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Abstract The present theoretical assessment deals with the peristaltic-ciliary trans-
port of a developing embryo within a fallopian tubal fluid in the human fallopian tube.
A mathematical model of peristalsis-cilia induced flow of a linearly viscous fluid within a
fallopian tubal fluid in a finite two-dimensional narrow tube is developed. The lubrica-
tion approximation theory is used to solve the resulting partial differential equation. The
expressions for axial and radial velocities, pressure gradient, stream function, volume flow
rate, and time mean volume flow rate are derived. Numerical integration is performed
for the appropriate residue time over the wavelength and the pressure difference over
the wavelength. Moreover, the plots of axial velocity, the appropriate residue time over
wavelength, the vector, the pressure difference over wavelength, and the streamlines are
displayed and discussed for emerging parameters and constants. Salient features of the
pumping characteristics and the trapping phenomenon are discussed in detail. Further-
more, a comparison between the peristaltic flow and the peristaltic-ciliary flow is made as
the special case. Relevance of the current results to the transport of a developing embryo
within a fallopian tubal fluid from ampulla to the intramural in the fallopian tube is also
explored. It reveals the fact that cilia along with peristalsis helps to complete the required
mitotic divisions while transporting the developing embryo within a fallopian tubal fluid
in the human fallopian tube.
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1 Introduction

In the human female abdominal cavity, there exist either a pair of long muscular and narrow
tubes called “fallopian tube”. Each fallopian tube is of 10 cm to 13 cm in length and 0.5 cm to
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1.2 cm in diameter. A fallopian tube has cyclic peristaltic contractions, and the inner surface
is lined with a layer of mucous membrane. The mucous membrane is crowded with secre-
tory and ciliated cells of different heights. Each cilium is about 10 µm long and 0.25 µm in
diameter[1–10]. Secretory cells pour out a small volume of fallopian tubal fluid, which helps to
keep sperm, ovum, and embryo alive and nourish the developing embryo as it is transported to-
wards the uterus[11–12]. Ciliated cells have hair like structures whose swaying motions generate
metachronal wave[13–15]. The cyclic peristaltic contractions of the fallopian tube surface gener-
ate sinusoidal wave[16–25]. The sinusoidal wave and the metachronal wave are in continuum and
merge together to generate a travelling wave. The fluid flow induced by such travelling wave
terms is a peristaltic-ciliary flow. The peristaltic-cilia flow is considered to be a major source
of transportation in the fallopian tube. The peristaltic-cilia flow in the fallopian tube assists
the self propulsion of spermatozoa towards ampulla in the preovulatory phase and facilitates
the transportation of the ovum from the ovaries at the time of ovulation. If fertilization occurs
at ampulla successfully, the peristaltic-cilia flow transports the developing embryo within the
fallopian tubal fluid to intramural, the last region of the fallopian tube[6–9]. Accordingly, the
cyclic peristaltic contractions and the action of cilia tips together play an important role in
transporting the developing embryo from the ampulla to the intramural of the fallopian tube.
The developing embryo then enters the non-pregnant uterus where only peristaltic contractions
of the uterus are present to provide an assistance for implantation during the early process of
human reproduction[8,10].

A fallopian tube is composed of four regions: infundibulum, ampulla, isthmus, and intra-
mural. The infundibulum region which lies near the ovaries is approximately of 1 cm to 2 cm
in length. This region includes finger like fimbria, whose movements are muscle controlled and
densely ciliated, forming a funnel-shaped depository for the capturing of cumulus-oocyte com-
plex. The ampulla, a highly ciliated central portion of the fallopian tube, averages 6 cm to 8 cm
in length, within which the fertilization of ovum by spermatozoa and the initial development of
embryo occur. The isthmus, a less densely ciliated region of the fallopian tube, is approximately
of 2 cm to 3 cm in length. In this region, the transportation of sperm from uterus to ampulla
in the preovulatory phase and embryo from ampulla to uterus after fertilization is regulated.
Mitotic divisions in a developing embryo also take place in this region (isthmus region). Intra-
mural (averaged length 1 cm) is the last region of the fallopian tube. It is likewise isthmus, a
less densely ciliated region of the fallopian tube. It is located within the myometrium of the
uterus and connects isthmus of the fallopian tube with the fundus of the uterus, at which the
fallopian tube empties and where developing embryo is to be implanted[1,3,7–8].

The process of human reproduction begins successfully when a spermatozoon and an ovum
fuse to become an embryo at the ampulla. Soon after fertilization, the initial development begins
in the form of mitotic divisions. The developing embryo is then transported within the fallopian
tubal fluid by a travelling wave. The process of first mitotic division begins which includes the
male and female chromosomes mingling, the replication and division of chromosomes. The
process of first mitotic division still continues, while the developing embryo within the fallopian
tubal fluid then enters the isthmus region. In this region, the embryo undergoes several mitotic
divisions to become a ball of 32 cells, called the morula. The morula continues dividing as it
is transported within the fallopian tubal fluid to the intramural region. Now the developing
embryo is a large mass of cells, called the early blastocyst (a fluid filled cavity), which then enters
the uterus where only peristaltic contractions of the uterus surface assist the transportation of
developing embryo. The late blastocyst with an inner cell mass about 100 µm−150 µm in size,
enters the fundus whereby it attaches to the lining of the fundus, a process called implantation,
and is completed to develop into pregnancy. About 42 mitotic cell divisions take place to
produce a newborn baby. These cells form and function: some nerve cells, some liver cells,
some becoming muscle cells, and so on[2,5–6,8–9].

