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Abstract In this paper, we present an analytical method for evaluating the stress
field within a casing-cement-formation system of oil/gas wells under anisotropic in-situ
stresses in the rock formation and uniform pressure within the casing. The present method
treats the in-situ stresses in the formation as initial stresses since the in-situ stresses
have already developed in the formation before placement of cement and casing into the
well. It is demonstrated that, via this treatment, the present method excludes additional
displacements within the formation predicted by the existing method, and gives more
reasonable stress results. An actual tight-oil well is analyzed using the present and existing
analytical methods, as well as the finite element method. Good agreement between the
analytical results and the finite element analysis (FEA) results is obtained, validating the
present method. It is also evident that, compared with the present method, the existing
method overestimates the compressive stress level within the casing and the cement.
Finally, the effects of elastic properties of the formation, cement, and inner pressure of
casing on stresses within the casing and cement are illustrated with a series of sensitivity
analyses.
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1 Introduction

The increasingly complex environment in which oil and natural gas wells operate has imposed
more and more critical design constraints on the well drilling and completion. For example,
more and more high pressure/high temperature wells, deep and ultra-deep wells and massively
hydraulically fractured horizontal wells are drilled, which brings about extreme conditions like
the high temperature, high pore pressure, high in-situ stress as well as high internal pres-
sure within the steel casing. Therefore, wellbore integrity has always been a central concern
during the design of wells exposed to these harsh conditions. Among various well integrity
issues, mechanical failures of the steel casing and the cement sheath are two primary failure
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types[1]. Experimental and field experiences showed that mechanical failures of the casing and
the cement could occur due to excessive stresses induced by dramatic changes of down-hole con-
ditions during operations such as hydraulic fracturing, hot fluid/steam injection, well testing
and production[2–3]. More critically, the mechanical failure may also incur or speed up chemical
degradation of the casing and the cement due to corrosive substances in the reservoir fluids,
thus accelerating the mechanical failure[4–5]. The failure of the casing may lead to compromised
oil/gas production and even abandonment of the well, while the failure of the cement would
cause loss of effective zonal isolation and uncontrolled leakage of oil/gas from the reservoir to
shallow aquifers, leading to environmental and safety concerns[6–7]. Thus, in order to ensure
the integrity of the casing and the cement by appropriate design, it is of paramount importance
to accurately evaluate stresses within the casing and the cement during the whole operating
life circle of the well.

Laboratory investigations simulating down-hole conditions[2,8] have been conducted to un-
derstand the mechanical behavior of the cement sheath, which manifested that radial tensile
cracking and compressive or shear plastic damaging may occur within the cement depending on
the stress conditions, and also demonstrated the significant influence of the mechanical proper-
ties of the casing, the cement, and the formation. Meanwhile, the industry has acknowledged
from field experiences that there is a positive effect of the cement on the failure resistance of
the casing[9]. These facts suggest that the stress field within the near wellbore region depends
on the interactions among the casing, the cement, and the formation, which justifies the need
of determining the stresses in the three components as a whole system.

Due to its versatility in tackling complex geometries and material behaviors, numerical mod-
eling, especially the finite element modeling, has been widely used to determine the stresses
within the near wellbore region and evaluate the integrity of the casing and the cement[5,9–17].
The simple two-dimensional elastic finite element analysis (FEA) was used to determine the
stresses within cemented wellbores[5,9–12], which demonstrated the significant effects of mechan-
ical properties of the cement and the formation on the stress conditions within the casing and
the cement. More elaborated models have also been used to account for more sophisticated
effects such as shrinkage or expansion of the cement, elastoplastic failure of the cement and
the formation rock, as well as possible debonding of the casing-cement and cement-formation
interfaces[13–17]. Three-dimensional finite element models were used to consider more complex
details like heterogeneity of the rock formation along the depth[18].

In parallel with the numerical modeling works, analytical methods have been developed and
used to calculate stresses within the casing-cement-formation system. Aiming at determining
the directions of hydraulic fractures, Atkinson and Eftaxiopoulos[19] presented a plane model
for the stress field around the cased and cemented wellbore, which was recently used by Yuan
et al.[20] to calculate the stresses within the cement sheath of water-injection wells. Thiercelin
et al.[21] developed an analytical model for evaluating the stresses in a casing-cement-formation
system due to variations of inner pressure of casing. Yin et al.[22] gave a comprehensively ana-
lytical solution of the stress distribution in a casing-cement-formation system under anisotropic
in-situ stresses. Li et al.[23] theoretically analyzed the stresses within the cement subjected
to anisotropic in-situ stresses and uniform inner pressures of casing. Similar analytical works
with the temperature effect taken into account have also emerged[5,24–25]. In all these models,
the casing-cement and cement-formation interfaces are taken as fully bonded. Recently, Zhang
et al.[26] developed an analytical model in which the two interfaces were explicitly considered
as extremely thin layers of homogeneous isotropic materials, and gave stresses within the five-
layered casing-interface-cement-interface-formation system under anisotropic in-situ stresses as
well as temperature variations.

