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Abstract We develop a mathematical model to describe the flow in a microchannel
driven by the upper stretching wall of the channel in the presence of electrokinetic effects.
In this model, we avoid imposing any unphysical boundary condition, for instance, the zero
electrostatic potential in the middle of the channel. Using the similarity transformation,
we employ the homotopy analysis method (HAM) to get the analytical solution of the
model. In our approach, the unknown pressure constant and the integral constant related
to the electric potential are solved spontaneously by using the proper boundary conditions
on the channel walls, which makes our model consistent with the commonly accepted
models in the field of fluid mechanics. It is expected that our model can offer a general
and proper way to study the flow phenomena in microchannels.
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1 Introduction

Fluid flow in microchannels has been recognised as a major role in the applications of micro-
electro-mechanical systems (MEMS) and microfluidics, for instance, microchannel heat sinks for
cooling microchips and laser diode arrays[1–2], lab-on-chip devices for chemical and biomedical
analyses[3], and microfluid pumps[4]. Several theoretical and experimental studies have been
performed towards understanding the fundamental transport mechanisms of microchannel flow.
Among them, Eringen[5] suggested a simple model in which he described the fluid flow in
the microchannels by using the Navier-Stokes equations with jump conditions. Pfahler et
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al.[6] observed that the predictions by the Navier-Stokes equations are in agreement with the
experimental results to some extent for the flow in the large channels, but different from the
experimental data of the flow within small ones. Mala et al.[7–8] discovered that the influence
of the electric double layer (EDL) at the solid-liquid interface on the flow in a microchannel
has to be considered to make the theoretical results consistent with the experimental ones.
Ren et al.[9] found that it is necessary to address the additional flow resistance due to the
electrokinetic effect in microchannels. Their theoretical analysis based on the electro-viscous
flow models gave better agreement with the experimental results compared with those by the
Navier-Stokes equations.

It is worth mentioning that the electro-viscous flow model used by Mala et al.[7–8] employed
an arbitrary boundary condition to force the electrostatic potential φ in the middle of the
microchannel to be 0, which leads to the fact that both the electrostatic potential and the flow
velocity profiles in the microchannel are not physical. Moreover, the mathematical model for
flow field used by Mala et al.[7–8] as well as that by Ren et al.[9] contains a constant pressure
parameter whose value was set to be known from the experimental data. Though it significantly
simplified the procedure to obtain results with acceptable accuracies, it is far from being a
correct way to develop mathematical models for the flow in microchannels. Theoretically, as
has been discussed in detail in the literature[10–19], this pressure parameter has to be taken as
an unknown constant to be calculated based on the boundary conditions.

In this paper, we develop a theoretical model of the liquid flow in a microchannel driven by
its upper moving wall together with the effects of the EDL. Compared with the models used by
Mala et al.[7–8] and Ren et al.[9] for the flow in the microchannel due to the pressure difference,
two drawbacks have been overcome in our model. Firstly, we remove the unphysical artificial
zero electric potential condition in the middle of the microchannel. Secondly, we calculate the
unknown pressure constant in the model by using the boundary conditions on the microchannel
walls, which makes our model consistent with the models that are commonly employed in the
field of fluid mechanics to describe the channel flow. After this short introduction section, we
describe the flow model for the microchannel flow due to the moving wall together with the
electric double layer effect in detail in Section 2 and Section 3. We then give the detailed
procedure to find the analytical solution of the governing equation by using the homotopy
analysis method (HAM)[20] in Section 4 that is also validated with the numerical results obtained
by the finite difference technology[21]. The flow phenomena are studied under different flow
conditions in Section 5, which is followed by a short conclusion in Section 6.

2 Analytical solution of electrostatic potential

Consider a fluid flow between two horizontally parallel flat plates separated by a small
distance H , as shown in Fig. 1. In practice, the liquid usually is a dilute solution that contains
positive and negative ions. Also, the walls of the microchannel are commonly slightly charged.
When the flow channel is small, the electrostatic effects on the flow cannot be ignored. In our
model, we set that the electric potentials on both surfaces are identical and reduce gradually into
fluid. The concentration of the suspended ions is uniform in the channel. In the vicinity of the
surfaces the electrostatic potential φ at any point is associated with the net number of electrical
charges per unit volume ρe, which can be expressed, based on the theory of electrostatics, in
the following form:

d2φ

dy2
= −

ρe(y)