Eytan and Elad[26] and Eytan et al.[27] incorporated the applications of the peristaltic flow of
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incompressible linearly viscous fluid in a finite channel to the transport of an embryo within the
intrauterine/fallopian tubal fluid. Later, Yaniv et al.[28] simulated the flow of an incompressible
linearly viscous fluid in a closed uterine cavity. However, they neglected the role of the cilia tips
despite the fact that Blake et al.[29] showed that the cilia alone was sufficient to drive a fluid flow
in the fallopian tube. Wakeley[10] developed his own model in which both the cyclic peristaltic
contractions of the channel wall and the swaying motions of the cilia tips which lined the interior
surfaces of the channel walls generated the fluid flow pattern through symmetric channel. He
demonstrated through asymptotic analysis that both the cyclic peristaltic contractions of the
fallopian tube/oviduct wall and the swaying motions of the cilia tips which lined the interior
surfaces of the oviduct work together while transporting the embryo. He concluded that the
ciliary propulsion can be an important factor for the motion of fluid, although it is of smaller
amplitude than the peristaltic waves.

Motivated from the literature[1–15,26–29], for the first time, we develop a two-dimensional
mathematical model to theoretically assess the peristaltic-ciliary transport of a developing em-
bryo within a fallopian tubal fluid in the human fallopian tube. In the current model, we
propose a finite two-dimensional narrow tube which has cyclic peristaltic contractions and its
inner surface is lined with a layer of mucus membrane. The mucus membrane of the tube is
crowded with secretory and ciliated cells of different heights. The cyclic peristaltic contractions
generate sinusoidal wave, and swaying motions of the cilia tips generate metachronal wave. The
secretory cells pour out a small volume of the fallopian tubal fluid. The sinusoidal wave and the
metachronal wave merge together to generate a travelling wave that in turn drives the linearly
viscous fluid within a fallopian tubal fluid through the fallopian tube, from the ampulla to the
intramural of the fallopian tube. We derive the expressions for the axial and radial velocities,
the appropriate residue time over wavelength, the stream function, the pressure gradient, the
pressure difference over wavelength, the volume flow rate, and the time mean volume flow rate.
Through graphs and table, we provide an estimation of the quantitative effects of various pa-
rameters and constants involved in the present analysis. Relevance of the results of current
assessment to the transport of a developing embryo within a fallopian tubal fluid from the
ampulla to the intramural in the fallopian tube is also explored.

The rest of the paper is organized as follows. Section 2 contains the mathematical formula-
tion of the problem, the governing equations of motion, and the solution to the resulting partial
differential equation, and includes expressions for the important physical quantities such as the
appropriate residue time over wavelength tr, the pressure gradient dzp, the pressure difference
over wavelength ∆pλ, the stream function ψ, the volume flow rate q, and the time mean vol-
ume flow rate QT in the moving frame of reference. Effects of the pressure gradient at the tube
entrance ξ, the metachronal wave parameter ǫ, and the amplitude ratio φ are discussed through
graphs and table in Section 3. Concluding remarks are given in Section 4.

2 Mathematical formulation and solution

We consider the peristaltic-ciliary transport of a developing embryo within a fallopian tubal
fluid in the human fallopian tube. As a model, we examine the flow of an incompressible linearly
viscous fluid in a finite two-dimensional narrow tube of mean radius rt. The schematic diagrams
of the finite narrow tube and human fallopian tube are shown in Figs. 1 and 2, respectively. In
Fig. 1, a cylindrical coordinate system is chosen, in which the Z-axis is taken along the tube,
and the R-axis is normal to the tube in the upward direction.

We assume that the tube surface has cyclic peristaltic contractions and the inner surface
of the tube is lined with a layer of mucus membrane. The mucus membrane is crowded with
secretory and ciliated cells. The secretory cells pour out a small volume of fallopian tubal fluid.
The ciliated cells, which are of different heights, form hair like structures. Both the cyclic
peristaltic contractions and the swaying motions of the cilia tips are in continuum and work
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together to generate a travelling wave of the form

Fig. 1 Schematic diagram of the finite narrow tube

-

Fig. 2 Schematic diagram of the human fallopian tube

H(Z, t) = rt + F (Z, t) +G(Z, t), (1)

where F (Z, t) can be viewed as the underlying cyclic peristaltic contractions that generate
sinusoidal wave propagating at a wave speed c with different amplitudes,

F (Z, t) = b sin
(2π

λ
(Z − ct)

)

, (2)

in which b is the amplitude of the sinusoidal wave, λ is the wavelength, and t is any instant
of time[16–25]. G(Z, t) can be thought as the effects of swaying motions of the cilia tips that
generate metachronal wave. The metachronal wave propagates in an elliptical path, in the form
of an envelope at a wave speed c with different amplitudes,

G(Z, t) = Ab
2π

λ
cos

(2π

λ
(κ(Z − ct))

)

sin
(2π

λ
(Z − ct)

)

, (3)

where Ab is the maximum displacement of the material points, κ is the constant, and A is
the amplitude of the metachronal wave of cilia[13–15]. Logical basis behind the formulation of
travelling wave (1) is drawn from the biological contexts of the human fallopian tube[1–3,6–13].

