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Abstract The mechanics and swelling kinetics of polymeric microgels are simulated

using a mesoscale computational model based on dissipative particle dynamics. Microgels

are represented by a random elastic network submerged in an explicit viscous solvent. The

model is used to probe the effect of different solvent conditions on the bulk modulus of

the microgels. Comparison of the simulation results through the volume phase transition

reveals favorable agreement with Flory-Rehner’s theory for polymeric gels. The model is

also used to examine the microgel swelling kinetics, and is found to be in good agreement

with Tanaka’s theory for spherical gels. The simulations show that, during the swelling

process, the microgel maintains a nearly homogeneous structure, whereas deswelling is

characterized by the formation of chain bundles and network coarsening.
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1 Introduction

Hydrogels have become a highly promising platform for developing novel microscale and
nanoscale technologies, especially in biomedical engineering, where they are used as advanced
drug delivery vehicles, microscopic manipulators/sensors, and scaffolds to regrow bones, mus-
cles, and organs[1]. Recent experiments show that by varying the relaxation rates of the un-
derlying hydrogel matrix, mesenchymal stem cells can be predisposed towards osteogenic dif-
ferentiation (vs. adipogenic differentiation), which is important for bone tissue formation[2].
Methacrylated gelatin (MG) scaffolds have been used to regrow cardiac muscle cells[3]. It has
been shown that by enriching the MG network with carbon nanotubes, the beating frequency
of the cells could be varied. Hydrogels have also been used extensively to create novel drug
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delivery devices. A new hydrogel-based micro-device capable of aiding diabetics by delivering
a sustained release of insulin in response to enzymatic oxidation of glucose has been recently
demonstrated[4]. Microscopic hydrogel particles have been used to encapsulate living cells to
create three-dimensional (3D) micro-environments for cell culturing[5] and for controlled release
of DNA targets[6]. Ultrasoft microgels have been shown to act as artificial platelets facilitating
blood clotting[7], whereas dense colloidal suspensions of such microgels enable assays to evaluate
cell invasiveness[8]. In addition, stimuli-responsive multi-layered gel structures are promising
for microactuator applications[9–11] and for designing self-propelling robots[12–14].

Given the overwhelming potential of hydrogels, our aim is to develop a mesoscopic compu-
tational model, which can accurately capture the mechanical properties and swelling kinetics of
microgel particles through the volume-phase transition, thereby facilitating the use of hydro-
gels in practical applications. The development of mesoscale models has attracted significant
attention thanks to their ability to consider intermediate spatial and time scales that pose dif-
ficulties for more conventional atomistic and macroscopic (continuous) descriptions. Atomistic
models provide a great wealth of detailed information regarding gel hydration and swelling[15].
However, the applications in the relevant nm-µm length scales are typically not computation-
ally accessible with atomistic simulations, hindering the potential utility in solving engineering
problems. Continuous approaches enable access to much larger length and time scales com-
pared with atomistic models. In this case, however, connecting individual chain parameters to
bulk material properties is not an easy task for hydrogel materials[16] due to the complex inter-
play among elastic, hydrodynamic, and chemical interactions. As a result, mesoscale models of
polymeric materials are gaining popularity due to their ability to tackle problems inaccessible
by other methods[17–19].

In this work, we examine a mesoscale hydrogel model based on dissipative particle dynamics
(DPD). We focus on neutral hydrogel networks, and probe how individual chain parameters
affect bulk gel properties in solvents of different quality. In particular, we examine how the
bulk modulus changes through the volume-phase transition of microgel particles, and compare
the simulation results with predictions from Flory-Rehner’s theory. Finally, we employ our
mesoscale model to simulate the kinetics of spherical microgel particles during swelling and
deswelling transitions and pinpoint important differences in microgel microstructure along these
processes.

