The study of large deformation kinetics of polymeric gel is useful for diverse applications.
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1 Introduction

Elastomeric materials are three-dimensional networks chemically cross-linked by flexible,
long polymeric molecules which are laterally attached to one another at occasional points along
their length. The majority of elastomeric materials can imbibe large quantities of suitable
solvent molecules without disrupting the essential skeletal network structure of the elastomer,
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forming aggregates known as polymeric gels capable of large and recoverable deformation. The
dual characters of a solid and a liquid make the gel ideal for diverse applications: medical
devices[1], drug-delivery systems[2], tissue engineering[3], and actuators responsive to physiolog-
ical cues[4–5].

The past century has witnessed numerous theories describing the behavior of diffusion and
deformation in gel system. Gibbs and Bumstead[6] originally formulated field theories of mass
transport in elastic solids, assuming that the solid and the fluid have equilibrated. Biot[7] com-
bined the thermodynamic theory with Darcy’s law to model the motion of a fluid in a porous
elastic solid, which has been used to analyze phenomena ranging from compaction of soils to
deformation of tissues. However, the works of Gibbs and Biot were not tailored for the poly-
meric gel. Flory and Rehner[8] proposed a free energy function for the gel, giving an explicit
form of the free energy for polymer gels. In their model, the effects of the entropy of stretching
the network, the entropy of mixing the network polymers and the solvent molecules, and the
enthalpy of mixing were taken into consideration.

In recent years, more complete coupled diffusion-deformation theories have emerged to de-
scribe the response of polymeric gels including swelling and drying, squeezing of fluid by applied
the mechanical deformation, and forced permeation. Baek and Pence[9] studied the inhomo-
geneous deformation of hydrogels in equilibrium under saturated and unsaturated conditions
by taking advantage of the theory of Flory and Rehner. Hong et al.[10] formulated a theory of
coupled mass transport and large deformation following Flory and Rehner. Based on the micro-
scopic mixed entropy and Flory-Rehner model, Zhang[11] investigated the strain-stress relation
for the macromolecular microsphere composite hydrogel. The Flory-Rehner model has also
been widely used to describe various approximate behaviors of hydrogels by Cai and Suo[12],
Hong et al.[13–14], Liu et al.[15], and so on.

Though classical, the Flory-Rehner model does not give any consideration to the chain ex-
tensibility, because it assumes that the end-to-end distance of a chain is smaller than the length
of the fully stretched chain. What’s more, the cross-linkages between the networks are assumed
stable, which is not true in practice. So only when the deformation is small can the Flory-
Rehner model successfully predict the mechanics behavior of polymeric gel.

Many attempts have been made to improve the free energy function of polymer gel. Based
on the Mooney-Rivlin model of elasticity, Wineman and Rajagopal[16] developed a specific free
energy function for polymer gel. However, the Mooney-Rivlin model is only valid when the
strains are less than 100%, because it is based on statistical and empirical arguments. Chester
and Anand[17] adopted the non-Gaussian model, also referred as “8-chain model”, to account
for the limited extensibility of the polymer chains. But this model does not take into account
the effects of entanglements. Mergell and Everaers[18] developed a tube model to mimic en-
tanglement effects by introducing constraining potentials. There are some other models which
describe the entanglement contribution to polymer network chains: constrained-junction model
(Flory[19] and Ronca and Allegra[20]), primitive path model (Edwards[21]), diffused-constraint
model (Kloczkowski et al.[22]).

Edwards and Vilgis[23] presented the famous slip-link model based on the concept of entan-
glements, which successfully predicted the hardening of the rubber at a high deformation. Higgs
and Gaylord[24], Urayama[25], and Meissner and Matejka[26] compared the above-mentioned en-
tanglement model with experimental data and found that the Edwards-Vilgis slip-link model
can give the best agreement with experiment. Yan an Jin[27–29] and Yan et al.[30] showed the
significant influence of entanglements on the mechanical behavior of neutral polymer gels, and
amphoteric pH-sensitive macro- and micro-hydrogels, and the numerical results are close to the
experimental data.

