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Abstract This paper studies synchronization of all nodes in a fractional-order complex
dynamic network. An adaptive control strategy for synchronizing a dynamic network is
proposed. Based on the Lyapunov stability theory, this paper shows that tracking errors
of all nodes in a fractional-order complex network converge to zero. This simple yet prac-
tical scheme can be used in many networks such as small-world networks and scale-free
networks. Unlike the existing methods which assume the coupling configuration among
the nodes of the network with diffusivity, symmetry, balance, or irreducibility, in this case,
these assumptions are unnecessary, and the proposed adaptive strategy is more feasible.
Two examples are presented to illustrate effectiveness of the proposed method.
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1 Introduction

Fractional-order calculus is an old mathematical topic with more than 300 years history.
Its applications, however, have been found in physics and engineering only in recent years. In
fact, fractional-order chaotic systems have more complex dynamical behaviors than integer-
order systems, and they have been widely used to ensure communication security[1]. Owing
to the memory property of fractional-order differential equations, they have remarkable advan-
tages in describing memory and hereditary properties of various materials and processes, such
as anomalous diffusion phenomena and dynamic behaviors of financial systems[2–3]. Besides,
fractional-order calculus serves as a valuable instrument in discussing signal processing and im-
age filtering[4], viscoelastic materials[5–6], bioengineering[7], robotics[8], and mechanics[9]. These
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further perfectly clarify the importance of consideration and analysis of dynamical systems with
fractional-order models.

Recently, fractional-order calculus has been reported in a dynamic network which is a collec-
tion of nonlinear dynamical systems interacted by links with complex topological properties and
can describe lots of complex circuits and systems in various fields of the real world. Examples
include neural systems, electrical power grids, social network, and highway or subway systems,
which display substantial nontrivial topological features with patterns of connection between
their elements that are neither purely regular nor purely random. Such features include a heavy
tail in the degree distribution, a small world, and a high clustering coefficient. In the directed
networks, the reciprocity, triad significance profile, and other features are also included. By
now, much effort has been devoted to studying the complex dynamical behavior of dynamic
networks[10–14]. In Ref. [10], the authors designed an effective distributed adaptive strategy to
tune the coupling weights of a network, which can be extended to the case where only a small
fraction of coupling weights can be adjusted, but the coupling configuration is required to sat-
isfy balance or symmetry. Pagani and Aiello[12] investigated the properties of different power
grid infrastructures using complex network analysis techniques and methodologies. However,
due to the limited theories of fractional-order calculus, it is still a challenging work to investi-
gate the fractional-order dynamic network. Synchronization, as an effective method to study
the emergent behavior and coordinated motion in fractional-order complex networks, has at-
tracted increasing attention[15–18]. In Ref. [15], a new synchronous motion was obtained by
tuning a coupling parameter to synchronization of a general fractional-order dynamic network.
Asheghan et al.[16] proposed an open-plus-closed-loop scheme to synchronize complex networks
with fractional-order dynamics. An adaptive method was considered in Ref. [17] to synchro-
nize two fractional-order dynamic networks. Lately, Ma et al.[18] designed an adaptive control
method to study the hybrid projective synchronization of two coupled general fractional-order
complex networks with different sizes. However, the above studies just took into account syn-
chronization between two complex dynamic networks, which cannot achieve the synchronization
of all nodes in a complex network. In Refs. [19] and [20], some effective methods were introduced
to make all nodes in a network synchronized. Chen et al.[19] proposed cluster synchronization
in a fractional-order complex dynamic network, in which only the nodes in one community
that have direct connections to the nodes in other communities need controllers, resulting in
reduced control cost. In Ref. [20], nonlinear controllers were constructed to synchronize the
weighted fractional-order complex dynamic networks, which can achieve the synchronization of
complex networks with nonidentical nodes. In these works, however, the coupling configura-
tion among the nodes of the network required diffusivity and irreducibility, and the controllers
were designed using a solution to the node system Dαx = f(x). Moreover, most of the results
mentioned above just dealt with the synchronization of complex networks without considering
uncertain parameters, which play a significant role in physics and engineering. In Ref. [21],
the authors investigated the robust stability and stabilization of fractional-order linear systems
with nonlinear uncertain parameters, which appeared in the form of a combination of additive
uncertainty and multiplicative uncertainty. The robust stability of fractional-order linear time-
invariant interval systems has been considered in Ref. [22], in which the models with uncertain
parameters showed that it has deterministic linear coupling relationship between fractional-
order and other model parameters.