ε0ε
, (1)

where ε and ε0 are, respectively, the dielectric constant of the fluid and the permittivity of
vacuum.
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Fig. 1 Physical model and coordinate system for flow in microchannel that is driven by moving upper
wall of channel together with effects of electrostatic double layer

Invoking the equilibrium Boltzmann distribution, in which the uniform dielectric constant
is applicable, the solution of the number of ion distribution in a symmetric electrolyte can be
then written as

ni = n0i exp
(
−
ẑi e φ(y)

kbT̂

)
, (2)

where n0i is the bulk ionic concentration, ẑi is the valence of type i ions, e is the fundamental
charge, kb is the Boltzmann’s constant, and T̂ is the absolute temperature. The net charge
density in a unit volume of the fluid is defined by

ρe(y) = (n+ − n−) ẑ e = −2n0 ẑ e sinh
( ẑ e φ(y)

kb T̂

)
. (3)

Substituting Eq. (3) into the Poisson equation (1), we obtain

d2φ

dy2
=

2n0 ẑ e

ε0 ε
sinh

( ẑ e φ(y)

kb T̂

)
. (4)

By using the dimensionless variables

Φ(η) =
ẑ e φ(y)

kb T̂
, Θ(η) =

ρe(y)

n0 ẑ e
, η =

y

H
, (5)

Eq. (1) and Eq. (4) are simplified to

Φ′′(η) = κ2 sinh(Φ(η)), (6)

Φ′′(η) = −
κ2

2
Θ(η), (7)

where κ = H k is a dimensionless constant with k = (2n0 ẑ
2 e2/(ε0 ε kb T̂ ))1/2 being the recip-

rocal of the Debye length. When the electrical potential is small compared with the thermal
energy of the ions, |ẑeφ| < |kbT̂ |, Eq. (6) can be linearized to the Debye-Hückel model as follows:

Φ′′(η) = κ2Φ(η). (8)

The appropriate boundary conditions for the dimensionless electrostatic potential Φ are

Φ(0) = Φ(1) = ζ =
ẑeζ

kbT̂
, (9)
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where ζ denotes the measurable electrical potential between the boundaries of the compact
layer and the diffuse layer of the EDL at the shear plates.

When using the boundary conditions in Eq. (9), the closed-form solution of Eq. (8) is

Φ(η) =
ζ

1 + exp(κ)
exp(κη) +

ζ

1 + exp(−κ)
exp(−κη). (10)

3 Equations of fluid motion

To describe the fluid flow motion between two parallel flat plates driven by its upper stretch-
ing plate with the effects of the EDL, as displayed in Fig. 1, the following assumptions are
imposed: the fluid is incompressible, the flow is laminar and steady, and the velocity of the
flow away from the channel walls is independent of position along the x-direction. When the
viscous force, the pressure force, and the electrical body force generated by the double layer
electric field are all considered, the Navier-Stokes equations to describe this microchannel flow
can be written as

∂u

∂x
+
∂v

∂y
= 0, (11)

u
∂u

∂x
+ v

∂u

∂y
= −

1

ρf

∂p

∂x
+ νf

(∂2u

∂x2
+
∂2u

∂y2

)
+
Exρe

ρf
, (12)

u
∂v

∂x
+ v

∂v

∂y
= −

1

ρf

∂p

∂y
+ νf

(∂2v

∂x2
+
∂2v

∂y2

)
. (13)

The boundary conditions are
{
u = 0, v = 0 at y = 0,
u = uw = a x, v = 0 at y = H,

(14)

where u and v are the velocity components along the x-axis and y-axis, respectively, p denotes
the pressure, ρf is the fluid density, νf is the kinematic viscosity, and Ex is the electric field
strength.

Define the following similarity transformations:

ψ(x, y) = (ax)HF (η), η =
y

H
, (15)

where ψ(x, y) is the stream function,

u =
∂ψ

∂y
, v = −

∂ψ

∂x
. (16)

Substituting Eq. (15) into Eqs. (11), (12), and (13), the continuity equation (11) is satisfied
straightforwardly, and the rest of equations can be written, by emphasizing the pressure related
terms, as follows:

1

ρf

∂p

∂x
= a2x

( νf
aH2

F ′′′ + F F ′′ − F ′2 +
Exρe

ρfa2x

)
, (17)

1

ρf

∂p

∂y
= a2H

(
FF ′ −

νf
aH2

F ′′
)
. (18)

Since the terms on the right-hand side of Eq. (18) are independent of x, which indicates

∂2p

∂x∂y
= 0.
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As a result, we obtain