To well understand the mechanical properties of gels, we must not only quantify how their
structure and function change in response to stimuli, but also quantify their structure and
function at a given time. Following Yan and Jin[27] and Chester et al.[31], we develop a hybrid
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free energy function of polymeric gels with the Edwards-Vilgis model and the Flory-Huggins
solution theory, in which the entanglements will be taken into consideration. Based on the
theory we will develop a finite element method, by which transport and deformation are solved
concurrently. The method will be implemented in ABAQUS via a user element subroutine
(UEL).

2 Free energy function based on slip-link model

As illustrated in Fig. 1, a fluid-free macroscopically homogeneous polymer gel body occupies
a region ℜ at time t0 in the three-dimensional Euclidean space E, which is often considered
as a reference configuration. X is used to denote an arbitrary material point in ℜ. At time t,
the dry gel imbibes solvent molecules and deforms to current configuration occupying region
r(t) ⊂ E. The mapping x = x(X, t) from reference configuration ℜ to current configuration
r(t) is considered as a smooth bijection. The deformation gradient is given by

F = x ⊗∇ = u ⊗∇ + I, (1)

where I is the unit tensor, and u is the displacement from X to x.

Fig. 1 Deformation of gel from (a) reference configuration to (b) current configuration

We assume that the deformation gradient has a multiplicative decomposition,

F = F eF s, (2)

where F e represents the stretching and rotation of the swollen network structure, and F s

represents the local distortion due to swelling. The swelling is taken to be isotropic with
F s = λsI, where λs denotes the swelling stretch. We assume that the swelling stretch is given
by

λs = (1 + Ωc
R
)1/3, (3)

where Ω is the volume of a mole of fluid molecules, and c
R

denotes the fluid concentration
measured in moles of fluid per unit reference volume of the dry gels.

Following Flory and Rehner, stretching the network of the polymers and mixing the solvent
molecules and the polymers are responsible for the free energy of polymeric gels. So the free
energy of the gel takes the form

W (C, c
R
) = Wmechanical(C, c

R
) + Wmixing(cR

), (4)

where Wmechanical(C, c
R
) is the contribution to the free energy due to the deformation of poly-

mer network, Wmixing(cR
) represents the free energy caused by mixing of the solvent with the

polymer network, and C = F TF is the right Cauchy-Green deformation tensor.
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2.1 Free energy due to deformation

The free energy due to mechanical stretching is described in terms of the Flory-Rehner
framework by Chester et al.[31]. However, the Flory-Rehner free energy function is based on
the simplest affine network model, which does not take entanglements into account. In fact,
the real polymer networks have many chain entanglements. Following Yan and Jin[27], the free
energy of a gel due to mechanical stretching, which is derived from the Edwards-Vilgis slip-link
model[23], can be written as

W1(C)

=
1

2
NckT

((1 − α2)I1

1 − α2I1
+ ln(1 − α2I1)

)

+
1

2
NskT (ln((1 + ηI1 + η2I2 + η3J2)(1 − α2I1)))

+
1

2
NskT

(( I1 + 2ηI2 + 3η2J2

1 + ηI1 + η2I2 + η3J2

)( (1 + η)(1 − α2)

1 − α2I1

))

. (5)

Here, Ii (i = 1, 2, 3) are principal invariants of the right Cauchy-Green deformation tensor
C = F TF ; J is the determinant of deformation gradient detF ; Ns is the concentration of slip
links with representative values Ns from 1024 n/m3 to 1027 n/m3; Nc is the concentration of
crosslinks with representative values Nc from 1024 n/m3 to 1027 n/m3; α is the inextensibility
parameter with representative values α from 0.05 to 0.20; T is the absolute temperature; k is
the Boltzmann constant; and η is the slippage parameter.