By examining the above existing analytical methods, it is not hard to find that in-situ
stresses in the formation, either isotropic or anisotropic, have been utilized only as stress bound-
ary conditions at the outer boundary of the formation. We suggest here that this treatment
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would be inaccurate, because this would predict unrealistic additional displacements within the
formation, as demonstrated later in this paper. Since the final solution is constructed with
the conditions that displacements and tractions are continuous across the casing-cement and
cement-formation interfaces, additional displacements within the formation would affect the
stress distribution and bring about inaccuracy in the final solution. Thus, in this paper, we
propose a revised analytical method for stress evaluation within the casing-cement-formation
system, in which the in-situ stresses are taken not only as stress boundary conditions at the
outer boundary of the formation but also as initial stresses in the constitutive law of the forma-
tion. In this way, the additional displacements within the formation predicted by the existing
method can be excluded, and the resulting stress solution can be more accurate.

The paper is organized as follows. In Section 2, we will firstly present the problem description
and decomposition as well as some basic equations, which are followed by detailed derivations
of the revised analytical method, and then some remarks on the significance of the present
analytical method and the differences between the present method and the existing method
will be given. Section 3 offers a validation of the present analytical method and results of a
series of sensitivity analyses. Finally, in Section 4, some conclusions are drawn.

2 Revised analytical method

2.1 Problem description, decomposition and basic equations

After drilling and completion, the near wellbore region of the production interval of oil/gas
wells is generally composed of three components: steel casing, cement sheath, and rock forma-
tion. Figure 1(a) is a sketch of a typical cross-section of the casing-cement-formation system,
where Ω1, Ω2 and Ω3 represent the steel casing, the cement sheath, and the rock formation,
respectively. The inner radii of the casing, the cement, and the formation are r1, r2, and r3,
respectively. Before the well construction, in-situ compressive stresses develop in the formation
during the sedimentary process and the tectonic process. The in-situ stress state of the for-
mation is generally characterized by its three principal stresses, one of which is in the vertical
direction, denoted as σV, and the other two, generally unequal, are in horizontal directions,
with the larger one denoted as σH and the smaller one σh. A uniform wellbore pressure pw acts
on the inner surface of the casing, which results from the weight of the fluid within the casing,
e.g., the drilling fluid or the hydraulic fracturing fluid. The objective is to determine the stress
field within the casing-cement-formation system. This problem is three-dimensional in nature.
However, possible axial deformations of the casing, cement, and formation are generally limited
compared with the depth of oil/gas wells, especially at positions far away from the wellhead.
Thus, it could be an appropriate approximation to treat the problem as a plane strain problem,
as exercised in previous literatures[21–22,25–26].

A Cartesian coordinate system is set up and shown in Fig. 1 with x-, y-, and z-directions in
accord with the σH-, σh-, and σV-directions, respectively. In this coordinate system, the in-situ
stresses within the formation can be written as

σxx = −σH, σyy = −σh. (1)

Since the casing and the cement are hollow circular cylinders, and the formation can also
be taken as a hollow circular cylinder with an infinite outer radius, it is convenient to solve the
problem in a polar coordinate system. Thus, the in-situ stresses within the rock formation can
be rewritten as follows:

σr = −σ − s cos(2θ), σθ = −σ + s cos(2θ), τrθ = s sin(2θ), (2)

where θ is the polar angle measured from the x-direction, i.e., from the σH-direction, and

σ =
1

2
(σH + σh), s =

1

2
(σH − σh).
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In this study, the casing, the cement sheath, and the formation are assumed to be of homo-
geneous, isotropic, and linearly elastic materials. The stress distribution within the composite
system will be calculated in the framework of theory of elasticity, and thus the superposi-
tion principle holds, justifying a decomposition of the complete problem in Fig. 1(a) into two
sub-problems, as shown in Figs. 1(b) and 1(c).

Fig. 1 Sketches of casing-cement-formation system under (a) anisotropic horizontal in-situ stresses,
(b) isotropic horizontal in-situ stresses, and (c) deviatoric horizontal in-situ stresses

Sub-problem I As shown in Fig. 1(b), an isotropic in-situ stress σ exists in the formation,
and a uniform pressure pw is applied on the casing inner surface. The stress conditions in the
formation can be written as

σr = −σ, τrθ = 0, (3)

and at the inner surface of the casing,

σr = −pw, τrθ = 0. (4)

Sub-problem II As shown in Fig. 1(c), a deviatoric in-situ stress s exists in the formation,
and the casing inner surface is traction-free. In this case, the stress conditions in the formation
can be expressed as

σr = −s cos(2θ), σθ = s cos(2θ), τrθ = s sin(2θ), (5)

and at the inner surface of the casing, the stress boundary conditions are

σr = 0, τrθ = 0. (6)

In the following three subsections, solutions of Sub-problem I and Sub-problem II will be
given separately and then combined to give the solution of the complete problem, i.e., the
stress distribution within the casing-cement-formation system. Before proceeding to give the
specific results, some basic equations are presented here for completeness. For a plane strain
problem, in the absence of body force, the equilibrium equations take the following form in a
polar coordinate system[27]:











∂σr

∂r
+

1

r

∂τrθ

∂θ
+

σr − σθ

r
= 0,

∂τrθ

∂r
+

1

r

∂σθ

∂θ
+

2τrθ

r
= 0.