1

Re
F ′′′ + F F ′′ − F ′2 +

Exρe

ρfa2x
= K, (19)

where
Re = aH2/νf

is the Reynolds number, and K is the pressure constant to be determined.
To obtain the electric field strength Ex, we quantify the balance between the streaming

current and the electrical conduction current[7–8]. As it is known that in the absence of an
applied electric field, when a dilute solution is forced through a channel under hydrostatic
pressure, the streaming current is generated, which can be expressed as

Is =

∫

Ac

uρedAc, (20)

where Ac is the cross-sectional area of the flow channel.
The streaming potential further produces a conduction current in the reverse direction which

is

Ic =
λ0EsAc

L
, (21)

where λ0 is the electrical conductivity of the fluid, Es is the streaming potential, and L is a
reference length of the channel.

At the steady state, the net electrical current is zero, i.e.,

I = Is + Ic = 0. (22)

Substituting Eq. (15) into Eqs. (20) and (21), we obtain

Is =

∫

Ac

u ρe dAc = −2n0ẑeWHax

∫ 1

0

F ′Φ dη, (23)

Ic =
λ0EsAc

L
= Exλ0WH, (24)

where W is the reference width of the channel and Ex = Es/L. Solving Eq. (22), we obtain

Ex =
2an0ẑe

λ0
x

∫ 1

0

F ′Φdη. (25)

Therefore, the last term on the left-hand side of Eq. (19) can be written as

Exρe

ρfa2x
= −G1Φ

∫ 1

0

F ′Φdη, (26)

where

G1 =
2n0ẑe

λ0ρfa

is a dimensionless constant.
Using Eq. (26), Eq. (19) can then be reduced to

1

Re
F ′′′ + FF ′′ − F ′2 −G1

(∫ 1

0

F ′(η)Φ(η)dη
)
Φ(η) = K (27)
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with the boundary conditions

F (0) = 0, F ′(0) = 0, F (1) = 0, F ′(1) = 1. (28)

Two physical parameters are important to quantify the flow phenomena in the microchannels
and for the engineering design of microchannels, namely, the local skin frictional coefficients on
both walls. We give the definitions of these two parameters before showing the detailed solution
procedure of Eq. (27):

Cfxl =
τwl

ρf u2
w

, Cfxu =
τwu

ρf u2
w

, (29)

where

τwl = µf
∂u

∂y

∣∣∣
y=0

, τwu = µf
∂u

∂y

∣∣∣
y=1

. (30)

Substituting Eq. (30) into Eq. (29), we obtain

Cfxl =
1

Re

(1

ξ

)
F ′′(0), Cfxu =

1

Re

(1

ξ

)
F ′′(1), (31)

where ξ = x/H is the dimensionless length variable.

4 Solution method

It is worth noting that Eq. (27) contains two unknown constants K and
∫ 1

0 F
′(η)Φ(η)dη

which are difficult to be calculated accurately during the solution finding procedure by numerical
or analytical approaches without particular treatments. Nevertheless, in this work, we employ
and extend the HAM technique to obtain the exact solution of the nonlinear equation (27)
subject to the boundary conditions in Eq. (28), in which the exact values of the unknown

constants, K and
∫ 1

0
F ′(η)Φ(η)dη, are calculated spontaneously and simultaneously as parts of

the solution procedure without any particular tricks.

We first write the unknown constants K and
∫ 1

0 F
′(η)Φ(η)dη as

K = σ0 +

∞∑

j=1

σj ,

∫ 1

0

F ′(η)Φ(η)dη = ω0 +

∞∑

j=1

ωj, (32)

and then express the functions F (η) and Φ(η) as

F (η) = f0(η) +
∞∑

j=1

fj(η), Φ(η) = φ0(η) +
∞∑

j=1

φj(η). (33)

In the framework of the HAM, the kth order HAM deformation equations can be written as

f ′′′
m − χmf

′′′
m−1 = ~f Rf, m, (34)

φ′′m − χmφ
′′
m−1 = ~φRφ, m (35)

with the boundary conditions

fm(0) = 0, f ′
m(0) = 0, fm(1) = 0, f ′

m(1) = 0, φm(0) = 0, φm(1) = 0, (36)
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where ~f and ~φ are the HAM auxiliary parameters used for the convergence-control of the
HAM analytical approximations. Also, Rf, m, Rφ, m, and χm are defined, respectively, by

Rf, m =
1

Re
f ′′′

m−1 +

m−1∑

j=0

(fj f
′′
m−1−j − f ′

j f
′
m−1−j −G1 ωj φm−1−j) − σm−1, (37)

Rφ, m = φ′′m−1 − κ2φm−1, (38)

and

χm =

{
0, m 6 1,
1, m > 1.