We choose the origin at the midplane so that −rt 6 R 6 rt. We further assume the fallopian
tubal fluid as an incompressible linearly viscous fluid and consider that the linearly viscous fluid
within a fallopian tubal fluid fills the tube. The travelling wave (1) propagates along the surface
of tube at a wave speed c and drives the linearly viscous fluid within a fallopian tubal fluid.

Now, we introduce a moving frame of reference (r, z) at a wave speed c, in which the flow of
the linearly viscous fluid within the fallopian tubal fluid becomes independent of time t. The
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coordinates R and Z, the components of the velocity U and W , the travelling wave H , and
the pressure P in the laboratory frame the of reference are related with the moving frame of
reference coordinates r and z, the components of the velocity u and w, the travelling wave h,
and the pressure p through the following relations:















Z = z + ct, R = r,

W (R,Z, t) = w(r, z) + c, U(R,Z, t) = u(r, z),

H(Z, t) = h(z), P (Z, t) = p(z),

(4)

and scale the following dimensionless parameters:

r =
r

rt
, z =

z2π

λ
, u =

uλ

2πcrt
, w =

w

c
, p =

p2πr2t
µλc

, h =
h

rt
.

The basic equations that govern the two-dimensional flow of an incompressible linearly
viscous fluid neglecting the thermal effects and in the absence of body force in the moving
frame of reference, in a dimensionless form, are given by

∂r(ru) = −r∂zw, (5)

α3Re(u∂r + w∂z)u = −∂rp+ α2∂r(r
−1∂r(ru)) + α4∂2

z2u, (6)

αRe(u∂r + w∂z)v = −∂zp+ r−1∂r(r∂rw) + α2∂2
z2w, (7)

where ∂r and ∂z denote the partial derivatives with respect to r and z, respectively, while
α = 2πrt

λ
is the wave number, and Re = crt

ν
is the Reynolds number. The travelling wave (1)

after utilizing the transformations defined in Eq. (4) and scaled dimensionless parameters yields

h(z) = 1 + φ sin z + ǫφ cos(κz) sin z, (8)

in which φ = b
rt

is the amplitude ratio, and ǫ = 2πA
λ

is the metachronal wave parameter.
Equation (8) represents the travelling wave of tube surface in the moving fame of reference, in
a dimensionless form.

The dimensionless boundary conditions, associated with Eqs. (6) and (7), in the moving
frame of reference are

u(0, z) = 0, u(h, z) = −dzh, (9)

∂rw(0, z) = 0, w(h, z) = −1, (10)

in which dz denotes the material derivative with respect to z. Further to apply the lubrication
theory to the peristaltic-ciliary flow, we assume Re of the order of 0.001 and the wavelength
λ of the travelling wave to be large relative to the radius of the tube rt, i.e., rt

λ
≪ 1[10,16–17].

After employing these assumptions, Eqs. (6) and (7) become

∂rp =0, (11)

∂zp = r−1∂r(r∂rw). (12)

From Eq. (11), we infer that p = p(z) only. Therefore, Eq. (11) becomes

∂r(r∂rw) = rdzp. (13)

Integrating Eq. (13) twice with respect to r and then in turn using its boundary conditions (10),
one acquires

w(r, z) = −
dzp

4
((1 + φ sin z + ǫφ cos(κz) sin z)2 − r2) − 1, (14)
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which is the axial velocity of the peristaltic-ciliary flow of linearly viscous fluid within a fallopian
tubal fluid.

We suppose that mitotic divisions take place in the linearly viscous fluid within a fallopian
tubal fluid during the peristaltic-ciliary flow[5]. Proper and complete mitotic divisions occur for
appropriate residue time[30–31]. The appropriate residue time over wavelength tr in a dimen-
sionless form is defined as

tr =

∫ 2π

0

1

w(r, z)
dz, (15)

in which the variable r is to be kept fixed during the integration and tr = 2πctr
λ

. Equation (15)
with the help of Eq. (14) provides the appropriate residue time over wavelength at which proper
and complete mitotic divisions occur.

Substitution of Eq. (14) into Eq. (5), in turn the integration of the resulting partial differ-
ential equation with respect to r and then after making use of the boundary condition (9) for
r = 0, one gets the radial velocity of the peristaltic-ciliary flow of linearly viscous fluid within
a fallopian tubal fluid,

u(r, z) =
d2

z2p

16
(2(1 + φ sin z + ǫφ cos(κz) sin z)2r − r3)

+
dzp

4
((φ+ φ2(1 + ǫ cos(κz)) sin z)(cos z + ǫ cos z cos(κz)

− κǫ sin z sin(κz))r). (16)

Using the boundary condition (9) for r = h in Eq. (16) and then solving the resultant equation
for the pressure gradient dzp, we get

dzp = −
(8(1 + φ sin z + ǫφ cos(κz) sin z)2 + 16B0)

(1 + φ sin z + ǫφ cos(κz) sin z)4
, (17)

in which B0 is an arbitrary constant to be determined, related to the pressure gradient at the

entrance of tube. Using dp(0)
dz

= −ξ (in which ξ is the constant, denoting the pressure gradient
at the tube entrance) into Eq. (17), we have

dzp = −
(8(1 + φ sin z + ǫφ cos(κz) sin z)2 + ξ − 8)