(7)

The infinitesimal strain-displacement relationship can be expressed as[27]

εr =
∂ur

∂r
, εθ =

1

r

∂uθ

∂θ
+

ur

r
, γrθ =

∂uθ

∂r
+

1

r

∂ur

∂θ
−

uθ

r
. (8)
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Hooke’s law with initial stresses considered reads






























εr =
1 + υ

E
((1 − υ)(σr − σ0

r) − υ(σθ − σ0
θ)),

εθ =
1 + υ

E
((1 − υ)(σθ − σ0

θ) − υ(σr − σ0
r)),

γrθ =
2(1 + υ)

E
(τrθ − τ0

rθ),

(9)

where E is Young’s modulus, v is Poisson’s ratio, and σ0
r , σ0

θ , and τ0
rθ are the initial radial,

hoop, and shear stress components, respectively.
Using the concept of stress function, the compatibility equation is in the following form[27]:

( ∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)(∂2ϕ

∂r2
+

1

r

∂ϕ

∂r
+

1

r2

∂2ϕ

∂θ2

)

= 0, (10)

where ϕ is the stress function, and the stress components can be related to the stress function
in the following manner[27]:

σr =
1

r

∂ϕ

∂r
+

1

r2

∂2ϕ

∂θ2
, σθ =

∂2ϕ

∂r2
, τrθ = −

∂

∂r

(1

r

∂ϕ

∂θ

)

. (11)

2.2 Solution of Sub-problem I

For Sub-problem I shown in Fig. 1(b), the configuration is axisymmetric. Therefore, the
casing, the cement, and the formation could be taken as hollow cylinders submitted to uniform
pressures on the inner and outer surfaces, as shown in the subfigure (a) of Fig. 2, where ri and
ro denote the inner and outer radii of the cylinder, σi and σo are the uniform internal and
external pressures, and si and so are the normal stresses at the internal surface and external
surface, respectively.

Fig. 2 (a) Hollow cylinder submitted to uniform pressures at inner and outer surfaces, representing
any one of three components, i.e., casing, cement, and formation in Sub-problem I; (b) hollow
cylinder representative of any one of three components in Sub-problem II, under application
of normal and shear tractions varying with angle θ in cosinoidal and sinusoidal fashions

The general solutions of the stress distribution are obtained as[27]


















σr =
r2
i σi − r2

oσo

r2
o − r2

i

+
r2
i r

2
o(σo − σi)

r2
o − r2

i

1

r2
,

σθ =
r2
i σi − r2

oσo

r2
o − r2

i

−
r2
i r

2
o(σo − σi)

r2
o − r2

i

1

r2
.

(12)
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Substituting these two stress components into Hooke’s law in Eq. (9) yields the hoop strain
εθ. Then, by using the second expression of Eq. (8) where the first term on the right hand side
is zero due to the axial symmetry of Sub-problem I, we obtain the following general solution of
the radial displacement with initial stresses considered:

ur =
(1 + υ)r

E

(

(1 − 2υ)
r2
i σi − r2

oσo

r2
o − r2

i

+
r2
i r

2
o(σi − σo)

r2
o − r2

i

1

r2
− (1 − υ)σ0

θ + υσ0
r

)

. (13)

Equation (13) can be rearranged as follows:

ur =
r2
i σi − r2

oσo

α(r2
o − r2

i )
r +

r2
i r

2
o(σi − σo)

β(r2
o − r2

i )

1

r
+

υσ0
r − (1 − υ)σ0

θ

β
r, (14)

where the two parameters α and β are defined as

α =
E

(1 + υ)(1 − 2υ)
, β =

E

(1 + υ)
. (15)

Assume that the casing-cement and the cement-formation interfaces are perfect, which in-
dicates that the tractions and displacements are continuous crossing these interfaces. Due to
the axial symmetry of Sub-problem I, only the radial traction and displacement are presented.
Let p2 and p3 denote contact pressures at the casing-cement and cement-formation interfaces,
respectively. For the casing, we have

σ0
θ = σ0

r = 0, ri = r1, ro = r2, σi = pw, σo = p2. (16)

Thus, from Eq. (14), the radial displacement field within the casing is

u1
r =

r2
1pw − r2

2p2

α1(r2
2 − r2

1)
r +

r2
1r

2
2(pw − p2)

β1(r2
2 − r2

1)

1

r
, (17)

where α1 and β1 have been defined in Eq. (15), and the subscript 1 signifies that these param-
eters are for the casing.

For the cement sheath, we have

σ0
θ = σ0

r = 0, ri = r2, ro = r3, σi = p2, σo = p3. (18)

Similarly, from Eq. (14), the radial displacement field within the cement is obtained as

u2
r =

r2
2p2 − r2

3p3

α2(r2
3 − r2

2)
r +

r2
2r

2
3(p2 − p3)

β2(r2
3 − r2

2)

1

r
. (19)

For the formation, we have

σ0
θ = σ0

r = −σ, ri = r3, ro = ∞, σi = p3, σo = σ. (20)

Substitution of Eq. (20) into Eq. (14) yields the following radial displacement field for the
formation:

u3
r =

r2
3(p3 − σ)

β3

1

r
. (21)

The normal traction continuity conditions at the casing-cement interface and the cement-
formation interface have been implicitly enforced by assigning a contact pressure at each of
these two surfaces. Moreover, continuity of radial displacements at the two interfaces gives

u1
r

∣

∣

r=r2

= u2
r

∣

∣

r=r2

, u2
r

∣

∣

r=r3

= u3
r

∣

∣

r=r3

. (22)
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Substituting Eqs. (17), (19), and (21) into Eq. (22), we obtain


















r2
1pw − r2

2p2

α1(r2
2 − r2

1)
r2 +

r2
1r

2
2(pw − p2)

β1(r2
2 − r2

1)

1

r2
=

r2
2p2 − r2

3p3

α2(r2
3 − r2

2)
r2 +

r2
2r

2
3(p2 − p3)

β2(r2
3 − r2

2)

1

r2
,

r2
2p2 − r2

3p3

α2(r2
3 − r2

2)
r3 +

r2
2r

2
3(p2 − p3)

β2(r2
3 − r2

2)

1

r3
=

r2
3(p3 − σ)

β3

1

r3
.