Next, we suppose that Wmechanical also have an energetic component

W2(C, c
R
) = J s

(1

2
K(lnJe)2

)

, (6)

which is a contribution meant to reflect the internal energy associated with volumetric mechan-
ical deformation of the swollen elastomer. Here, Je and J s are the determinants of elastic and
swelling distortions, namely, Je = detF e and J s = detF s. K is a bulk modulus of the gel.

To sum up, Wmechanical(C, c
R
) can be written as

Wmechanical(C, c
R
) = W1(C) + W2(C, c

R
). (7)

2.2 Free energy due to mixing

The long polymers and the small solvent molecules form a liquid solution when the long
polymers are not cross-linked. Flory[32] and Huggins[33] have derived the following expression
for the free energy due to mixing,

Wmixing(cR
) = µ0c

R
+ RTc

R

(

ln
( Ωc

R

1 + Ωc
R

)

+
χ

1 + Ωc
R

)

, (8)

where the first term in the bracket is from the entropy of mixing, and the second one is from
the enthalpy of mixing. µ0 is a reference chemical potential for the fluid; R is the gas constant;
and χ is a dimensionless parameter denoting the enthalpy of mixing.

3 Hyperelastic constitutive equations

The tensor field defined in the domain ℜ× [0, +∞) is called the material field, and the one
defined in r(t) × [0, +∞) is called the spatial field. A material field Φ in spatial description
is Φs(x, t) = Φ(X(x, t), t), and at the same time a spatial field Θ has its material description
Θm = Θ(x(X, t), t). They satisfy the relationship

(Φs)m = Φ, (Θm)s = Θ.

Table 1 lists the tensor fields used in this paper.
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Table 1 Tensor fields

Tensor field Material field or spatial field Remark

σ Spatial field True stress

σm Material field σm = σ(x(X, t), t)

c Spatial field True concentration of solvent

cm Material field cm = c(x(X, t), t)

v Spatial field v = (ẋ)s, denoting velocity

ρ Spatial field Density

µ Material field Chemical potential

b Spatial field Body force

W Material field Concentration of free energy

Consider an arbitrary part P in the reference configuration. After the gel is immerged into
the solvent, the part P deforms to Pt at time t. According to the first law of thermodynamics,
the time-rate of change of the total energy equals the sum of the rate of work done by the
external forces

d

dt

(

∫

Pt

1

2
ρv2dv +

∫

P

WdV
)

=

∫

Pt

vbρdv +

∫

∂Pt

vσndv +

∫

P

µċ
R
dV , (9)

where n is the outward unit vector normal to ∂Pt.
The nominal stress tensor, also referred to as the first Piola-Kirchhoff stress tensor, gives

the current force per unit undeformed area: P = σmF−T det F . The momentum balance law
yields the Boussinesq equation of motion

P · ∇ + bmρ0 = ẍρ0, (10)

where ρ0 = ρm detF .
With the aid of the divergence theorem and equation Ḟ = (x⊗∇)· = ẋ⊗∇, the right term

in Eq. (9) can be integrated by parts as
∫

Pt

vbρdv+

∫

∂Pt

vσnda+

∫

P

µċ
R
dV =

∫

P

ẋbmρm detFdV +

∫

∂P

ẋσmF−TN detFdA+

∫

P

µċ
R
dV

=

∫

P

ẋbmρ0dV +

∫

∂P

ẋPNdA +

∫

P

µċ
R
dV

=

∫

P

ẋbmρ0dV +

∫

P

(ẋP ) · ∇dV +

∫

P

µċ
R
dV , (11)

where N is the unit vector normal to ∂P .
The time derivative of kinetic energy in Eq. (9) is

d

dt

(

∫

Pt

1

2
ρv2dv

)

=

∫

P

ẋẍρ0dV. (12)

Substituting Eqs. (10), (11) and (12) into Eq. (9), we arrive at

Ẇ = P : Ḟ + µċ
R
. (13)

Because the second Piola-Kirchhoff stress tensor S is symmetrical, we can conclude

Ẇ =
1

2
S : Ċ + µċ

R
, (14)
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which leads to the constitutive equations of the polymer gels