2 Methodology

We use DPD, a particle-based method where beads represent mesoscale molecular clusters
and fluid volumes[20–22], to model a mesoscale polymeric network immersed in a viscous solvent.
The beads follow Newtonian dynamics and interact via soft potentials allowing a larger time
step for the integration of the equation of motion. This in turn enables modeling systems over
extended time scales, which are unachievable with atomistic methods. Furthermore, DPD uses
pairwise interactions that preserve local hydrodynamics critical for modeling systems involving
fluid flows. DPD has long been successfully tested against scaling theories for modeling simple
systems[23–30] and experimental data[31–39], showing that it can capture relevant physical effects.

The governing dynamics between beads in DPD is set by three main forces

F =
∑

j 6=i

(F C
ij + F

D
ij + F

R
ij ),

acting between a given bead i and its neighboring bead j located within a cutoff radius rc.
There is a conservative repulsive force

F
C
ij = aijw(rij)r̂ij ,
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which leads to the bead excluded volume, a dissipative force

F
D
ij = −γw(rij)

2(rij · vij)r̂ij

representing the effects of viscosity, and a random force

F
R
ij = σw(rij )ξij(∆t)−1/2

r̂ij

associated with thermal fluctuations. The latter two forces are related by

σ2 = 2γkBT

due to the fluctuation-dissipation theorem. In all forces, w(rij) = 1− r̂ij is a weighing function
with

r̂ij = rij/rc, rij = |ri − rj |.

Additionally, r̂ij = (ri − rj)/rij , ξij is a standard normal variable with zero mean, kB is the
Boltzmann constant, and T is the temperature.

To model the polymeric chains in the microgels, we use a bead-spring model (see Fig. 1(a)),
where DPD beads are connected using a harmonic bond potential, a bending angle potential,
and a segmented-repulsive potential (SRP). The energy for the bond potential is given by

Ubond = kbond(r − req)
2,

where kbond is the bond stiffness, and req is the equilibrium separation length between beads.
The energy for the angle potential is given by

Ubend = kbend(1 + cos θ),

where kbend is the bending stiffness, and θ is the angle between two polymer bonds sharing a
common bead. The segmented repulsive potential prevents polymer chains from crossing each
other. It is implemented by imposing a soft repulsive force between chain bonds. The associated
force is given by

F
SRP
ij = C(1 − rmin/rcSRP

)r̂ij ,

where rcSRP
is the cutoff distance for the SRP potential, rmin is the minimum distance between

two bonds, and C is the strength of the potential[40].
In our simulations, we set

{
rc = 1, γ = 4.5, kBT = 1, ρ = 3,

rcSRP
= 0.5, C = 100, ∆t = 0.01.

Here, ρ is the number density of DPD beads in the system, and ∆t is the simulation time step.
The repulsions between solvent beads and between beads within polymer chains is

as-s = 25, ap-p = 25.

To model swelling and deswelling of the polymer gel, we alter the polymer-solvent repulsion ap-s

in the range between 20 and 35. For the sake of simplicity in what follows, we use a without
a subscript to indicate the polymer-solvent repulsion, i.e., a ≡ ap-s. The bond stiffness for the
polymer chains is set to kbond = 35 with req = 0.6. The bending stiffness is set to kbend = 10,
except for the single chain simulations where kbend varies in the range between 0 and 10. Note
that all dimensional parameters are expressed in DPD units, unless indicated otherwise.
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To create the gel network, we randomly distribute 3 600 crosslink points in a cubic box[38].
We then find all crosslink points separated by a distance in the range between 0.8reqN and
1.1reqN , and randomly connect them with connectivity up to 4 with straight polymer chains.
Here, N is the average number of monomers per chain. The number of monomers in each
chain is set such that the distance between beads is close to req. A microgel with spherical
shape is formed from the initial cubic gel by cutting out the chains outside the gel radius, with
disconnected chain segments removed via a depth-first search algorithm[41] (see Fig. 1(b)). The
final average connectivity is found to be about 3.4, mainly due to free chains at the outer gel
surface.