(39)

The solutions of Eqs. (34) and (35) are in the forms of

fm = f∗ + χm fm−1 + C0, m + C1, m η + C2, m η2, (40)

φm = φ∗ + χm φm−1 + C3, m + C4, m η, (41)

where

f∗ =

∫∫∫
(~f Rf, m) dη dη dη, (42)

φ∗ =

∫∫
(~φRφ, m) dη dη, (43)

and the constants Ci, m (i = 0, 1, 2, 3, 4) are determined by the boundary conditions





C0, m = −f∗
m(0), C1, m = −f ′∗

m(0),
C2, m = −f∗

m(1) − C0, m − C1, m,

C3, m =
φ∗(1) + φ∗(−1)

2
,

C4, m =
φ∗(−1) − φ∗(1)

2
.

(44)

The above HAM solution procedure can work accordingly after the initial approximations
f0(η) and φ0(η) are chosen properly based on the boundary conditions (9) and (28), such as

f0(η) = η4 − η3, φ0(η) = ζ. (45)

During the HAM solution procedure, the unknown constantK is determined in the following
way. Due to Eqs. (34) and (37), it is known that f ′

m(η) = 0 contains the unknown term ωm−1,
which can be obtained by using the boundary condition f ′

m(1) = 0 defined in Eq. (36). For
example, for the zeroth order approximation for K when m = 0 in Eq. (32), as f ′

1(1) = 0, we
have

1

Re
−

5

252
−

1

6
σ0 = 0, (46)

which leads to

σ0 =
252 − 5Re

42Re
. (47)

Also, the constant integration term ω0 =
∫ 1

0
f ′
0(η)φ0(η)dη can be obtained from Eq. (45). In

this way, the whole solution series in Eq. (32) for K and the constant integration term can be
determined successively from m = 1, 2, 3, · · · .



402 Hang XU, I. POP, and Q. SUN

5 Results

To check the accuracy of our solution, we define the following error estimation formula:

Ef(m) =

∫ 1

0

( 1

R
F ′′′ + FF ′′ − F ′2 −G1

( ∫ 1

0

F ′(η)Φ(η)dη
)
Φ(η) −K

)2

dη. (48)

Substituting mth order computational results into Eq. (48), the corresponding error can be
obtained. For example, for prescribed values of Re = 5 and G1 = 10, by properly choosing
~f = −2 and ~φ = −1/2 (Padé technique is used for κ = 20), we find that the errors are
perfectly small, as listed in Table 1. Also, we run a few validations between the analytic results
obtained by the HAM and the results by the numerical technique, finite difference method.
When applying the finite difference method to solve governing equation (27) together with
the boundary conditions in Eq. (28), we first take one derivation of Eq. (27) with respect of
η. Then, the central finite difference schemes are employed to represent the differential terms
in the resulting governing equation, and a ghost node on each end of the computational zone
is used to take care of the first order derivations in the boundary conditions. The integral
term is represented by Simpson’s rule. The nonlinearity of the governing equation is dealt with
through iteration. As shown in Fig. 2, good agreement has been found between the analytical
approximations by the HAM and the numerical results by the finite difference method.

Table 1 Computational errors with different order HAM approximations under different values of κ

at Re = 5 and G1 = 10

Order κ = 0 κ = 1 κ = 3 κ = 5 κ = 20

0 1.453 27 1.453 27 1.453 27 1.453 27 1.453 27

10 4.33×10−5 4.29×10−5 4.29×10−5 5.84×10−5 2.40×10−2

20 2.99×10−9 2.87×10−9 2.78×10−9 1.82×10−8 7.91×10−4

30 2.75×10−13 2.62×10−13 2.52×10−13 9.93×10−11 1.57×10−5

40 − − − − 1.83×10−9

50 − − − − 4.39×10−13

 

 

Fig. 2 Comparisons of stream function values at Re = 5 and G1 = 50 between 50th order analytical
approximations by HAM (lines) and numerical results by finite difference method with 1 000
uniform elements (symbols) (color online)

As seen in Fig. 3, Φ(η) decreases monotonously as κ increases. Particularly, as κ becomes
sufficiently large, Φ(η) diminishes to zero in the middle of the channel. This leads to the
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Fig. 3 Field values of electric potential Φ(η) under different κ

common assumptions of zeta potential[22] in the application of capillary: (i) the capillary walls
are flat, and (ii) the double layer develops fully so that the potential in the middle of the
capillary is zero. Traditionally, people took that κ = 5 could be large enough to describe such
electrokinetic phenomena in fluid flows since the potential in the mid plane is small compared
with the potential near the wall. However, Burgreen and Nakache[23] showed that the influence
of the zeta potential still exists across the channel even when κ = 10 in which the distance
between the two plates is already considerably large. Also, it is known that the double layer
field is significant near the channel walls. For instance, the double layer occupies only 8% of
the channel cross-sectional area for κ = 80.