S = 2
∂W

∂C
, (15)

µ =
∂W

∂c
R

. (16)

3.1 Constitutive equation for chemical potential

We introduce the following polymer volume fraction:

φ =
1

1 + Ωc
R

. (17)

Thus, the determinants of elastic and swelling distortions can be written as

J s = 1 + Ωc
R

=
1

φ
, Je =

detF

1 + Ωc
R

= Jφ. (18)

According to Eq. (16), the chemical potential µ is given by

µ =
∂W

∂c
R

= µ0 + RT ln
( Ωc

R

1 + Ωc
R

)

+ RT
χ + 1

1 + Ωc
R

− RTχ
Ωc

R

(1 + Ωc
R
)2

+
1

2
KΩ

(

ln
Ωc

R

1 + Ωc
R

)2

− KΩ
(

ln
det F

1 + Ωc
R

)

. (19)

Substituting Eq. (18) into Eq. (19) yields

µ = µ0 + RT (ln(1 − φ) + φ + χφ2) − ΩK lnJe +
1

2
ΩK(lnJe)2. (20)

3.2 Constitutive equation for stress

According to Eq. (15), the second Piola-Kirchhoff stress tensor S is given by

S =2
∂W

∂C
= 2

(∂W1

∂I1

∂I1

∂C
+

∂W1

∂I2

∂I2

∂C
+

∂W1

∂J

∂J

∂C

)

+ 2
∂W2

∂C

=2
(∂W1

∂I1

∂I1

∂C
+

∂W1

∂I2

∂I2

∂C
+

∂W1

∂J

∂J

∂C

)

+
K

φ
ln(Jφ)C−T, (21)

where

∂I1

∂C
= I,

∂I2

∂C
= I1I − CT,

∂J

∂C
=

1

2
C−T

√
detC.

The first Piola-Kirchhoff stress can be written as

P = FS = 2
(∂W1

∂I1
F +

∂W1

∂I2
(I1F − FCT) +

∂W1

∂J

(1

2
JF−T

))

+
K

φ
ln(Jφ)F−T. (22)

3.3 Constitutive equation for fluid flux

Let j be the spatial fluid flux, which denotes the number of the small molecules migrating
across unit area in deformed state per unit time. We assume that j depends on the spatial
gradient of the chemical potential as follows:

j = −m(µs ⊗∇), (23)
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where m is a scalar mobility coefficient which in general is an isotropic function of the stretch
and the fluid concentration.

We assume that the mobility at a given temperature T is given by

m =
Dc

RT
, (24)

where D represents a diffusion coefficient, and cm = c
R
/J with c denoting fluid concentration

measured in moles of fluid per unit deformed volume.

4 Finite element implementation

4.1 Governing partial differential equations

Considering the body B, the condition of local force balance requires that the inertia effect
is negligible and that the viscoelastic process in the body is fully relaxed, so that

σ · ∇ + b = 0 in B. (25)

We assume that no chemical reaction occurs, so that the number of the solvent molecules is
conserved[31], namely,

ċ
R

= −J(j · ∇)m in B. (26)

Substituting (17) into (26) yields

φ̇

JΩφ2
− (j · ∇)m = 0 in B. (27)

The stress boundary condition is given by the traction condition

σ · n = t (28)

for all points which lie on the part of the boundary denoted as St, where n is the outward
unit vector normal to St. A quantity with a “bar” denotes a specified function. Similarly, the
displacement boundary condition is given by

u = u (29)

for all points which lie on the part of the boundary denoted as Su. Here, St and Su are
complementary surfaces of the boundary ∂B of the body B in the sense ∂B = Su ∪ St and
Su ∪ St = ∅.