Fig. 1 (a) Single polymer chain comprised of polymer beads connected with harmonic bonds. (b)
Model of microgel network composed of individual chains interconnected at crosslinking sites
(color online)

For all the microgel networks in our simulations, we use an identical initial crosslinking
configuration. We investigate the effect of the number of beads per chain by setting N = 6, 9,
12, and 24. To create networks with different N , we rescale the relative positions of crosslink
points such that the average number of the monomers in the chains connecting them is close
to the desired value. Thus, all networks share the same characteristics including the number
of crosslinks, connectivity, and entanglements, and only differ by the number of monomers per
chain. This corresponds to changing the crosslink-to-monomer ratio, which is often done in
experiments[42–43]. We conduct our simulations in a periodic computational domain. In the
simulations with microgel networks, we choose a domain size in the range from 100× 100× 100
to 170 × 170 × 170 such that any interactions of the microgel with its periodical images are
prevented. The domain size for single chain simulations is 20 × 20 × 20. At the beginning of
the simulations, we equilibrate the microgel network in solvent until a steady state situation is
reached.

3 Results and discussion

3.1 Single chain model

Neutral poly (N -isopropylacrylamide) (PNIPAM) gels are composed of polymer chains that
exhibit flexible behavior[44]. We use this property as a guiding criterion for constructing our
mesoscale model for a polymer chain. Flory’s theory allows us to characterize the flexibility of
individual polymer chains in a dilute solution in terms of the relation between the end-to-end
distance Rend and the number of monomers N . This relation is given by

Rend ∼ lk(N − 1)v,
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where lk is the Kuhn length, and v is Flory’s exponent equal to 3/5 for flexible, self-avoiding
chains in good solvent[45].

When the bead-spring model is used without bending stiffness, we reproduce the flexible
behavior of a polymer chain with just a few beads per chain. In Fig. 2(a), we show a log-log
plot of Rend as a function of the number of beads for chains with different kbend and the chain
solvent repulsion a = 20. The lines in the figure correspond to v = 3/5. When kbend = 0,
the bead-spring model conforms to the expected scaling behavior, even for very short chains.
Including bending stiffness, however, leads to deviations for chains with a small number of
beads (see kbend = 5 and kbend = 10 in Fig. 2(a)). These chains behave as flexible chains only
if the number of beads in the chain is sufficiently large. In Fig. 2(b), we show the dependence
of the minimum number of beads in the chain Nmin for the chain to be flexible as a function of
the bending stiffness. This number increases as kbend increases. Hence, chains with N > Nmin

behave as flexible chains, whereas chains with N < Nmin are semi-flexible. Note that in our
mesoscale microgel model, we are interested in using shorter chains to reduce the size of the
system and accelerate the simulations.

Fig. 2 (a) End-to-end distance of linear chains with different kbend and a = 20. The points show
simulation data, whereas the lines represent the Flory theory scaling behavior for flexible
chains. As the bending stiffness increases, longer chains deviate from the flexible behavior.
(b) Minimum chain length for which chains follow flexible behavior as a function of the chain
bending stiffness. The line separates parameter space for the flexible and semi-flexible polymer
chains. For stiffer chains, a longer length is required to recover flexible behavior

In addition to changing the values of Nmin, bending stiffness also affects the magnitude of
the Kuhn length, which represents the effective length of orientationally independent segments
within a polymer chain. For kbend = 0, the Kuhn length is relatively short and is equal to
about 0.6, which is the equilibrium length req for stretching springs connecting the beads in
the chain. The addition of bending stiffness leads to an increased Kuhn length which increases
nearly linearly with kbend within the tested range (see Fig. 3). As we show below, larger values
of Kuhn length are critical for modeling highly porous swollen gels.

3.2 Microgel swelling

Hydrogels are characterized by a high porosity in good solvents[44,46], which plays a fun-
damental role in gel transport properties, mechanics, and swelling kinetics. It is, therefore,
important that our mesoscale microgel model can exhibit the relevant values of porosity in
good solvent conditions.