In this work, a fractional-order adaptive feedback controller is designed to achieve complete
synchronization in a dynamic network with uncertain parameters, which is a general, simple,
and rigorous feedback scheme without assuming the coupling configuration with diffusivity,
symmetry, balance, or irreducibility. The rest of this paper is organized as follows. In Section
2, some preliminary definitions on fractional calculus are introduced. Section 3 provides a
fractional-order control to achieve the complete synchronization in a fractional-order dynamic
network with uncertain parameters. We show that tracking errors of all nodes in the fractional-
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order complex network converge to zero by means of the Lyapunov stability analysis. In Section
4, two examples are used to show validity and feasibility of the proposed scheme through
numerical simulations. Finally, conclusions are drawn in Section 5.

2 Preliminaries

Fractional-order calculus is a classical mathematical idea, which is the generalization of
integer-order differentiation and integration to arbitrary order. Now, several definitions of
fractional-order derivative have been displayed. The Riemann-Liouville and Caputo definitions
are two most commonly used. The initial conditions of the Caputo fractional derivative take the
same form as the integer-order version, which have physical meanings and more applications
in physics and engineering. Besides, the Caputo derivative of a constant is equal to zero.
Therefore, in the rest of this study, the Caputo derivative will be adopted. Then, this section
gives some basic definitions of fractional calculus.

Definition 1[23] The Riemann-Liouville fractional integral operator of a continuous func-
tion f(t) with order α > 0 is given by

Jαf(t) =
1

Γ(α)

∫ T

0

(t − τ )α−1f(τ)dτ , (1)

where Γ(·) is the gamma function.
Definition 2[23] The Riemann-Liouville fractional derivative with order α > 0 of a con-

tinuous function f(t) is defined as follows :

Dαf(t) = DmJm−αf(t) =
1

Γ(m − α)
dm

dtm

∫ T

0

f(τ)
(t − τ )α−m+1

dτ , (2)

where Γ(·) is the gamma function, and m − 1 < α � m (m ∈ N).
Definition 3[23] The Caputo fractional derivative with order α > 0 of a continuous func-

tion f(t) is described as follows :

Dα
c f(t) = Jm−αDmf(t) =

1
Γ(m − α)

∫ T

0

f (m)(τ)
(t − τ)α−m+1

dτ, (3)

where Γ(·) is the gamma function, and m − 1 < α � m (m ∈ N).

3 Synchronization principles

Consider a general fractional-order complex dynamic network consisting of N nodes, and
each node is an n-dimensional fractional-order chaotic dynamical oscillator. The state equation
of this fractional-order dynamic network can be described as

Dα
c xi = f(xi) + g(xi)pi +

N∑
j=1

cijH(xj − xi), i = 1, 2, · · · , N, (4)

where 0 < α � 1, xi = (xi1, xi2, · · · , xin)T ∈ R
n is a state vector of the ith node, f : R

n → R
n,

and g(xi) ∈ R
n×m are the nonlinear continuous vector functions, pi = (pi1, pi2, · · · , pim)T ∈ R

m

is the uncertain parameter vector of the ith node, H ∈ R
n×n is an inner-coupling constant

matrix, and C = (cij)N×N is the coupling configuration diffusive matrix, in which cij > 0 if
there is a connection between the ith and jth nodes; otherwise, cij = 0 (i, j = 1, 2, · · · , N).