Another pair of boundary conditions in which the chemical potential is specified on Sµ and
the fluid flux on Sj are

{

µ = µ on Sµ,

−j · n = j on Sj .
(30)

Similarly, Sµ and Sj are also complementary surfaces of the boundary ∂B.
To sum up, in the absence of body forces, the strong forms of the coupled partial differential

equations can be written as










σ · ∇ = 0 in B,

σ · n = t on St,

u = u on Su,

(31)











ċ
R

= −J(j · ∇)m in B,

µ = µ on Sµ,

−j · n = j on Sj .

(32)
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4.2 Weak forms of governing equations

A weak form[34] for any set of equations can be constructed by multiplying the equation set
by an arbitrary function which has the same free indices as in the set of governing equations,
and then integrating over the domain of the problem. Firstly, we express the tensor fields in
indicial form, namely,

σ = σijei ⊗ ej, u = uiei, j = jiei, (33)

where ei (i = 1, 2, 3) are the orthogonal bases of tangent space TXE at the point X ∈ E.
Then, multiplying Eqs. (31) and (32) with weighting functions δui and δµ, respectively, and
integrating over the volume of the gel, we obtain

∫

B

σij
∂ui

∂xj
dv −

∫

St

δuitida = 0, (34)

∫

B

− ċ
R

J
δµdv +

∫

B

ji
∂(δµ)

∂xi
dv +

∫

Sj

δµjda = 0, (35)

where δui and δµ vanish on Su and Sµ, respectively. In this paper, the Einstein summation
convention is used, which means that when an index variable appears twice in a term and is
not otherwise defined, it implies summation of that term over all the values of the index.

The finite element approximation to the problem starts by dividing the domain of interest,
B, into a set of subdomains, also called elements, Be, such that

B =
∑

e

Be.

The approximation for displacements and chemical potentials is given by

{

ui = ua
i Na,

µ = µaNa,
(36)

where Na are the element shape functions, ua
i and µa are time-dependent nodal displacements

and chemical potentials, respectively, and the sum ranges over the number of nodes associated
with an element. The weighting functions δui and δµ are interpolated by the same shape
functions

{

δui = δua
i Na,

δµ = δµaNa.
(37)

Substituting Eqs. (36) and (37) into Eqs. (34) and (35), we can obtain the residuals for the
displacement and chemical potential

Ra
i = −

∫

Be

σij
∂Na

∂xj
dv +

∫

Se
t

Natida, (38)

Ra
µ =

∫

Be

φ̇

ΩJφ2
Nadv +

∫

Be

ji
∂Na

∂xi
dv +

∫

Se
t

Najda. (39)

To solve this system of coupled equations, a key step is to get the tangent modulus.
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4.3 Tangent modulus

The fourth-order tensor field tangent modulus A is given by

A =
∂P

∂F
= Aijklei ⊗ ej ⊗ ek ⊗ el. (40)

According to Eq. (22), the first Piola-Kirchhoff stress can be written as

P = FS = 2
(∂W1

∂I1
K1 +

∂W1

∂I2
K2 +

∂W1

∂J
K3

)

+ K4, (41)

where

K1 = F , K2 = I1F − FCT,

K3 =
1

2
JF−T, K4 =

K

φ
ln(Jφ)F−T.

Substituting Eq. (41) into Eq. (40) yields

A = 2
((∂2W1

∂I2
1

∂I1

∂F
+

∂2W1

∂I1∂I2

∂I2

∂F
+

∂2W1

∂I1∂J

∂J

∂F

)

⊗ K1 +
∂W1

∂I1

∂K1

∂F

)

+ 2
(( ∂2W1

∂I2∂I1

∂I1

∂F
+

∂2W1

∂I2
2

∂I2

∂F
+

∂2W1

∂I2∂J

∂J

∂F

)

⊗ K2 +
∂W1

∂I2

∂K2

∂F

)

+ 2
(( ∂2W1

∂J∂I1

∂I1

∂F
+

∂2W1

∂J∂I2

∂I2

∂F
+

∂2W1

∂J2

∂J

∂F

)

⊗ K3

+
∂W1

∂J

∂K3

∂F

)

+
∂K4

∂F
. (42)

In Eq. (42), the second-order tensor fields are

∂I1

∂F
=

∂I1

∂C
:

∂C

∂F
= 2F , (43)

∂I2

∂F
=

∂I2

∂C
:

∂C

∂F
= (I1δij − FmiFmj)(δilFkj + δjlFki)ek ⊗ el, (44)

∂J

∂F
= (det F )F−T = JF−T, (45)

where the Kronecker delta δij are used to modify the subscripts in the coefficients of an expres-
sion.