(23)

Equation (23) can be rearranged as


















( α1r
2
1 + β1r

2
2

α1β1(r2
2 − r2

1)
+

α2r
2
3 + β2r

2
2

α2β2(r2
3 − r2

2)

)

p2 −
(α2 + β2)r

2
3

α2β2(r2
3 − r2

2)
p3 =

(α1 + β1)r
2
1

α1β1(r2
2 − r2

1)
pw,

−
(α2 + β2)r

2
2

α2β2(r2
3 − r2

2)
p2 +

( α2r
2
2 + β2r

2
3

α2β2(r2
3 − r2

2)
+

1

β3

)

p3 =
1

β3
σ,

(24)

which can be further rewritten in the following compact matrix form:
{

A11p2 + A12p3 = B1,

A21p2 + A22p3 = B2,
(25)

where

A11 =
α1r

2
1 + β1r

2
2

α1β1(r2
2 − r2

1)
+

α2r
2
3 + β2r

2
2

α2β2(r2
3 − r2

2)
, A12 = −

(α2 + β2)r
2
3

α2β2(r2
3 − r2

2)
,

A21 = −
(α2 + β2)r

2
2

α2β2(r2
3 − r2

2)
, A22 =

α2r
2
2 + β2r

2
3

α2β2(r2
3 − r2

2)
+

1

β3
,

B1 =
(α1 + β1)r

2
1

α1β1(r2
2 − r2

1)
pw, B2 =

σ

β3
.

From Eq. (25), the contact pressures p2 and p3 can be solved,














p2 =
A22B1 − A12B2

A11A22 − A12A21
,

p3 =
A11B2 − A21B1

A11A22 − A12A21
.

(26)

Substitution of p2 and p3 back into Eqs. (12), (17), (19), and (21) yields the stress and
displacement distributions within the casing-cement-formation system as the solution of Sub-
problem I.
2.3 Solution of Sub-problem II

For Sub-problem II shown in Fig. 1(c), the in-situ stresses in the formation vary with the
polar angle θ in cosinoidal and sinusoidal fashions, as shown in Eq. (5). The zero surface traction
at the casing inner surface can also be taken as a particular form of cosinoidal or sinusoidal
distribution with the zero amplitude. In this case, the casing, the cement, and the formation
can be treated as hollow cylinders subjected to cosinoidal or sinusoidal distributions of normal
and shear tractions at the inner and outer surfaces, as sketched in Fig. 2(b). The stress function
for this type of problem is in the following general form[27]:

ϕ(r, θ) = f(r) cos(2θ). (27)

Substitution of Eq. (27) into the compatibility equation (10) yields the following forth-order
ordinary differential equation:

( d2

dr2
+

1

r

d

dr
−

4

r2

)(d2f

dr2
+

1

r

df

dr
−

4f

r2

)

= 0, (28)
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of which the general solution is

f(r) = Ar4 + Br2 + C +
D

r2
. (29)

The stress function is therefore given in the following form:

ϕ(r, θ) = f(r) cos(2θ) =
(

Ar4 + Br2 + C +
D

r2

)

cos(2θ). (30)

And from Eq. (11), the stress components are obtained as



































σr = −
(

2B +
4C

r2
+

6D

r4

)

cos(2θ),

σθ =
(

12Ar2 + 2B +
6D

r4

)

cos(2θ),

τrθ =
(

6Ar2 + 2B −
2C

r2
−

6D

r4

)

sin(2θ).

(31)

Substituting the three stress components in Eq. (31) into Hooke’s law in Eq. (9), we obtain











εr = −
1 + υ

E

(

12υAr2 + 2B + (1 − υ)
4C

r2
+

6D

r4

)

cos(2θ) − ε0
r,

εθ =
1 + υ

E

(

12(1 − υ)Ar2 + 2B + υ
4C

r2
+

6D

r4

)

cos(2θ) − ε0
θ,

(32)

where











ε0
r =

1 + υ

E
((1 − υ)σ0

r − υσ0
θ),

ε0
θ =

1 + υ

E
((1 − υ)σ0

θ − υσ0
r ).