Remark 1 The matrix C = (cij)N×N reflects the complex topological properties, which
play an important role in the behavior of the network. In the literature, the coupling con-
figuration diffusive matrix C was strictly limited. In Refs. [10], [19], and [20], the following
properties[16] were required:
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Irreducibility There is no isolated cluster of the nodes.

Diffusivity The coupling configuration diffusive matrix C satisfies
N∑

i=1

cij = 0 (j = 1, 2,

· · · , N).

Balance
N∑

i=1

cij =
N∑

j=1

cij is required.

Symmetry The matrix C satisfies cij = cji (j = 1, 2, · · · , N).
In this paper, we present that it is not essential to gratify the properties just mentioned

above.
Assumption 1 For any xi = (xi1, xi2, · · · , xin)T, and yi = (yi1, yi2, · · · , yin)T ∈ R

n, the
nonlinear function f(·, t) satisfies the Lipschitz conditions,

(xi − yi)T(f(xi, t) − f(yi, t)) � (xi − yi)Tli(xi − yi), i = 1, 2, · · · , N, (5)

where li > 0 is a Lipschitz constant.
Remark 2 The Lipschitz condition ensures existence and uniqueness of the nonlinear

function f(·, t). Most of the well-known fractional-order chaotic systems meet the condition
mentioned above, such as the fractional-order Chen system, the fractional-order Lorenz system,
and the fractional-order hyperchaotic Chen system.

Lemma 1[24] Consider a fractional-order system

Dα
c Y (t) = f(Y (t)), (6)

where α ∈ (0, 1], and Y (t) ∈ R
n. If the following inequality

Y T(t)f(Y (t)) � 0 (7)

is satisfied, the origin of the system (6) is stable. If

Y T(t)f(Y (t)) < 0, ∀Y �= 0, (8)

the origin of the system (6) is asymptotically stable.
To synchronize all nodes in a fractional-order dynamic network, we add the controller ui ∈

R
n to each node of the network,

Dα
c xi = f(xi) + g(xi)pi +

N∑
j=1

cijH(xj − xi) + ui, i = 1, 2, · · · , N. (9)

Let

X =
1
N

N∑
j=1

xj .

Then, one has

Dα
c X(t) = G(x1, x2, · · · , xN )

=
1
N

N∑
j=1

(
f(xj) + g(xj)pj +

N∑
i=1

cijH(xi − xj) + uj

)
. (10)

Now, we define the error signal as ei = xi −X (i = 1, 2, · · · , N) for synchronization of complex
dynamic network. Then, we can obtain the following error dynamic network:

Dα
c ei = Dα

c xi − Dα
c X

= f(xi) + g(xi)pi +
N∑

j=1

cijH(xj − xi) + ui − G(x1, x2, · · · , xN ). (11)
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Construct the following adaptive feedback controller to realize synchronization in a dynamic
network:

ui = −Kiei − g(xi)qi, i = 1, 2, · · · , N, (12)

where Ki = diag(ki1, ki2, · · · , kin) ∈ R
n×n and qi ∈ R

m are usually called adaptive feedback
strengths, which are adapted as the following adaptive law:

{
Dα

c kil = εie
T
i ei, l = 1, 2, · · · , n, εi > 0,

Dα
c eqi = Dα

c (qi − pi) = γi(g(xi))Tei, γi > 0.
(13)

Theorem 1 Suppose that Assumption 1 holds. Then, the network (4) is synchronized
under the controller (12) with the adaptive law (13), that is, the tracking error (11) is stable.