The fourth-order tensor fields are

∂K1

∂F
=

∂F

∂F
= δikδjlei ⊗ ej ⊗ ek ⊗ el, (46)

∂K2

∂F
=

∂(I1F )

∂F
− ∂(FC)

∂F
= (2FklFij + I1δikδjl)ei ⊗ ej ⊗ ek ⊗ el

− (δikFmlFmj + δkmFilFmj + δjlFinFkn)ei ⊗ ej ⊗ ek ⊗ el, (47)

∂K3

∂F
=

1

2

∂(JF−T)

∂F
=

1

2
J(F−1

lk F−1
ji − F−1

li F−1
jk )ei ⊗ ej ⊗ ek ⊗ el, (48)

∂K4

∂F
=

K

φ
(F−1

lk F−1
ji − ln(Jφ)F−1

li F−1
jk )ei ⊗ ej ⊗ ek ⊗ el. (49)

Substituting Eqs. (43)–(49) into Eq. (42), we can obtain the components Aijkl of the tangent
modulus.
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4.4 Newton procedure

The system of coupled equations (38) and (39) is solved using a Newton procedure. So the
tangents of the residuals are required for the iterative Newton solver:



















Kab
ik = −∂Ra

i

∂ub
k

, Kab
iµ = −∂Ra

i

∂µb
,

Kab
µµ = −

∂Ra
µ

∂µb
, Kab

µk = −
∂Ra

µ

∂ub
k

.

(50)

According to the relationship between the first Piola-Kirchhoff stress P and the true stress
σ,

P = σmF−T detF , (51)

the displacement residual (38) can be written as

Ra
i = −

∫

Be

σij
∂Na

∂xj
dv +

∫

Se
t

Natida

= −
∫

Be

σij
∂Na

∂XJ
F−1

Jj detFdV +

∫

Se
t

Natida

= −
∫

Be

∂Na

∂XJ
PiJdV +

∫

Se
t

Natida (52)

by changing the variable in the integral, where Be is the deformed element from Be.
According to the tangent modulus (40) we have

Kab
ik = −∂Ra

i

∂ub
k

=

∫

Be

∂Na

∂Xj

∂Pij

∂ub
k

dV

=

∫

Be

∂Na

∂Xj

∂Pij

∂Fkn

∂Nb

∂Xn
dV

=

∫

Be

∂Na

∂xj1

Fj1j
∂Pij

∂Fkn

∂Nb

∂xn1

Fn1n
1

detF
dv

=

∫

Be

1

detF
Fj1jAijknFn1n

∂Na

∂xj1

∂Nb

∂xn1

dv

=

∫

Be

(As)ij1kn1

∂Na

∂xj1

∂Nb

∂xn1

dv, (53)

where (As)ij1kn1
is called the spatial tangent modulus,

(As)ij1kn1
=

1

detF
Fj1jAijknFn1n. (54)

Similarly, the remaining tangents are given by

Kab
iµ = − ∂Ra

i

∂µb
=

∫

Be

∂Na

∂xj

∂σij

∂φ
Nbdv, (55)

Kab
µk = −

∂Ra
µ

∂ub
k

= −
∫

Be

m
∂Na

∂xi

∂µ

∂xk

∂Nb

∂xi
dv, (56)
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Kab
µµ = −

∂Ra
µ

∂µb
= −2

∫

Be

φ̇

φ3

∂φ

∂µb

Na

JΩ
dv +

∫

Be

1

φ2

∂φ̇

∂µb

Na

JΩ
dv

+

∫

Be

m
∂Na

∂xi

∂Nb

∂xi
dv +

∫

Be

∂m

∂µb

∂Na

∂xi

∂µ

∂xi
dv. (57)

The integrals in the equations are evaluated numerically by Gaussian-quadrature[35]. The terms

φ̇ and ∂φ̇
∂µb are computed numerically using the finite difference scheme.