(33)

Integration of the strain components in Eq. (32) gives the following general displacement
solutions for each component of the casing-cement-formation system:















ur = −
1 + υ

E

(

4υAr3 + 2Br − (1 − υ)
4C

r
−

2D

r3

)

cos(2θ) − rε0
r ,

uθ =
1 + υ

2E

(

4(3 − 2υ)Ar3 + 4Br − (1 − 2υ)
4C

r
+

4D

r3

)

sin(2θ) + r

∫

(ε0
r − ε0

θ)dθ,

(34)

where rigid body motions are neglected.
For the casing and the cement,

σ0
θ = σ0

r = 0, ε0
r = ε0

θ = 0. (35)

Thus, the displacement field for the casing and cement is















ui
r = −

1 + υi

Ei

(

4υiAir
3 + 2Bir − (1 − υi)

4Ci

r
−

2Di

r3

)

cos(2θ),

ui
θ =

1 + υi

2Ei

(

4(3 − 2υi)Air
3 + 4Bir − (1 − 2υi)

4Ci

r
+

4Di

r3

)

sin(2θ),

(36)

where i = 1 stands for the casing, and i = 2 refers to the cement.
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For the formation, the stress conditions are

σ0
r = −σ0

θ = −s cos(2θ), σr|r=∞ = −s cos(2θ), τrθ|r=∞ = s sin(2θ). (37)

Substituting Eq. (31) into Eq. (37), we obtain

A3 = 0, B3 =
s

2
. (38)

And the displacement field for the formation can be obtained from Eqs. (32)–(34), (37) and
(38) as















u3
r = −

1 + υ3

E3

(

−(1 − υ3)
4C3

r
−

2D3

r3

)

cos(2θ),

u3
θ =

1 + υ3

2E3

(

−(1 − 2υ3)
4C3

r
+

4D3

r3

)

sin(2θ).

(39)

Again, we consider that the casing-cement interface and the cement-formation interface are
perfect. Continuity of the tractions and the displacements at the interfaces gives

{

σ1
r |r=r2

= σ2
r |r=r2

, τ1
rθ|r=r2

= τ2
rθ|r=r2

, σ2
r |r=r3

= σ3
r |r=r3

, τ2
rθ|r=r3

= τ3
rθ|r=r3

,

u1
r|r=r2

= u2
r|r=r2

, u1
θ|r=r2

= u2
θ|r=r2

, u2
r|r=r3

= u3
r|r=r3

, u2
θ|r=r3

= u3
θ|r=r3

.
(40)

In addition, the inner surface of the casing is free of tractions, i.e.,

σ1
r |r=r1

= 0, τ1
rθ|r=r1

= 0. (41)

Substitution of Eqs. (31), (36), and (39) into Eqs. (40) and (41) gives rise to the following
system of linear aligns:

M · X = S, (42)

where M is a 10-by-10 matrix whose non-zero entries are given in Appendix A, and

X = [A1, B1, C1, D1, A2, B2, C2, D2, C3, D3]
T,

S = [0, 0, 0, 0, s, s, 0, 0, 0, 0]T.

From Eq. (42), the array X consisting of the unknown coefficients can be solved straight-
forwardly. Substitution of these coefficients back into Eqs. (31), (36), and (39) yields the stress
and displacement distributions within the casing-cement-formation system as the solution of
Sub-problem II.
2.4 Solution of complete problem and some remarks

In the previous subsections, stress and displacement solutions of the two sub-problems are
obtained separately, and solutions of the complete problem can be obtained simply by super-
position.

As mentioned in Section 1, some existing works have been devoted to similar topics as
in this paper, i.e., analyzing the stress field within the casing-cement-formation system an-
alytically, aiming at evaluating the mechanical integrity of the steel casing and the cement
sheath[19,22,25–26]. However, these previous works have not included in-situ stresses in the for-
mation as initial stresses in Hooke’s law, and their displacement solutions are slightly different
from those obtained in this paper.

Specifically, in Sub-problem I, their conditions in the formation are essentially

σ0
θ = σ0

r = 0, ri = r3, ro = ∞, σi = p3, σo = σ, (43)
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which combining with Eq. (13) gives rise to the following radial displacement field within the
formation:

u3
r = −

σ

α3
r +

r2
3(p3 − σ)

β3

1

r
. (44)

Similarly, in the existing works, the conditions in the formation for Sub-problem II are

σ0
r = −σ0

θ = 0, σr |r=∞ = −s cos(2θ), τrθ|r=∞ = s sin(2θ), (45)

and therefore the displacement field within the formation is obtained as follows:















u3
r = −

1 + υ3

E3

(

sr − (1 − υ3)
4C3

r
−

2D3

r3

)

cos(2θ),

u3
θ =

1 + υ3

2E3

(

2sr − (1 − 2υ3)
4C3

r
+

4D3

r3

)

sin(2θ).

(46)

Comparisons of Eq. (44) with Eq. (21) and Eq. (46) with Eq. (39) clearly show that additional
displacements are predicted if the in-situ stresses in the formation are not included in Hooke’s
law as initial stresses.

For Sub-problem I, the additional radial displacement predicted by the existing method is

δu3
r = −

σ

α3
r, (47)

while for Sub-problem II, the additional radial and tangential displacements are















δu3
r = −

1 + υ3

E3
sr cos(2θ),

δu3
θ =

1 + υ3

E3
sr sin(2θ).

(48)

Obviously, due to the requirement of displacement continuity at the cement-formation inter-
face, these additional displacements in the formation will affect the stress distribution within
the casing-cement-formation system, resulting in stress solutions different from those obtained
with the present method.