(1 + φ sin z + ǫφ cos(κz) sin z)4
, (18)

which is the expression for the pressure gradient of the peristaltic-ciliary flow of linearly vis-
cous fluid within a fallopian tubal fluid. The pressure difference over wavelength ∆pλ in a
dimensionless form is defined as

∆pλ =

∫ 2π

0

dzpdz, (19)

which upon using Eq. (18) provides the pressure difference ∆pλ over wavelength. Introduction
of dimensionless stream function ψ in the moving frame of reference

u(r, z) = −r−1∂zψ, w(r, z) = r−1∂rψ

into Eq. (16) yields

ψ(r, z) = −
1

16
dzp

(

2(1 + φ sin z + ǫφ cos(κz) sin z)2r2 − r4
)

+ C1(r), (20)

where C1(r) is an arbitrary function to be determined. Since the midplane of the tube is also
streamlined in the moving frame of reference, by convention we may choose the zero value of
the streamline at the midplane[16], i.e.,

ψ(0, z) = 0. (21)
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Substitution of Eq. (21) into Eq. (20) yields

ψ(r, z) = −
1

16
dzp

(

2(1 + φ sin z + ǫφ cos(κz) sin z)2r2 − r4
)

. (22)

The dimensionless instantaneous volume flow rate in the laboratory frame of reference is
defined as

Q =

∫ H

0

W (R,Z, t)RdR, (23)

where R = R
rt

, Z = 2πZ
λ

, t = 2πct
λ

, W = W
c

, and H = H
rt

. In Eq. (23), the variables Z and t are
to be held fixed during the integration.

In a dimensionless form, the coordinates, the axial velocities, and the travelling waves in the
laboratory frame of reference and the moving frame of reference are related through

{

Z = z + t, R = r,

W (R,Z, t) = w(r, z) + 1, H(Z, t) = h(z).
(24)

Substituting the relation (24) into Eq. (23) yields

Q = q +
h2

2
, (25)

where

q =

∫ h

0

w(r, z)rdr, (26)

which is the volume flow rate in a dimensionless form, in the moving frame of reference. In
Eq. (26), z is to be kept fixed during the integration. Equation (25) relates the instantaneous
volume flow rate in the laboratory frame of reference with the volume flow rate in the moving
frame of reference.

The time mean volume flow rate over a period T of the travelling wave in the laboratory
frame of reference, in a dimensionless form is defined as

QT =
1

T

∫ T

0

Qdt. (27)

From Eq. (26), it is delineated that q is independent of time t. Therefore, Eq. (27) after making
use of Eqs. (25) and (26) provides

QT = q +
1

2

∫ 1

0

h2dz. (28)

Equation (28) upon utilizing Eq. (8) gives rise to

QT = q + 0.5 + 0.46φ+ 0.14φ2 +
ǫ2φ2K1

32
+

ǫφ2K2

κ(κ2 − 4)
+

ǫφK3

κ2 − 1
, (29)

where

K1 =2.18 +
sin(2 − 2κ)

κ− 1
+

2 sin 2κ

κ
−

sin(2(κ+ 1))

κ+ 1
,

K2 =0.91κ cosκ− (2 − 0.71κ2) sinκ,

K3 =0.54 cosκ+ 0.84κ sinκ− 1.
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Equation (26) in terms of the stream function ψ is given by

q =

∫ h

0

∂rψdr, (30)

which in turn using the boundary condition (21) and Eq. (22) at r = h yields

q = −
dzp

16
(1 + φ sin z + ǫφ cos(κz) sin z)4. (31)

3 Results and discussion

The peristalsis-cilia induced flow of linearly viscous fluid within a fallopian tubal fluid in a
finite two-dimensional narrow tube is established in the previous section. We choose rt = 1.0
and L = 2λ (where λ = 2π), respectively, as the averaged values for the mean radius and the
length of the tube. The present model considers a geometry that represents averaged values of a
sagittal cross section of the human fallopian tube. In the geometry, three regions of the fallopian
tube: ampullar, isthmus, and intramural, are considered. At the entrance of the ampullar
region, the ovum enters with the pressure gradient −ξ. The ovum and the spermatozoon fuse
to become an embryo. The developing embryo within a fallopian tubal fluid is then transported
by the travelling wave from ampulla to intramural, in the fallopian tube. The axial w and radial
u velocities, the residue time over wavelength tr, the pressure difference over wavelength ∆pλ,
the stream function ψ, the volume flow rate q, and the time mean volume flow rate QT are the
flow variables that characterize the peristaltic-ciliary transport of a developing embryo within
the fallopian tube. By employing the lubrication approximation theory in the moving frame of
reference, the expressions for the aforesaid flow variables are derived.

This section presents an estimation of the quantitative effects of pressure gradient at the
tube entrance ξ, the metachronal wave parameter ǫ, and the amplitude ratio φ on the axial
w and radial u velocities, the residue time over wavelength tr, the volume flow rate q, the
pressure difference over wavelength ∆pλ, and the stream function ψ through graphs and the
axial velocity w through table . We perform numerical integration for the appropriate residue
time over wavelength tr and the pressure difference over wavelength ∆pλ in MATHEMATICA.

We choose one sagittal cross section
(

r, 4π
3

)

and one frontal cross section (0.3, z) to observe
the quantitative effects of the pressure gradient at the tube entrance ξ, the metachronal wave
parameter ǫ, and the amplitude ratio φ on the distribution of axial velocity, respectively along
the radial distance and the axial distance.