In Fig. 4(a), we plot the gel porosity P as a function of kbend for chains with different N .
To determine the microgel porosity, we first measure the microgel volume V by constructing
a surface mesh enclosing the microgel network (see Fig. 4(b))[47]. The surface mesh is defined
using a spherical probe with a radius of about half of the microgel mesh size. We then calculate



52 S. NIKOLOV, A. FERNANDEZ-NIEVES, and A. ALEXEEV

Fig. 3 Kuhn length monotonically increases with bending stiffness. With increasing kbend, the num-
ber of beads in each Kuhn segment increases. When kbend = 0, the Kuhn length corresponds
to one bond length, which is 0.6 in DPD units

microgel porosity based on the number of solvent beads located within the surface mesh. We
find that P increases with chain length. However, when kbend = 0, the porosity does not exceed
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Fig. 4 (a) Porosity of spherical microgels composed of chains with different length and a = 20 as a
function of the chain bending stiffness. (b) Triangulated surface mesh enclosing a microgel
network. The mesh surface is shown in blue and the gel beads are shown in green (color
online)

0.87 even for relatively long chains with N = 24. A further increase in the chain length can
lead to higher porosity. However, this also significantly extends the computation time, as the
domain size scales as N3.

Long computational times can be avoided by noting that P can be increased by using
shorter chains with a greater kbend and, thus, a greater Kuhn length. Indeed, we find that
when kbend = 10, the porosity is about 0.95 for the chains with N = 24, which is close to
typical experimental values for hydrogels. Furthermore, these chains behave as flexible chains,
which is also typical in experiments. We, therefore, use the chains with kbend = 10 in our
mesoscale model. Using chains with higher bending stiffness will further increase microgel
porosity. However, this will require longer chains in order to ensure that fully flexible behavior
is maintained, which in turn will lead to excessive computational time.

We conduct simulations, in which we place a spherical microgel network in the solutions
with different solvency that is varied by changing the network solvent repulsion coefficient a.
Larger values of a correspond to bad solvents, whereas lower values of a correspond to good
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solvents. At each a, we calculate the network porosity (see Fig. 5(a)) for gels with different N .
In bad solvents, all microgel networks have a nearly zero porosity, indicating that the microgel
expels practically all of the solvent and adopts a nearly collapsed state. Note, that P > 0, which
agrees with what is found in experiments[48]. In good solvents, the microgel swells, resulting in
values of P approaching 0.95 for large N .

The microgel volume change, as the solvent changes from good to bad, strongly depends
on N . For N = 6, the volume increases approximately 7 times, when the microgel changes
from the collapsed state to the swollen state. For N = 24, the volume increases about 30
times between collapsed and swollen states. We find that, as the chain length increases, the
volume-phase transition becomes sharper, as indicated by the greater values of the porosity
gradient, |∆P/∆a|, for the microgels with longer chains in Fig. 5(b). This behavior is related
to the microgel softening due to the decreasing crosslink density ρc = η/Va in microgels with
larger N . Here, η is the total number of crosslinks, and Va is the gel volume for a given value
of a. This result is in qualitative agreement with expectations from Flory-Rehner’s theory of
polymer gels[49].

Fig. 5 (a) Swelling curves in terms of porosity and network-solvent repulsion for spherical microgels
with different chain lengths. (b) Derivative of network porosity with respect to network-
solvent repulsion near the swelling transition. The magnitude of the derivative increases with
chain length, indicating a sharper volume phase transition

Larger volume changes can be also obtained by using polymer chains with greater bending
stiffness. In good solvent, stiffer chains lead to a higher microgel porosity, whereas in bad
solvent conditions, the size of the collapsed gels is nearly insensitive to kbend and is mostly
defined by the excluded volume of the chains.
3.3 Bulk modulus

We measure the bulk modulus of our mesoscale gels by quasi-statically varying the total
osmotic pressure imposed on the microgel network. To change the osmotic pressure, we create
a semi-permeable spherical shell around the microgel (see Fig. 6). The spherical shell interacts
with the gel particles via a harmonic potential, while the solvent particles are allowed to pass
freely through the shell. Varying the radius of the spherical shell, thus, effectively mimics a
change in the osmotic pressure. For each solvency a, we vary the radius of the semi-permeable
shell, and evaluate the corresponding network volume and pressure. To find the microgel volume
V , we construct a surface mesh around the gel. The network pressure is calculated as