It is our argument in this paper that these additional displacements in Eq. (47) and Eq. (48)
predicted with the existing method have occurred along with the development of in-situ stresses
in the formation during the sedimentary and tectonic processes, which should not be involved
in the evaluation of the stress field in the casing-cement-formation system, since the casing and
the cement have not taken part in the sedimentary and tectonic processes. During the oil/gas
well construction and completion process, the rock mass within the well is removed and replaced
by the steel casing and the cement sheath, and accordingly the support to the formation at
the cement-formation interface changes from the original in-situ tractions to the final contact
forces. It is this perturbation that causes displacements given in Eq. (21) and Eq. (39) in the
formation near the wellbore, and results in the variation of the stress field in the formation from
the in-situ stress state to the final one, as well as the development of stresses in the casing and
the cement through displacement continuity at the casing-cement and the cement-formation
interfaces. Therefore, inclusion of these additional displacements could result in inaccuracy in
calculating the stresses in the casing-cement-formation system.

It is also possible to directly exclude these additional displacements by carefully examining
Eqs. (44) and (46), or Eqs. (47) and (48). In these equations, it is noted that, as r increases, the
additional displacements will increase linearly, leading to unbounded displacements in the far
field away from the wellbore, which is apparently not realistic, since the displacements in the
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far field due to the perturbation caused by well construction should vanish rather than increase
with the increasing distance from the wellbore.

In summary, we have derived an analytical method for analyzing the stress distribution in
the casing-cement-formation system which can serve as a basis for evaluating the integrity of the
steel casing and the cement sheath. The new contribution here is that the unrealistic additional
displacements in the formation, predicted by previous works, have been identified and excluded
in present solutions via putting the in-situ stresses in the formation into Hooke’s law as initial
stresses. Some detailed analysis results will be provided in the following section to demonstrate
the difference between the present method and the existing method.

3 Analysis results and discussion

In this section, validation of the present analytical method is given first by comparing
analytical results with two-dimensional FEA results. This validation example also serves to
introduce brief discussion on correct specification of proper boundary conditions in the FEA
of geomechanical behavior of the near wellbore region of oil/gas wells. Subsequently, a series
of sensitivity analysis results will be provided to illustrate the effect of elastic properties of the
formation, cement, and the inner pressure of casing on the stress distribution within the casing
and cement.
3.1 Validation of present analytical method

Consider an onshore vertical oil well drilled into a tight-oil reservoir located in the northwest
of China. The depth of the production interval is approximately 3 400 m. The maximum
horizontal principal stress σH is 82 MPa, while the minimum horizontal principal stress σh is
55 MPa. The internal pressure within the casing pw is 34 MPa, which is representative of the
hydrostatic pressure of a liquid at the target depth with a density of 1.0 g/cm3. A 51/2-inch
casing of P110 grade is installed and cemented in the 81/2-inch wellbore. The thickness of the
casing is 10.54 mm. The geometric dimensions and the elastic properties of the casing, the
cement, and the formation are given in detail in Table 1. Stresses within the casing-cement-
formation system are evaluated using both the present analytical method and the existing
analytical method.

Table 1 Geometric dimensions and elastic properties of casing-cement-formation system

Component Young’s modulus/GPa Poisson’s ratio Inner radius/mm

Casing 210 0.30 59.31

Cement 12 0.25 69.85

Formation 10 0.20 107.95

Meanwhile, this validation example has also been analyzed using two FEA models shown
in Fig. 3. In both models, the problem is simplified as a two-dimensional plane strain problem.
In the first FEA model as shown in Fig. 3(a), in-situ stresses are applied at the boundaries as
surface pressure loads, namely, the FEA-surface pressure, which is essentially equivalent to the
existing analytical method in the sense of how the in-situ stresses are treated. In comparison,
the second FEA model shown in Fig. 3(b) is slightly different, where the boundaries far away
from the well are fixed in their normal directions, and the in-situ stresses are applied in the
model as initial stresses in the rock formation. Therefore, the second FEA is called the FEA-
initial stress. The second FEA model is equivalent to the present analytical method in the way
of treating the in-situ stresses.

Figure 4 presents radial stress and hoop stress (or tangential stress) distributions along the
0◦ (σH) and 90◦ (σh) azimuths, obtained by the present analytical method and the existing
analytical method as well as the two FEA models. Analytical results are plotted in solid lines
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while FEA results are in dotted lines, and the two dashed lines separate the regions representing
the casing, the cement, and the formation.

` `

`

`

Fig. 3 Two finite element models for casing-cement-formation system, with in-situ stresses applied
as (a) surface pressures on boundaries and (b) initial stresses in formation, respectively

It is clearly seen from Fig. 4 that results obtained by the present analytical method are in
good agreement with those by the second FEA model where the in-situ stresses are applied as
initial stresses, justifying the derivations of the present analytical method in this paper. Also,
results from the existing analytical method coincide with those from the first FEA model with
in-situ stress treated as surface pressures.

In Fig. 4, it is manifested that remarkable differences exist between the results obtained
with the present analytical method and those obtained with the existing method. As shown
in Fig. 4(a), the radial compressive stresses within the casing and the cement obtained with
the present method are systematically less than those with the existing method, both in the
0◦ and 90◦ azimuths, and the differences in the cement are about 30 MPa. Similarly, it is
noted from the inset of Fig. 4(b) that, within the cement, hoop compressive stresses with the
present method are about 20 MPa to 30 MPa less than those with the existing method. In
contrast, Fig. 4(b) shows that, in the casing, the hoop compressive stresses obtained with the
present method are much less than those obtained with the existing method, especially in the
90◦ azimuth, where the difference can be more than 300 MPa. In addition, it can be observed
from Fig. 4(b) that the difference of the hoop compressive stress in the 90◦ azimuth obtained
with the present method and the existing method is larger than that in the 0◦ azimuth, which
is caused by the stress concentration due to the fact that the horizontal in-situ stress σH in the
0◦ azimuth is larger than the horizontal in-situ stress σh in the 90◦ azimuth.