We implement our theory in the finite element package ABAQUS by writing the UEL, by
which the displacements and chemical potentials at every point of the gel and at every time are
solved numerically.

5 Numerical examples

In this section, the reference chemical potential µ0 is taken to be 0.0 J/mol, and the bulk
modulus of the gel is K = 100NckT . Let ν be the volume per solvent molecule, so Ω = νNA,
where NA is the Avogadro constant. Considering the relationship between the Boltzmann
constant and the Avogadro constant R = kNA, we have ΩK/(RT ) = 100νNc. We have
normalized the chemical potential µ by RT and the stress by kT/ν.
5.1 Constrained swelling

The kinetic model developed above for the polymeric gels is evaluated by comparing the
numerical results with the experimental data reported by Yoon et al.[36]. In the experiment, thin
layers of poly (N -isopropylacrylamide) hydrogels, bounded to a rigid substrate, were immersed
in deionized water and swelling kinetics were monitored using epi-fluorescence microscopy, as
shown in Fig. 2. The transient change in thickness of the gel normalized by its initial thickness,
∆t/L, is reported.

Fig. 2 Schematic illustrating geometry considered experimentally

This experiment can be idealized as the case of one-dimensional constrained swelling, as
demonstrated in Fig. 3. The dry gel is used as the reference configuration. Let e1 and e2 be the
material coordinates in the lateral directions, and e3 be the material coordinate normal to the
layer pointing upward.

The diffusion coefficient in the experiment is Dex = 1.5×10−11 m2/s. Bouklas and Huang[37]

adjusted the diffusion coefficient to D = 6.87× 10−11 m2/s by comparing the linear poroelastic
and nonlinear theory. The thickness of the initial gel is L. The material properties of the gel
are νNs = 0.01, νNc = 0.03, α = 0.2, η = 0.1, and χ = 0.46. The gel is constrained in the
lateral directions so that the deformation gradient has the matrix representation

[F ] =





1 0 0
0 1 0
0 0 λ3



 . (58)

At time t = 0 s, we take ϕ = 0.999 to avoid numerical singularity, and the determinant
of elastic distortion will be taken as Je = 1. At room temperature, T = 298 K. According
to Eq. (20), we have µ/(RT ) = −5.809. For the mechanical boundary conditions, the traction
condition is that the top face is taken to be traction-free, and the displacement condition is
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Fig. 3 One-dimensional constrained swelling of thin gel layers

u3 = 0 on the bottom face. For the chemical boundary conditions, we prescribe that there is
no flux on the bottom face, and on the top face, the chemical potential is µ0/(RT ) = 0.

In the experiment, different thicknesses for the specimens are used, and normalized simula-
tion and experimental data are presented in Figs. 4 and 5, which shows that the agreement is
good.

∆

-

µ

Fig. 4 Comparison of simulation results
with experimental results of Yoon et
al. with L = 336 µm

∆

-

µ

Fig. 5 Comparison of simulation results with
experimental results of Yoon et al. with
L = 244 µm

5.2 Influence of entanglements on deformation behavior

Next, we consider the transient swelling of a layer of a gel in one-dimensional constrained
swelling. With respect to Fig. 3, the gel is constrained in the lateral e1 and e2 directions, so
that the motion of the gel, as it absorbs the solvent and swells, points the e3 direction. An
arbitrary material point X can be expressed as X = X1e1 + X2e2 + X3e3. Here, the thickness
of the dry gel will be taken as L = 0.001 m, and we will take νNc = 10−3 and χ = 0.1. The
entanglement parameters will be taken as νNs = 1 × 10−3, α = 0.15, and η = 0.1.