Table 1 provides the distribution of axial velocity along the radial distance for both cases,
i.e., the peristaltic flow (when ǫ = 0.00) and the peristaltic-ciliary flow (when ǫ = 0.15) at the
sagittal cross section

(

r, 4π
3

)

. It is noted from this table that the axial velocity is the maximal
at the midplane of tube and the minimal near the tube surface. The axial velocity of the
peristaltic-ciliary flow is lesser than that of the peristaltic flow. This is because of the inclusion
of swaying motions of the cilia tips that work along with the cyclic peristaltic contractions of
the tube surface. In other words, one may say that, the inclusion of cilia causes reduction in
the axial velocity along the radial distance. Negative sign is the clear indication of backward
flow near the tube surface.
Table 1 Distribution of the axial velocity along the radial distance when φ = 0.13, ξ = 7.0, and

κ = 1.5

r

Peristaltic flow Peristaltic-ciliary flow
ǫ = 0.00 ǫ = 0.15

w(r, 4π

3
) w(r, 4π

3
)

−1.00 −1.453 546 −1.533 725
−0.50 0.148 408 0.119 154

0.00 0.682 543 0.670 107
0.50 0.148 408 0.119 154
1.00 −1.453 546 −1.533 725
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Figure 3 shows the distribution of the axial velocity along the radial distance at the sagittal
cross section

(

r, 4π
3

)

. It is seen from Fig. 3 that due to no-slip condition, the axial velocity
profiles are parabolic in nature across the tube diameter. Figures 3(a)–3(c) display the effects
of the pressure gradient at the tube entrance ξ, the metachronal wave parameter ǫ, and the
amplitude ratio on the radial distribution of axial velocity. The axial velocity increases radially
with an increase in ξ as is depicted through Fig. 3(a). From Figs. 3(b) and 3(c), it is noted that
the axial velocity decreases radially with the increment in ǫ and φ. The pressure gradient at the
tube entrance ξ plays a vital role in the flow of peristaltic-ciliary flow of linearly viscous fluid
within a fallopian tubal fluid. We plot Fig. 3(d) to check the limit for ξ with ǫ = 0.08, φ = 0.13,
and k = 1.5. It is disclosed from this figure that, when ξ > 1.85, the flow is in the forward
direction, and when ξ < 1.85, the flow is in the backward direction. At ξ = 1.85, the axial
velocity profile shows linear relation between r and w

(

r, 4π
3

)

. Comparison between the radial
distribution of axial velocity of the peristaltic flow (when ǫ = 0.00) and the peristaltic-ciliary
flow (when ǫ = 0.15) is made in Fig. 3(e). Along the radial distance, the peristaltic flow has a
larger axial velocity as compared with the peristaltic-ciliary flow.

The amplitude ratio
(

φ = b
a

)

is the ratio of b (amplitude of the sinusoidal wave of the tube
surface peristaltic contractions) to rt (mean radius of the tube). Since we choose rt = 1.0, an
increase in φ means an increase in b. The axial velocity decreases radially when b increases.
The metachronal wave parameter

(

ǫ = 2πA
λ

)

is the ratio of A (amplitude of the metachronal
wave of cilia) to λ (wavelength of the travelling wave of the tube surface). Since we take
λ = 2π, an increase in ǫ means an increase in A. The axial velocity decreases radially as A is
incremented. This decrease in the axial velocity is the clear evidence of the noticeable impact of
swaying motions of the cilia tips on the axial velocity. Furthermore, one may reveal that, when
the sinusoidal wave of larger amplitude and the metachronal wave of larger amplitude merge
together to form a travelling wave of lager amplitude, slowness in the flow in the direction of
propagation of the travelling wave of tube surface happens.

π π π

π π

-

Fig. 3 Axial velocity versus radial distance profiles when there are variations in (a) pressure gradient
at the tube entrance ξ (when ǫ=0.08, φ=0.13, and k=1.5), (b) metachronal wave parameter ǫ

(when φ = 0.25, ξ = 7.0, and k = 1.5), and (c) amplitude ratio φ (when ǫ = 0.08, ξ = 7.0, and
k = 1.5), (d) limit for the pressure gradient at the tube entrance ξ (when ǫ = 0.08, φ = 0.13,
and k = 1.5), and (e) comparison between the peristaltic flow and the peristaltic-ciliary flow
(when ξ = 7.0, φ = 0.19, and k = 1.5) at the sagittal cross section

`

r, 4π

3

´

Figure 4 provides the distribution of axial velocity along the axial distance at the frontal
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cross section (0.3, z). Through Figs. 4(a)–4(c), we observe effects of the pressure gradient at
the tube entrance ξ, the metachronal wave parameter ǫ, and the amplitude ratio φ on the
axial distribution of axial velocity. It is noted from Fig. 4(a) that the axial velocity enhances
axially as ξ is increased. In Fig. 4(b), we divide the axial distance (tube length) 2λ = [0, 4π]
into 8 subintervals

[

0, π
3

]

,
[

π
3 ,

13π
12

]

,
[

13π
12 ,

7π
4

]

,
[

7π
4 ,

25π
12

]

,
[

25π
12 ,

29π
12

]

,
[

29π
12 ,

19π
6

]

,
[

19π
6 , 23π

6

]

, and
[

23π
6 , 4π

]

to observe properly the effects of ǫ on the axial distribution of axial velocity. The axial

velocity increases axially within the subintervals
[

0, π
3

]