It is obvious that the existing analytical method overestimates the compressive stress level
in the casing and cement sheath. As remarked in Subsection 2.4, the existing method does not
include the in-situ stresses in Hook’s law as initial stresses, resulting in additional displacements
in the formation as shown in Eqs. (47) and (48). These additional displacements exert additional
squeezing effects on the cement and the casing, leading to higher compressive stresses in the
casing and the cement. Overestimation of the compressive stresses in the casing and the cement
might be argued to be conservative when compressive or shear failure of the cement and collapse
failure of the casing are of concern. However, if the burst failure of the casing or radial cracks
within the cement is considered when the inner pressure of casing is increased as common in
well testing and hydraulic fracturing jobs, overestimation of the hoop compressive stresses as
exemplified in Fig. 4(b) might incur unexpected risks. In this regard, the present analytical
method in this paper is superior to the existing method and gives more accurate results of the
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Fig. 4 (a) Radial stress and (b) hoop stress distribution in casing-cement-formation system along 0◦

(σH) and 90◦ (σh) azimuths varying with distance from casing inner wall, where inset in (b)
is zoomed-in representation of hoop stress distribution in cement sheath

stress distributions within the casing-cement-formation system.
As an extra outcome of this validation example, here we would like to give some further

remarks on the above two FEA models. Actually, in addition to the casing/cement integrity
analysis, the FEA has already become a powerful tool in the analysis of geomechanical behavior
of near wellbore regions, such as the wellbore stability analysis[28–29] and sand production
analysis[30]. In existing literatures, both the two manners of treating the in-situ stresses shown
in Fig. 3 have been used[9–10,12–15,28], and there seems no explicit discussion about which one
is more reasonable. Here, in this paper, it is evident by Eqs. (47) and (48) and the results
presented in this section that the frequently-adopted way of specifying boundary conditions in
the FEA of near wellbore region as shown in Fig. 3(a) is not appropriate, since this will generate
unrealistic additional displacements in the formation and thereby affects the stress distribution
within the near wellbore region. A more appropriate way is to fix the boundaries at the far
field of formation and apply the in-situ stresses as initial stresses, as shown in Fig. 3(b). A
more comprehensive demonstration of this argument through various numerical analyses, such
as wellbore stability analysis, sand production analysis, and cement/casing integrity analysis,
is underway, and results will be published in a future publication.
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3.2 Sensitivity analysis results

It has already been recognized in previous studies that mechanical properties of the cement
and the formation have considerable effects on the stress distribution within the casing-cement-
formation system. Here, we give the results of a series of sensitivity studies with the present
analytical method, illustrating the effects of Young’s moduli of the cement and the formation,
Poisson’s ratio of the cement, and the inner pressure of casing on the stress distribution within
the casing and the cement. In obtaining the following results, the parameters in Table 1 are
used except otherwise specified.
3.2.1 Effect of Young’s modulus of formation

Figure 5 presents the radial stresses within the casing and the cement for formation elastic
moduli of 2 GPa, 10 GPa, and 20 GPa. Results obtained with the present method are in solid
lines, while those with the existing method are in dotted lines. Both results of the present
method and those of the existing method show that, the lower Young’s modulus of formation
is, the higher compressive radial stresses within the casing and the cement are. This is easy
to understand, since for softer rock formations, larger inward displacements will be generated
under the same in-situ stresses, thus the squeezing effect on the cement and the casing from the
formation is more notable, giving rise to higher compressive radial stresses within the casing
and the cement. Similar to the observations in the validation example, compressive radial
stresses calculated with the present method are lower than those with the existing method,
and the lower Young’s modulus of formation is, the larger the difference is. This is also can be
explained by examining Eqs. (15), (47), and (48), which shows that the lower Young’s modulus
of formation is, the larger the additional displacements predicted with the existing method are,
and thus the larger the compressive radial stresses overestimated with the existing method are.

Fig. 5 Radial stress distributions in casing and cement along (a) 0◦ and (b) 90◦ azimuths varying
with distance from casing inner wall for different Young’s moduli of formation

Figure 6 shows the influence of Young’s modulus of formation on the hoop stresses within
the casing and the cement, from which it can be again observed that compressive hoop stresses
within cement and the casing increase with decreasing Young’s modulus of the formation. Also,
it is manifested that the existing method overestimates the compressive hoop stresses within
the casing and cement. For example, in Fig. 6(a), when E3 = 2 GPa, the present method gives
a tensile hoop stress on the casing inner wall in the 0◦ azimuth, indicating the expansion effect
due to the inner pressure of casing overwhelms the squeezing effect of the formation, while the
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existing method still predicts a compressive stress at the same location due to its overestimation
of the squeezing effect.