Proof Construct a scalar function J(t) as follows:

J(t) = Y TDα
c Y

=
N∑

i=1

eT
i Dα

c ei +
N∑

i=1

1
γi

eT
qi

Dα
c eqi +

N∑
i=1

1
εi

(ki − k∗
i )TDα

c (ki − k∗
i ), (14)

where Y = (eT
1 , eT

2 , · · · , eT
N , 1√

γ1
eT

q1
, 1√

γ2
eT

q2
, · · · , 1√

γN
eT

qN
, 1√

ε1
kT
1 − 1√

ε1
k∗T
1 , 1√

ε2
kT
2 − 1√

ε2
k∗T
2 , · · · ,

1√
εN

kT
N − 1√

εN
k∗T

N )T, ki = (ki1, ki2, · · · , kin)T, and k∗
i = (k∗

i1, k
∗
i2, · · · , k∗

in)T (i = 1, 2, · · · , N).
Note that k∗

il (i = 1, 2, · · · , N ; l = 1, 2, · · · , n) are constants to be determined.
Combining (11), (12), and (13), we get

J(t) =Y TDα
c Y

=
N∑

i=1

eT
i Dα

c ei +
N∑

i=1

1
γi

eT
qi

Dα
c eqi +

N∑
i=1

1
εi

(ki − k∗
i )TDα

c (ki − k∗
i )

=
N∑

i=1

eT
i

(
f(xi) + g(xi)pi +

N∑
j=1

cijH(xj − xi) − Kiei − g(xi)qi − G(x1, x2, · · · , xN )
)

+
N∑

i=1

eT
qi

(g(xi))Tei +
N∑

i=1

n∑
l=1

(kil − k∗
il)e

T
i ei

=
N∑

i=1

eT
i

(
f(xi) − g(xi)eqi +

N∑
j=1

cijH(ej − ei) − Kiei − G(x1, x2 · · · , xN )
)

+
N∑

i=1

eT
qi

(g(xi))Tei +
N∑

i=1

n∑
l=1

(kil − k∗
il)e

T
i ei

=
N∑

i=1

eT
i (f(xi) − f(X)) +

N∑
i=1

eT
i f(X) +

N∑
i=1

eT
i

N∑
j=1

cijH(ej − ei)

−
N∑

i=1

eT
i Kiei −

N∑
i=1

eT
i G(x1, x2, · · · , xN ) +

N∑
i=1

n∑
l=1

(kil − k∗
il)e

T
i ei. (15)
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Since
N∑

i=1

ei = 0, one has

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

eT
i f(X) = 0,

N∑
i=1

eT
i G(x1, x2, · · · , xN ) = 0.

(16)

Substituting (16) into (15) yields

J(t) =
N∑

i=1

eT
i (f(xi) − f(X)) +

N∑
i=1

N∑
j=1

cije
T
i H(ej − ei) −

N∑
i=1

eT
i Kiei +

N∑
i=1

n∑
l=1

(kil − k∗
il)e

T
i ei

�
N∑

i=1

eT
i liInei +

N∑
i=1

N∑
j=1

cije
T
i H(ej − ei) −

N∑
i=1

eT
i Kiei +

N∑
i=1

eT
i (Ki − K∗

i )ei

=
N∑

i=1

eT
i (liIn − K∗

i )ei +
N∑

i=1

N∑
j=1

cije
T
i H(ej − ei)

=
N∑

i=1

eT
i

(
liIn − K∗

i −
N∑

j=1

cijH
)
ei +

N∑
i=1

N∑
j=1

cije
T
i Hej

=
N∑

i=1

eT
i

(
liIn − K∗

i −
N∑

j=1

cijH
)
ei + eT(C ⊗ H)e

= −
( N∑

i=1

eT
i

(
K∗

i +
N∑

j=1

cijH − liIn

)
ei − eT(C ⊗ H)e

)

= − eTQe, (17)

where

e = (eT
1 , eT

2 , · · · , eT
N )T ∈ R

nN ,

K∗
i = diag(k∗

i1, k
∗
i2, · · · , k∗

in), Ki = diag(ki1, ki2, · · · , kin), i = 1, 2, · · · , N,

C ⊗ H =

⎡
⎢⎢⎢⎢⎣

c11H · · · c1NH

...
...

cN1H · · · cNNH

⎤
⎥⎥⎥⎥⎦ ,
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Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K∗
1 +

N∑
j=1

c1jH − l1In − c11H · · · −c1NH

...
...