,
[

7π
4 ,

25π
12

]

,
[

29π
12 ,

19π
6

]

, and [19π
6 , 23π

6

]

,

while it decreases axially within the subintervals
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with an increase in ǫ. It is also evident from the peak to peak value deviations in the axial
velocity versus axial distance profile comparison that the axial velocity decreases axially during
the first wavelength and increases axially during the second wavelength when ǫ increases. To
properly delineate the effects of φ on the axial distribution of axial velocity, we divide the
tube length in Fig. 4(c) into four subintervals [0, π], [π, 25π

12 ], [25π
12 ,

19π
6 ], and [19π

6 , 4π]. The axial
velocity decreases axially within the subintervals [π, 25π

12 ] and [19π
6 , 4π], whereas it increases

axially within the subintervals [0, π] and [25π
12 ,

19π
6 ] with the increment in φ. We disclose from the

peak to peak value deviation comparison of the axial velocity versus axial distance profiles that
the axial velocity increases axially by increasing φ. Figure 4(d) provides comparison between
the axial distribution of axial velocity of the peristaltic flow (when ǫ = 0.00) and the peristaltic-
ciliary flow (when ǫ = 0.15). It is evident from the peak to peak value deviation comparison of
the axial velocity versus axial distance profiles that the axial velocity of the peristaltic-ciliary
flow is smaller as compared with the peristaltic flow during the first wavelength and larger
during the second wavelength.

π π π π π π

π π π π π π

π π π π π π

π π π π π π

-

Fig. 4 Axial velocity versus axial distance profiles when there are variations in (a) pressure gradient at
the tube entrance ξ (when ǫ = 0.08, φ = 0.13, and k = 1.5), (b) metachronal wave parameter
ǫ (when φ = 0.13, ξ = 7.0, and k = 1.5), and (c) amplitude ratio φ (when ǫ = 0.08, ξ = 7.0,
and k = 1.5) and (d) comparison between the peristaltic flow and the peristaltic-ciliary flow
(when ξ = 7.0, φ = 0.19, and k = 1.5) at the frontal cross section (0.3, z)

In Fig. 5, vector plots are plotted to observe the local flow behavior of peristaltic-ciliary
flow of linearly viscous fluid within a fallopian tubal fluid. Effects of the pressure gradient at
the tube entrance ξ, the metachronal wave parameter ǫ, and the amplitude ratio φ can easily
be seen through Fig. 5. Comparison between the flow behavior of the peristaltic flow and the
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peristaltic-ciliary flow is made in Figs. 5(m) and 5(n). A backward flow near the tube surface
is also evident from these vector plots.

Figure 6 is prepared to inspect the behavior of the pressure gradient at the tube entrance
ξ, the metachronal wave parameter ǫ, and the amplitude ratio φ on the appropriate residue
time over wavelength at the frontal cross section (0.3, z). It is inferred from Fig. 6(a) that an
increment in ξ results in a decrease in the appropriate residue time over wavelength. This
outcome is consistent with the fact that the more pressure gradient at the tube entrance, the

π π π

π π π

π π π

π π π

π π π

π π π

π π π

π π π

π π π

π π π

π π π

π π π

π π π π π π

Fig. 5 Vector plots depicting the local flow behavior when there are various pressure gradients at
the tube entrance ((a) ξ = 5.0, (b) ξ = 7.0, (c) ξ = 9.0, and (d) ξ = 11.0) when ǫ = 0.08,
φ = 0.13, and k = 1.5, when there are various metachronal wave parameters ((e) ǫ = 0.01,
(f) ǫ = 0.08, (g) ǫ = 0.15, and (h) ǫ = 0.22) when ξ = 7.0, φ = 0.13, and k = 1.5, and when
there are various amplitude ratios ((i) φ = 0.07, (j) φ = 0.13, (k) φ = 0.19, and (l) φ = 0.25)
when ξ = 7.0, ǫ = 0.08, and k = 1.5, and comparison between (m) peristaltic flow and (n)
peristaltic-ciliary flow when ξ = 7.0, φ = 0.19, and k = 1.5
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lesser appropriate residue time over wavelength. Figures 6(b) and 6(c) delineate that as we
increase the values of ǫ and φ, the appropriate residue time over wavelength increases. More
specifically, one may relate this increase in the appropriate residue time over wavelength with
amplitudes of the sinusoidal wave and the metachronal wave, respectively. The appropriate
residue time over wavelength increases as the amplitudes of both the sinusoidal and metachronal
waves are incremented. It means that the residue time increases as the wave progresses with
larger amplitudes. Figure 6(d) describes a comparison between the appropriate residue time
over wavelength of the peristaltic flow (when ǫ = 0.00) and the peristaltic-ciliary flow (when
ǫ = 0.15) of linearly viscous fluid within a fallopian tubal fluid. This comparison enables us to
infer that, the peristaltic-ciliary flow has more appropriate residue time over wavelength than
the peristaltic flow.