In Fig. 4, the influences of κ on the pressure constant K are presented. From this figure, we
can see that the pressure constantK decreases dramatically as κ increases when it is small. Once
reaching the minimum value, K increases as κ evolves. The pressure constant K approaches
to 1 as κ keeps continuously increasing. This indicates that the influence of the electrostatic
potential on the pressure gradient is opposite to that caused by the upper stretching wall. κ has
significant effects on K when the distance between two parallel plates is small. As the distance
between the two walls consecutively increases, the electrostatic potential in the middle of the
channel diminishes to zero. In this situation, the effect of the electrostatic potential on the
pressure gradient becomes weaker and weaker, which results in that the effects on the pressure
gradient due to the upper stretching wall of the channel become dominant.

Fig. 4 Dependence of pressure constant K on κ when Re = 5 and G1 = 100

It should be noted that, from Eq. (31), F ′′(0) and F ′′(1) are the core parts of the local skin
friction coefficients Cfxl and Cfxu, respectively. Therefore, we consider the effects of κ on F ′′(0)
and F ′′(1) that will straightforwardly reflect the effects of κ on Cfxl and Cfxu. As shown in
Fig. 5, F ′′(0) decreases rapidly as κ increases when κ is not large. After passing the minimum
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value, F ′′(0) grows with κ increasing. Physically, the double layer electric field generates an
electrical body force, which is opposite to the frictional resistance. As a result, its enhancement
decreases the drag resistance, while as κ is large enough, the effect of electrostatic potential
becomes negligible in most part of the fluid within the microchannel. It is shown in Fig. 6 that
the variation of F ′′(1) with κ exhibits the totally reverse trend relative to that of F ′′(0). F ′′(1)
rapidly enhances to its maximum value, then gradually reduces as κ continuously reduces. This
means that the electrical body force exerts a positive influence on the skin friction coefficients
for small κ, whose effect becomes weaker and weaker when the size of the channel increases.
The streaming potential

Es ≡ G1

∫ 1

0

F ′(η)Φ(η)dη

is also an important quantity to affect the flow patterns in a microchannel. As shown in
Fig. 7, Es develops very quickly as κ evolves. When the electrostatic potential in the middle of
the microchannel just diminishes to zero, the streaming potential reaches its peak value. After
that, Es reduces as κ increases. Physically, the reason is that the large distance of electrokinetic
separation corresponds to a large volume transport so that more ions are carried to the end of
the channel which leads to a higher charge accumulation.

''

Fig. 5 Variation of f ′′(0) for local skin fric-
tional coefficient on lower wall along
κ when Re = 5 and G1 = 100

Fig. 6 Variation of f ′′(1) for local skin frictional
coefficient on upper wall along κ when
Re = 5 and G1 = 100

Fig. 7 Dependence of stream potential Es on κ when Re = 5 and G1 = 100
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It is a common sense that the Reynolds number Re plays an important role in the flow
characteristics. As shown in Fig. 8, when κ is small, K decreases dramatically as Re enlarges
at first, and then it enhances slightly as Re continuously evolves. However, when κ is large
(i.e., κ = 20), K decreases monotonously as Re increases. These trends show that Re plays a
dominant role on K when it is small. When Re is large, the effect of the electrical body forces
becomes important, especially when κ is not large. It is known from Eq. (31) that f ′′(0)/Re and
f ′′(1)/Re are the main parts of the local skin friction coefficients Cfxl and Cfxu, respectively.
As shown in Fig. 9, f ′′(0)/Re increases gradually as Re grows for both cases of κ = 3 and
κ = 20. On the contrary, f ′′(1)/Re decreases consecutively as Re increases for both cases of
κ = 3 and κ = 20, as displayed in Fig. 10. For both f ′′(0)/Re and f ′′(1)/Re, the effects of κ
become significant when Re is sufficiently large. As seen in Fig. 11, Es reduces gradually as Re
enlarges, particularly, the reduction rate for κ = 3 is faster than that for κ = 20. Physically,
when κ is appropriately small, the electrostatic potential affects the whole cross-section of the
channel. In this case, κ plays an equally important role in the reduction of Es as Re does.
When κ is sufficiently large, its effect on the flow is negligible. Re becomes the dominant factor
for the decrease of Es.