Figure 6 demonstrates the stretch λ3 for the gel when it is deforming. There are two
limit states during the deformation. Firstly, at short-time limit, the solvent has no time to
migrate into the polymer, so the stretch inside the gel remains unperturbed. Secondly, as
time progresses, the solvent molecules migrate into the gel gradually, the stretch evolves to the
long-time limit, and the change propagates into the depth of the gel.
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To investigate the effect of entanglements on the stretches, we fix the time at t = 25 000 s.
Firstly, Fig. 7 illustrates that the inextensibility parameter α is inversely proportional to the
range of the stretch λ3. Secondly, as can be seen from Fig. 8, the stretch λ3 rises with increasing
values of Ns/(Nc+Ns). Finally, it can be seen from Fig. 9 that the larger the slippage parameter
η is, the larger the stretch λ3 is.

-

-

Fig. 6 Transient swelling response of gel
predicted by reformed free energy
function based on slip-link model

Fig. 7 Influence of α on stretch λ3

Fig. 8 Influence of Ns/(Nc + Ns) on stretch
λ3

Fig. 9 Influence of η on stretch λ3

5.3 Plane strain

The initial dry gel is taken to be 0.002 m long and 0.002 m tall, as can be seen in Fig. 10. The
gel is allowed to swell freely, and the plane strain conditions are assumed to prevail. According
to the symmetry of the problem we only model one fourth of the gel in simulation. The material
parameters will be fixed (νNs = 0.041 5, νNc = 0.041 5, α = 0.15, χ = 0.1, and η = 0.1). The
diffusion coefficient D takes the value 5 × 10−9 m2/s.

The initial condition for the chemical potential of the dry gel can be computed by Eq. (20)
with φ = 0.999, T = 298 K, Je = 1, and µ0/(RT ) = 0, which is µ/(RT ) = −5.809.

For the mechanical boundary conditions, the traction condition is that the faces AC and
CD are taken to be traction-free, and the displacement conditions are u1 = 0 on face AO and
u2 = 0 on face DO.

For the chemical boundary conditions, we prescribe that there is no flux on faces AO and
DO, and on faces AC and CD, the chemical potential is µ0/(RT ) = 0.
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Fig. 10 Initial dry gel in Cartesian coordinates

Figure 11 illustrates the contours of the polymer volume fraction φ for a gel swelling freely
at different time. Right after the dry gel is put into the solvent, the small molecules do not
have time to diffuse, as can be seen in Fig. 11(a). Then the corners which contact with the
solvent fully swell first, leading to a bowl-like surface of the gel and generating compressive
stress to the gel, which can be seen in Figs. 11(b) and 11(c). The bowl-like surfaces in the
swelling gels can be seen in the experiment conducted by Achilleos et al.[38]. After a long time,
the swelling process reaches equilibrium, and the fully swelling gel becomes homogeneous with
large volumetric change, as shown in Fig. 11(d).

Fig. 11 Contours of polymer volume fraction φ for gel swelling freely at (a) 0 min, (b) 20 min,
(c) 30 min, (d) 2 h (color online)

6 Conclusions

In this paper, we have developed a hybrid free energy function of polymeric gels with the
Edwards-Vilgis model and the Flory-Huggins solution theory, by which a theory of concurrent
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large deformation and diffusion in gels is formulated. Based on the theory, a finite element
method for the transient processes of gel undergoing large deformations is developed. Firstly,
the simulation results are compared with the experimental results of Yoon et al., and the
agreement is good. Secondly, we analyze the influence of the entanglements on the stretch
during the constrained swelling. Finally, the contours of the polymer volume fraction for a
gel swelling freely are given, by which we are able to provide more insight into the transient
swelling phenomena of a gel.

The numerical examples show that the entanglements can exert considerable influence upon
the mechanical behavior of the gels. The material microstructure parameters can be adjusted
to adapt the experiment. The capability of this model is a valuable tool to research into various
potential applications of soft matter.
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