−cN1H · · · K∗
N +

N∑
j=1

cNjH − lNIn − cNNH

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

nN×nN .

By selecting suitable constants k∗
il > 0 (i = 1, 2, · · · , N ; l = 1, 2, · · · , n), we can achieve the aim

that 1
2 (Q + QT) is a positive definite matrix. Therefore, we have J(t) � Y TDα

c Y � −eTQe � 0.
According to Lemma 1, the error system (11) is stable, indicating that all the nodes in a complex
dynamic network are synchronized. This completes the proof.

Remark 3 Lemma 1 can also be used to demonstrate that the tracking error systems be-
tween two complex networks pointed out in Ref. [25] converge to zero, and it is also unnecessary

to require that the matrix C satisfies
N∑

i=1

cij = 0 (j = 1, 2, · · · , N).

4 Illustrative examples

In this section, we take the small-world and scale-free dynamic networks as examples to show
effectiveness of the above proposed scheme through two illustrative examples and numerical
simulations. The improved Adams-Bash forth-Moulton algorithm[26] is adopted to implement
numerical simulations with a step-size of h = 0.005.
4.1 A small-world network of fractional-order Lorenz systems

Consider a network consisting of N = 100 identical nodes. In this case, the state of each
node i is the fractional-order Lorenz system[27] depicted by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Dα
c xi1 = pi1(xi2 − xi1),

Dα
c xi2 = xi1(pi2 − xi3) − xi2,

Dα
c xi3 = xi1xi2 − pi3xi3,

(18)

where pi1, pi2, and pi3 are uncertain parameters, and xil (i = 1, 2, · · · , N ; l = 1, 2, 3) are state
variables of the system. When we set α = 0.997, pi1 = 10, pi2 = 28, and pi3 = 8/3, the
fractional-order Lorenz system exhibits chaotic attractor displayed in Fig. 1. The fractional-
order complex network with N = 100 nodes is described as follows:

Dα
c xi =

⎡
⎢⎢⎢⎢⎢⎣

0

−xi1xi3 − xi2

xi1xi2

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣

xi2 − xi1 0 0

0 xi1 0

0 0 −xi3

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

pi1

pi2

pi3

⎤
⎥⎥⎥⎥⎥⎦

+
N∑

j=1

cijH (xj − xi) + ui (19)

with

ui = −Kiei − g(xi)qi, Ki = diag(ki1, ki2, ki3),

Dα
c kil = εie

T
i ei, l = 1, 2, 3, εi > 0,

Dα
c eqi = γi(g (xi))Tei, γi > 0.
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Fig. 1 Chaotic attractor of the fractional-order Lorenz system with order α = 0.997

The inner-coupling matrix is H = diag(1, 1, 1, 1), εi = 1, γi = 1 (i = 1, 2, · · · , N), and the
coupling configuration diffusive matrix is derived from the small-world network, which is con-
structed by the Watts-Strogatz mechanism from a regular ring lattice with rewiring probability
0.1. The initial values of dynamic network are selected as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xi(0) =
1
2
(0.3 − 0.01i,−0.4 + 0.01i, 0.2− 0.01i)T,

ki(0) =
1
2
(0.01i, 0.02i, 0.03i)T,

qi(0) =
1
2
(0.31 − 0.01i,−0.3 + 0.01i, 0.5− 0.01i)T,

(20)

where i = 1, 2, · · · , N.

Define the errors as ‖El‖ = 1
N

√
N∑

i=1

e2
il (l = 1, 2, 3). As displayed in Fig. 2, the trajectories

of the error system for this dynamic network approach zero, which means that all nodes in the
dynamic network are synchronized.