The effects of G1 on the various physical quantities of the flow have been shown in Table
2 and Table 3. It can be seen that K and f ′′(0) decrease as G1 grows, but f ′′(1) and Es rise
as G1 increases. Physically, G1 is related to the electrical strength whose enlargement results
in the increase of the electric potential. Since the pressure gradient caused by the electrostatic

Fig. 8 Dependence of pressure constant K on Re when G1 = 100

Fig. 9 Variation of f ′′(0) for local skin frictional coefficient on lower wall along Re when G1 = 100
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Fig. 10 Variation of f ′′(0) for local skin frictional coefficient on upper wall along Re when G1 = 100

Fig. 11 Dependence of stream potential Es on Re at G1 = 100

Table 2 Various physical quantities under different values of G1 when Re = 5 and κ = 3

G1 Φ′(0) (exact) Φ′(0) K f ′′(0) f ′′(1) Es

1 −2.715 444 8 −2.715 444 8 0.975 678 8 −1.788 124 2 4.430 843 6 0.036 842 5

10 −2.715 444 8 −2.715 444 8 0.803 452 9 −1.852 257 6 4.489 727 7 0.365 370 0

20 −2.715 444 8 −2.715 444 8 0.615 379 4 −1.922 274 5 4.554 006 7 0.724 070 2

50 −2.715 444 8 −2.715 444 8 0.071 028 8 −2.124 823 1 4.739 916 1 1.761 940 4

100 −2.715 444 8 −2.715 444 8 −0.775 041 6 −2.439 330 8 5.028 466 8 3.374 091 1

150 −2.715 444 8 −2.715 444 8 −1.552 714 6 −2.728 083 6 5.293 258 2 4.854 859 5

200 −2.715 444 8 −2.715 444 8 −2.269 996 2 −2.994 133 7 5.537 119 8 6.219 743 6

Table 3 Various physical quantities under different values of G1 when Re = 5 and κ = 20

G1 Φ′(0) (exact) Φ′(0) K f ′′(0) f ′′(1) Es

1 −19.999 999 9 −19.999 999 9 0.994 090 3 −1.787 680 0 4.430 687 7 0.036 235 6

10 −19.999 999 9 −19.999 999 9 0.986 004 5 −1.848 222 3 4.488 538 3 0.361 318 2

20 −19.999 999 9 −19.999 999 9 0.977 068 9 −1.915 086 6 4.552 428 3 0.720 344 0

50 −19.999 999 9 −19.999 999 9 0.950 565 2 −2.113 160 8 4.741 683 2 1.783 882 0

100 −19.999 999 9 −19.999 999 9 0.907 377 8 −2.435 122 6 5.049 282 2 3.512 568 1

150 −19.999 999 9 −19.999 999 9 0.865 378 7 −2.747 284 6 5.347 486 1 5.188 575 4

200 −19.999 999 9 −19.999 999 9 0.824 520 1 −3.050 086 5 5.636 717 9 6.814 270 3
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potential is opposite to that caused by the upper stretching wall, the increase of G1 leads to
the reduction of K. On the other hand, the electrical body force is along the same direction
of the viscous force near the upper wall of the channel. As a result, f ′′(1) enhances as G1

increases. Due to the conservation of mass flux, f ′′(0) has to diminish as G1 grows. Obviously,
the increase of the electrostatic potential is helpful to increase Es. From these tables, we also
notice that all these physical quantities vary almost linearly with G1 from 0 to 200.

6 Conclusions

In this work, we proposed a mathematical model to describe the liquid flow in a microchannel
driven by its upper stretching wall in the combination of electrokinetic effects. Comparing with
the traditional models, the unphysical boundary condition of the electrostatic potential in the
middle of the channel has been fully eliminated. Our model was solved using the similarity
transformation. The accurate analytical approximations were given by the HAM, in which
the pressure constant and the integral constant related to the electric potential were solved
spontaneously by using the proper boundary conditions on the channel walls. It is expected
that our model is consistent with the commonly accepted models in the field of fluid mechanics,
and can offer the general and proper way to study the flow phenomena in microchannels.
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