Πnetwork = W (σave
xx + σave

yy + σave
zz )/(3V ),

where W is the number of microgel beads in the network, and σave
ii (i = x, y, z) are the average

normal stresses per bead in the x-, y-, and z-directions. The stress is averaged over all beads
in the microgel network.
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Fig. 6 Illustration of bulk modulus measurements. The images show the microgel inside a spherical
shell. The yellow points represent solvent beads, while the green points represent microgel
beads. Decreasing the radius of the semi-permeable shell increases the osmotic pressure on
the microgel (color online)

Figure 7(b) shows the resultant bulk moduli K for microgels with different N through the
volume phase transition. The pressure is calculated for different values of solvency a in the
linear region of microgel compression, where Πnetwork is a linear function of V (see the inset in
Fig. 7(a)). The variation of Πnetwork with V in this linear region is used to evaluate the microgel
bulk modulus as follows:

K = V
∆Πnetwork

∆V
.

This procedure is repeated for different a, covering the entire range of the microgel swelling
transition.

Figure 7(b) shows the resultant bulk modulus K for the microgels with different N through
the volume phase transition. We find that the bulk modulus monotonically increases as the
solvency decreases. This increase in K is related to a decrease in the microgel porosity and
an increase in the crosslink density ρc as a increases. In a good solvent with a < 25 (swollen
state), the bulk modulus decreases with N . In this case, increasing N decreases the crosslink
density, resulting in gel softening. This softening of the microgels with increasing N also leads
to a sharper volume-phase transition (see Fig. 5).

Analytically, the microgel bulk modulus can be evaluated with the Flory-Rehner theory,
which postulates that, for nonionic gels, the total osmotic pressure Πnetwork is composed of a
mixing osmotic pressure Πmix due to polymer-solvent mixing and an elastic osmotic pressure
Πe due to network elasticity[49]. In equilibrium with pure solvent, Πmix balances Πe. Using
that

K = φ
∂Πnetwork

∂φ

and Flory’s descriptions of Πmix and Πe, we can obtain an expression for the microgel bulk
modulus as follows:

K =
kBT

vs

(Nc

Vo
vs

(1

2

( φ

φo

)
−

( φ

2φo

)1/3)
+

φ2

1 − φ
− 2χφ2

)
,

where φ = 1 − P is the polymer volume fraction, Nc/Vo is the number of polymer chains
in the preparation state per volume, which corresponds to the nearly collapsed state in our
simulations, vs is the molar volume of the solvent, φo is the volume fraction in the preparation
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Fig. 7 (a) Network pressure as a function of the microgel volume for different chain lengths through-
out the volume phase transition. The inset shows Πnetwork as a function of V for N = 12 and
a = 20. The solid line in the inset shows slope of the linear deformation region. (b) Bulk
modulus from simulations (symbols) and corresponding fits to Flory-Rehner’s theory (lines).
In bad solvent, all microgels have the same bulk modulus. In good solvent, the microgels with
longer chain lengths have a higher porosity and are thus softer

state, and χ is the solvency parameter. For our microgels, we evaluate the solvent molar volume
as

vs = r3
cNA/ρ,

where rc is the cutoff radius of the DPD potential, NA is Avogadro’s number, and ρ is the
density in our simulations[50].

We fit our simulation results for K versus a with Flory-Rehner’s theory, using the relation
between Πnetwork, and thus φ, with a. We consider the solvency parameter as a function of the
polymer volume fraction

χ = χ0 + χ1φ + χ2φ
2

and set kBT/vs, Ncvs/Vo, χ0, χ1, and χ2 as the fitting parameters. In our simulations, the
number of polymer chains per volume in the preparation state is Nc/Vo ∼ 0.25 chains per unit
volume. The obtained values of the fitting parameters are summarized in Table 1. We find that
the values are nearly independent of the chain length N .