-

πππ π ππ πππ π ππ

πππ π ππ πππ π ππ

Fig. 6 Appropriate residue time over wavelength versus axial distance profiles when there are varia-
tions in (a) pressure gradient at the tube entrance ξ when ǫ = 0.08, φ = 0.13, and k = 1.5,
(b) metachronal wave parameter ǫ when φ = 0.13, ξ = 7.0, and k = 1.5, and (c) amplitude
ratio φ when ǫ = 0.08, ξ = 7.0, and k = 1.5, and (d) comparison between the peristaltic flow
and the peristaltic-ciliary flow (when ξ = 7.0, φ = 0.13, k = 1.5, and r = 0.5) at the frontal
cross section (0.3, z)

Proper and complete mitotic divisions during the peristaltic-ciliary flow take place in the
linearly viscous fluid for the appropriate residue time over wavelength. Probability of the proper
and complete mitotic divisions increases in turn with an increase in the appropriate residue
time over wavelength. By controlling the value of pressure gradient at the tube entrance and
amplitudes of both the sinusoidal and metachronal waves by some biomechanical means, one
can control the appropriate residue time to get the proper, complete, and all required mitotic
divisions. In Fig. 7, a complete process of mitotic divisions, that takes place in the developing
embryo transport from ampulla to intramural in the fallopian tube, is shown.

Figure 8 corresponds to effects of the pressure gradient at the tube entrance ξ, the
metachronal wave parameter ǫ, and the amplitude ratio φ on the volume flow rate. Figure
8(a) depicts that the volume flow rate decreases for any particular value of ǫ when φ increases,
while it decreases with an increase in ǫ. It is speculated from Fig. 8(b) that the volume flow
rate reduces for any individual value of ξ as ǫ is incremented, whereas it enhances with the
increment in ξ. Analogy of the volume flow rate between the peristaltic flow (when ǫ = 0.00)
and the peristaltic-ciliary flow (when ǫ = 0.15) is elaborated in Fig. 8(c). This figure delineates
that the peristaltic flow has more volume flow rate as compared with the peristaltic-ciliary flow.
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-

Fig. 7 (A) A sperm penetrates the ovum cytoplasm, activating the ovum, extrudes a second polar
body, and forms the female pronucleus. (B) The sperm pronucleus is released into the ovum
cytoplasm, after which the two pronuclei fuse. (C) Mingling of male and female chromosomes,
replication and division of the chromosomes. (D)–(G) The embryo then undergoes successive
mitotic divisions to produce a morula (G). (H) An early blastocyst (a fluid filled cavity)[5]

-c

Fig. 8 Volume flow rate versus (a) amplitude ratio profiles when there are various metachronal wave
parameter ǫ

`

when ξ = 7.00, κ = 1.5, and z = 4π

3

´

and (b) metachronal wave parameter
profiles when there are various pressure gradient at the tube entrance ξ

`

when φ = 0.13,
κ = 1.5, and z = 4π

3

´

, and (c) amplitude ratio profiles for comparison between peristaltic flow
and peristaltic-ciliary flow

`

when ξ = 7.00, κ = 1.5, and z = 4π

3

´

Figure 9 is displayed to analyze the pumping characteristics of the peristaltic-ciliary flow
of linearly viscous fluid within a fallopian tubal fluid. A linear relation between ∆pλ and
QT is observed in these profiles. The pressure difference over wavelength versus time mean
volume flow rate plane is divided into four conventional quadrants. The quadrant I denotes the
peristaltic-ciliary pumping region (when QT > 0 and ∆pλ > 0), the quadrant II represents the
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retrograde pumping region (when QT < 0 and ∆pλ > 0), in the quadrant III (when QT < 0
and ∆pλ<0), no flow takes place, and the quadrant IV defines the augmented pumping region
(when QT > 0 and ∆pλ < 0). In the peristaltic-ciliary pumping region, the resistance of
pressure rise over wavelength ∆pλ > 0 (adverse pressure) is overcome by the peristalsis-cilia,
and the flow takes place in the direction of propagation of the travelling wave. The region
in which flow takes place in a direction opposite to the propagation of the travelling wave
because of the dominance of pressure rise over wavelength ∆pλ > 0 over peristalsis-cilia terms
as the retrograde pumping region. In the augmented pumping region, the pressure drop over
wavelength ∆pλ < 0 (favourable pressure) assists the flow due to the peristalsis-cilia of the tube.
Figures 9(a) and 9(b) are prepared to observe the effects of the metachronal wave parameter ǫ
and the amplitude ratio φ on the pumping capability. It can be inferred from these figures that
the pumping rate increases in the retrograde and peristaltic-ciliary pumping regions as ǫ and φ
are incremented. An opposite behavior is observed for increasing ǫ and φ on the pumping rate in
the augmented pumping region, i.e., an increase in ǫ and φ causes diminishment in the pumping
rate in the augmented pumping region. Comparison between the pumping characteristics of the
peristaltic flow (when ǫ = 0.00) and the peristaltic-ciliary flow (when ǫ = 0.15) is elaborated in
Fig. 9(c). This comparison enables us to reveal the fact that, the pumping rate of the peristaltic
flow is smaller in the retrograde and peristaltic-ciliary pumping regions, while it is bigger in
the augmented pumping region than that of the peristaltic-ciliary flow. Inclusion of swaying
motions of the cilia tips along with peristaltic contractions of the tube surface causes lessening
of pumping rate in the augmented pumping region.