25

20

15
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5

0
t

2 4 6 8 10

||E1||
||E2||
||E3||

||E
1||

, |
|E

2||
, |

|E
3||

Fig. 2 Time history of synchronization errors of all nodes in the small-world network of fractional-
order Lorenz systems with order α = 0.997

4.2 A scale-free network of fractional-order hyperchaotic Chen systems
Set a network with N = 100 nodes and take the fractional-order hyperchaotic Chen system

as the node dynamics. The fractional-order hyperchaotic Chen system[28] in the ith node is
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defined as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα
c xi1 = pi1(xi2 − xi1) + xi4,

Dα
c xi2 = xi1(pi2 − xi3) + pi3xi2,

Dα
c xi3 = xi1xi2 − pi4xi3,

Dα
c xi4 = xi2xi3 + pi5xi4,

(21)

where pi1, pi2, pi3, pi4, and pi5 are uncertain parameters, and xil (i = 1, 2, · · · , N ; l = 1, 2, 3, 4)
are the state variables of the system. There exists a chaotic behavior shown in Fig. 3 with
α = 0.98, pi1 = 35, pi2 = 7, pi3 = 12, pi4 = 3, and pi5 = 0.5. The fractional-order complex
network with N = 100 nodes is written as

Dα
c xi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xi4

−xi1xi3

xi1xi2

xi2xi3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xi2 − xi1 0 0 0 0

0 xi1 xi2 0 0

0 0 0 −xi3 0

0 0 0 0 xi4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pi1

pi2

pi3

pi4

pi5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
N∑

j=1

cijH (xj − xi) + ui, (22)

where

ui = −Kiei − g(xi)qi, Ki = diag(ki1, ki2, · · · , ki4),

Dα
c kil = εie

T
i ei, l = 1, 2, 3, 4, εi > 0,

Dα
c eqi = γi(g(xi))Tei, γi > 0.

The inner-coupling matrix is H = diag(1, 1, 1, 1), εi = 1, γi = 1 (i = 1, 2, · · · , N), and the
coupling configuration diffusive matrix is also selected from the scale-free network whose degree
distribution follows a power law. We construct the scale-free network with the Barabási-Albert
model, which assumes that the probability of a new node attaching to the existing nodes is
proportional to their degrees. The initial values of the complex network are given as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi(0) =
1
2
(0.3 − 0.01i,−0.3 + 0.01i, 0.2− 0.01i, 0.4− 0.01i)T,

ki(0) =
1
2
(0.01i, 0.02i, 0.03i, 0.031i)T,

qi(0) =
1
2
(0.41 − 0.01i,−0.4 + 0.01i, 0.3− 0.01i, 0.5− 0.01i,−0.3 + 0.01i)T,

where i = 1, 2, · · · , N.
Figure 4 shows that the error system converges to zero with the errors defined as ‖El‖ =

1
N

√
N∑

i=1

e2
il (l = 1, 2, 3, 4).
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Fig. 3 Hyperchaotic attractor of the fractional-order Chen system with order α = 0.98
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Fig. 4 Time history of synchronization errors of all nodes in the scale-free network of fractional-order
hyperchaotic Chen systems with order α = 0.98

5 Conclusions

In this work, synchronization of a fractional-order complex network is discussed. By means
of the Lyapunov stability analysis, we introduce a fractional-order adaptive feedback controller
and show that tracking errors of all nodes in a dynamic network converge to zero as time
goes to infinity. In comparison with the existing methods, the assumptions of the coupling
configuration are relaxed without requiring diffusivity, symmetry, balance, or irreducibility.
Besides, we address synchronization between all nodes in a fractional-order dynamic network
instead of synchronization between two complex networks, which is more meaningful and has
more practical applications in physics and engineering. Moreover, the proposed scheme can be
used to many networks such as small-world networks and scale-free networks. The simulation
results of the small-world network of fractional-order Lorenz systems and the scale-free network
of fractional-order hyperchaotic Chen systems are presented to illustrate effectiveness of the
proposed method.
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