Table 1 Fitting parameters from bulk modulus fits

N kBT/vs Ncvs/Vo χ0 χ1 χ2

6 1.02 × 10−21 4.88 × 1022 0.491 02 0.050 18 0.502 64

9 1.05 × 10−21 4.90 × 1022 0.509 56 0.050 97 0.507 83

12 9.97 × 10−22 5.28 × 1022 0.513 57 0.050 91 0.499 95

24 1.08 × 10−21 5.09 × 1022 0.507 25 0.050 00 0.497 55

The resulting fits to our bulk modulus data correctly describe our simulation results (see
Fig. 7(b)). We note that if the fits are performed under the assumption that χ is linearly depen-
dent on φ, good agreement between our simulations and the theory cannot be obtained. Thus,
the quadratic dependence of χ on φ is essential. This is consistent with previous experiments,
and suggests that many-body interactions become important near the swelling transition[49].

Using the results for χ from the fits, we can establish how this parameter depends on the
network-solvent repulsion coefficient a. This is shown for different N in Fig. 8. We find that the
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χ-a dependence is not sensitive to the value of N . Furthermore, in good solvents, the solvency
parameter is about 0.5, whereas in bad solvents, it increases to about 1. This behavior agrees
reasonably well with the experimental data[51–53].

Fig. 8 Relationship between the Flory-Huggins solvency parameter and the network-solvent repulsion
in DPD simulations

3.4 Swelling kinetics

When the gel undergoes a volume transition, the kinetics of this process is defined by a
balance among osmotic pressure, gel elasticity, and viscous drag due to the solvent penetrating in
or out of the gel network. The swelling kinetics of a spherical gel can be analyzed analytically[54].
The change in the gel radius is given by

∆r(t) = ∆ro
6

π2

∑

n

n−2e−n2t/τs ,

where ∆ro is the total increase in the radius defined by

∆ro = rfinal − rini.

In the above equation, rfinal and rini are the final and initial equilibrated gel radii, respectively,
τs is the swelling time constant, and t is time. The swelling time constant is given by

τs = r2
final/D.

In the above equation, D is the collective diffusion of the gel characterizing its elastic relaxation
in a viscous solvent, and is expressed by

D = (K + 4µ/3)/f,

where K is the bulk modulus, µ is the shear modulus, and f is the friction coefficient between
the polymer network and the fluid.

To examine whether our mesoscale gel model can properly describe swelling kinetics, we
simulate the swelling of a spherical microgel that is initially in the collapsed state (a = 35). At
t = 0, the collapsed gel is placed in a good solvent (a = 20). In our simulations, we track how
the microgel radius changes as the microgel undergoes swelling in good solvent. The results of
the simulations for different chain lengths N are shown in Fig. 9(a). We fit the simulation data
to Tanaka’s theory to determine the relaxation constant τs and the corresponding value of the
collective diffusion coefficient D, which are given in Table 2. The data indicates that τs increases
roughly proportional to N2, whereas the collective diffusion D decreases with the increase in
N [55]. As a result, networks with longer chains swell slower than the networks with smaller
chains. Figure 9(a) shows close agreement between the theoretical results and the simulation
results for all N , indicating that our microgel model can properly capture not only microgel
mechanics but also microgel interactions with the viscous solvent.
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Table 2 Microgel swelling/collapsing kinetics parameters

N Gel swelling Gel collapsing

D τs D τs

6 1.957 220 0.567 210

9 1.721 430 0.559 280

12 1.640 620 0.537 360

24 1.162 2 300 0.344 900

We also examine the microgel kinetics during deswelling. In this scenario, the swollen
spherical gel (a = 20) is introduced to a bad solvent (a = 35). The time evolution of the
microgel size is shown in Fig. 9(b). We find that the deswelling simulation data can also be fitted
to Tanaka’s theory, although the agreement is somewhat less accurate when compared with the
swelling process. Comparing the fitting parameters in Table 2, we find that the relaxation time
is considerably shorter for deswelling microgels, especially for longer chain lengths. This can be
expected since the relaxation time is proportional to r2

final, which is much smaller for collapsed
microgels than for swollen microgels. We also find that the collective diffusion D is about 3
times smaller for deswelling microgels, indicating differences in the internal structure of the
microgels during the swelling and deswelling transitions.