-

Fig. 9 Pressure difference over wavelength versus time mean volume flow rate profiles when there are
various (a) metachronal wave parameter ǫ (when φ = 0.19 and κ = 1.5) and (b) amplitude
ratio φ (when ǫ = 0.08 and κ = 1.5), and (c) for comparison between the peristaltic flow and
the peristaltic-ciliary flow (when φ = 0.19 and k = 1.5)

In the phenomenon of trapping, streamlines split and close to form a bolus which moves as
a whole with the wave front. Trapping can be observed by plotting the streamlines in a moving
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frame of reference[16–17]. Patterns of streamlines with trapped boluses are plotted in Fig. 10
to observe the effects of the pressure gradient at the tube entrance ξ, the metachronal wave
parameter ǫ, and the amplitude ratio φ on trapped boluses. The trapped boluses of fluid are of
elliptic shape as is seen through Fig. 10. The size of the trapped bolus can be described in terms
of density of the streamlines. The trapped bolus appears in a region where the tube diameter
has local maximum which continues to diminish as the tube diameter becomes local minimum.
Figures 10(a)–10(d) are prepared to observe the effects of the pressure gradient at the tube
entrance ξ on the size of trapped boluses. The size of trapped boluses is found to be reduced
with the increment in ξ. The number of circulations decreases significantly as ξ is incremented.
Figures 10(e)–10(l) display the effects of ǫ and φ on trapped boluses. It is speculated that with
an increase in ǫ and φ, the size of the trapped boluses enhances. The number of circulation in a
trapped bolus is also evidently increased with the increase in ǫ and φ. Moreover, one may also
say that when the amplitudes of the sinusoidal wave and the metachronal wave are incremented,
the trapping of the boluses of fluid enhances. In Figs. 10(m) and 10(n), a comparison between
the size of the trapped boluses of the peristaltic flow and the peristaltic-ciliary flow is illustrated.
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Fig. 10 Plots of streamlines with trapped boluses in a moving frame of reference when there are
variations in the pressure gradient at the tube entrance ((a) ξ = 5.0, (b) ξ = 7.0, (c) ξ = 9.0,
and (d) ξ = 11.0) when ǫ = 0.08, φ = 0.13, and k = 1.5, when there are variations in
metachronal wave parameter ((e) ǫ = 0.01, (f) ǫ = 0.08, (g) ǫ = 0.15, and (h) ǫ = 0.22)
when ξ = 7.0, φ = 0.13, and k = 1.5, and when there are variations in amplitude ratio ((i)
φ = 0.07, (j) φ = 0.13, (k) φ = 0.19, and (l) φ = 0.25) when ξ = 7.0, ǫ = 0.08, and k = 1.5,
and comparison between (m) peristaltic flow and (n) peristaltic-ciliary flow when ξ = 7.0,
φ = 0.13, and k = 1.5
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It is delineated from this comparison that trapped boluses of the peristaltic-ciliary flow are of
slightly larger size as compared with the peristaltic flow. When only peristaltic contractions of
the tube surface are present, trapped boluses of smaller size are formed near the tube surface.
It means that inclusion of the swaying motions of the tips of cilia along with the peristaltic
contractions causes enlargement in the size of the trapped boluses.

4 Concluding remarks

In the present theoretical assessment, we model the peristalsis-cilia induced flow of linearly
viscous fluid within a fallopian tubal fluid in a finite two-dimensional narrow tube. The present
model theoretically assesses the peristaltic-ciliary transport of a developing embryo within the
fallopian tubal fluid from the ampulla to the intramural in the human fallopian tube. The key
findings of this assessment are summarized below.

(i) The axial velocity increases radially with the increase in ξ, whereas it decreases radially
with the increase in ǫ and φ.

(ii) The axial velocity increases axially as ξ and φ are incremented. The increment in the
value of ǫ results in the decrease of axial velocity during the first wavelength, while it results
in the axial increase during the second wavelength.

(iii) The appropriate residue time over wavelength decreases with an increase in ξ, whilst it
increases with an increase in ǫ and φ.

(iv) The volume flow rate enhances when ξ is increased, whereas it diminishes when ǫ and
φ are increased.

(v) The pumping rate increases in the retrograde and peristaltic-ciliary pumping regions,
while it decreases in the augmented pumping region with the increase in ǫ and φ.

(vi) The size of the trapped bolus shortens as ξ is increased. Moreover, it enlarges as ǫ and
φ are increased.

(vii) As a special case, a comparison between the peristaltic flow and the peristaltic-ciliary
flow is made.

Application of this model to assess the transport characteristics of a developing embryo
within a fallopian tubal fluid in the human fallopian tube may introduce a new biomechanical
factor of fertility. Increment in the appropriate residue time of the developing embryo due to
the inclusion of the swaying motions of the cilia tips along with cyclic peristaltic contractions in
the presence of fallopian tubal fluid, in turn helps in completing the required mitotic divisions.
When the value of the pressure gradient at the entrance of ampullar region and amplitudes of
both the sinusoidal and metachronal waves are controlled by some biomechanical means, one
can better achieve complete, proper, and all required mitotic divisions. It is very likely that the
developing embryo is transported within the fallopian tubal fluid through the fallopian tube,
from the ampulla to the intramural and implanted successfully at fundus with the further aid
of peristaltic contractions of the uterus surface. Otherwise, either mitotic divisions are never
completed or the embryo is never able to be transported through the fallopian tube or never
implanted at fundus. In such situations, an embryo with incomplete mitotic divisions leads
to the abnormality or impairment in the functioning of an organ in the new born baby or an
embryo is to be evacuated at the next menstruation or implanted away from fundus which ends
with a miscarriage.
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