Fig. 9 (a) Swelling kinetics for spherical microgels transitioning from the collapsed state to the
swollen state. (b) Swelling kinetics results for microgels transitioning from the swollen state
to the collapsed state. The theoretical line shows the prediction of Tanaka’s theory for the
swelling of a spherical gel

Figure 10 illustrates the microgels that undergo swelling (top row) and deswelling (bottom
row) transitions. During swelling, the particle gradually increases in size while maintaining a
nearly homogeneous structure (see Fig. 10(a)). In contrast, during deswelling, the microgel ex-
hibits a remarkably different internal structure at intermediate times. Our simulations indicate
that the deswelling from a fully swollen state proceeds through network coarsening that man-
ifests as formation of chain bundles at the outskirts of the microgels (see Fig. 10(b)). Similar
coarsening behavior has been reported for isochore phase separation in hydrogels[56]. Eventu-
ally, however, the microgel volume decreases and the solvent is expelled, allowing the microgel
to shrink to its collapsed size. Note that this process is different from the rapid deswelling of
macroscopic gel, whereby a skin of collapsed gels is formed on the outer gel surface. This dense
skin prevents solvent transfer from the hydrogel interior, thereby delaying the gel deswelling[57].
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Fig. 10 Simulation snapshots illustrating a microgel network with N = 12 during (a) swelling and
(b) deswelling. The bad and good solvent conditions are modeled with a = 35 and a = 20,
respectively. Time is normalized by the corresponding swelling time constant (color online)

4 Conclusions

We have examined the mechanics and swelling kinetics of neutral microgel particles using a
mesoscale polymer network model. The model network is immersed in an explicit viscous solvent
modeled using dissipative particle dynamics. We alter the solvency by changing the repulsion
between the network and the solvent. To prevent chains from crossing each other, we employ
a bond-bond repulsive potential. To model sufficiently large microgel networks, we identify
single chain parameters leading to experimentally realistic microgel properties. We find that,
to model swollen microgels with high porosity, bending stiffness needs to be incorporated into
the polymer chains to increase their Kuhn length. This imposes a limitation on the minimum
polymer chain length when flexible chain mechanics is required.

We show that microgels undergo a continuous volume transition when the solvency is
changed. In bad solvents, the networks contract to a nearly collapsed state, whereas in good
solvents, the microgels swell with a porosity that increases proportionally to the chain length.
Microgels with higher porosity are characterized by a sharper volume transition. To probe
the effect of the volume-phase transition on the microgel mechanics, we employ our simulation
model to obtain the microgel bulk modulus. We find that the bulk modulus changes monotoni-
cally through the volume transition. In the collapsed state, the bulk modulus is independent of
the chain length, and is defined by the chain-chain repulsion. In swollen networks, the modulus
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decreases with increasing porosity and decreasing crosslink density. We fit our bulk modulus
data to the Flory-Rehner theory, and show that our mesoscale model is in good agreement
with the theory. From the fitting, we obtain the Flory-Huggins solvency parameter. This pro-
cedure allows establishing a relation between the solvency parameter and the solvent-network
repulsion parameter. We find that the solvency parameter exhibits a quadratic dependence on
the polymer volume fraction, which is consistent with the experimental results, reflecting the
importance of many-body interactions through the swelling transition.

Finally, we study the swelling kinetics of our microgel particles. Our simulations show close
agreement to Tanaka’s theory for spherical gels. This result indicates that the mesoscale model
can properly capture the hydrodynamics of network-solvent interactions. Importantly, we find
that, during swelling, microgels preserve a nearly homogeneous internal structure, whereas rapid
deswelling leads to the formation of chain bundles in the outskirts of the particle and network
coarsening. The difference in internal microgel structure is manifested by different kinetic
constants, characterizing the speed of the swelling and deswelling transitions. In its current
implementation, our mesoscale model is limited to modeling microgels exhibiting a continuous
volume phase transition. Thus, our microgel model cannot simulate gels with a negative Poisson
ratio and discontinuity in the bulk modulus, which are observed near the critical volume phase
transition for certain microgels[58]. More elaborate chain-chain and chain-solvent interactions
need to be integrated into the model to capture these effects, which is an important direction
for future model development.
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