Fig. 6 Hoop stress distributions in casing and cement along (a) 0◦ and (b) 90◦ azimuths varying
with distance from casing inner wall for different Young’s moduli of formation, where insets
are zoomed-in representations of hoop stresses in cement sheath

3.2.2 Effect of Young’s modulus of cement

In Fig. 7, radial stresses within the casing and the cement for cement elastic moduli of
2 GPa, 10 GPa, and 20 GPa are given, while in Fig. 8, hoop stresses in the casing and the cement
are provided. It is seen that, with decreasing Young’s modulus of the cement, compressive radial
and compressive hoop stresses within the casing and the cement decrease, while the tensile hoop

Fig. 7 Radial stress distributions in casing and cement along (a) 0◦ and (b) 90◦ azimuths varying
with distance from casing inner wall for different Young’s moduli of cement



1288 Wei LIU, Baohua YU, and Jingen DENG

Fig. 8 Hoop stress distributions in casing and cement along (a) 0◦ and (b) 90◦ azimuths varying
with distance from casing inner wall for different Young’s moduli of cement, where insets are
zoomed-in representations of hoop stresses in cement sheath

stresses at the inner wall of the casing in the 90◦ azimuth increase. Actually, the cement
functions as a buffer layer between the formation and the casing. For the softer or more
flexible cement, the inward displacement of the formation is more localized within the cement,
which reduces the compressive stresses in the casing, while for the stiffer cement, the inward
squeezing effect from the formation is more transmitted to the casing, and larger compressive
stresses develop in the casing. In addition, lower cement Young’s modulus also gives rise to
lower compressive stresses in the cement.

Furthermore, it is evident that the difference between the results of the present method and
those of the existing method also decreases with decreasing Young’s modulus of the cement.

3.2.3 Effect of Poisson’s ratio of cement

Radial stresses and hoop stresses within the casing and the cement for Poisson’s ratio of
cement of 0.10, 0.25, and 0.40 are given in Fig. 9 and Fig. 10, respectively. Results show that
effects of Poisson’s ratio of the cement on the stresses within the casing are not as large as the
effects of Young’s moduli of the formation and the cement as observed in previous subsections.
On the other hand, compressive radial and compressive hoop stresses within the cement increase
with increasing Poisson’s ratio of the cement. Meanwhile, the compressive stresses within the
cement overestimated with the existing method also increase with increasing Poisson’s ratio of
the cement.

3.2.4 Effect of inner pressure of casing

Scenarios with high inner pressure of casing are frequently encountered during the operating
life circle of oil and gas wells, e.g., hydraulic fracturing, well testing, and high pressure flood-
ing. A simple demonstration of the effect of the inner pressure of casing is shown in Fig. 11
and Fig. 12, where radial stresses and hoop stresses within the casing and the cement for in-
ner pressures of casing of 34 MPa and 70 MPa are presented, respectively. In Fig. 11, it can
be seen that, for either softer cement (E2 = 2 GPa) or stiffer cement (E2 = 20 GPa), the
higher inner pressure of casing generates higher compressive radial stresses within the casing
and the cement. In Fig. 12, with the increasing inner pressure of casing, tensile hoop stresses
in the casing increase while compressive hoop stresses decrease. For the stiffer cement (E2 =
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Fig. 9 Radial stress distributions in casing and cement along (a) 0◦ and (b) 90◦ azimuths varying
with distance from casing inner wall for different Poisson’s ratios of cement
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Fig. 10 Hoop stress distributions in casing and cement along (a) 0◦ and (b) 90◦ azimuths varying
with distance from casing inner wall for different Poisson’s ratios of formation, where insets
are zoomed-in representations of hoop stresses in cement sheath

20 GPa), compressive hoop stresses within the cement decrease with the increasing inner pres-
sure of casing. However, for the softer cement (E2 = 2 GPa), the hoop stresses within the
cement are almost not influenced by the inner pressure of casing. It seems that the softer
cement is more insensitive to the pressure variation in the casing, indicating the soft or flexible
cement is likely to endure the high inner pressure of casing during operations like hydraulic
fracturing and high pressure flooding, as also noticed by Thiercelin et al.[21].
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Fig. 11 Radial stress distributions in casing and cement along (a) 0◦ and (b) 90◦ azimuths varying
with distance from casing inner wall for different inner pressures of casing

Fig. 12 Hoop stress distributions in casing and cement along (a) 0◦ and (b) 90◦ azimuths varying
with distance from casing inner wall for different inner pressures of casing, where insets are
zoomed-in representations of hoop stresses in cement sheath

4 Conclusions

Determination of the stress field within the steel casing and the cement sheath of the oil/gas
well is of fundamental importance for engineering designs that are aimed at ensuring the in-
tegrity of the casing and the cement during the whole operating life of oil/gas wells. In this
paper, a revised analytical method has been proposed for evaluating the stresses within the
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casing-cement-formation system under combined application of anisotropic horizontal in-situ
stresses in the formation and uniform pressure on the casing inner wall. The problem is di-
vided into two sub-problems. The first sub-problem is to solve the stress field within the
casing-cement-formation system under uniform horizontal in-situ stresses in the formation and
uniform inner pressure on the casing inner wall, while in the second sub-problem, only deviatoric
in-situ stresses exist in the formation, and the casing inner wall is traction-free. The solution
of the complete problem is obtained by superposing the solutions of the two sub-problems.

The new contribution in this paper is that, by treating the in-situ stresses as initial stresses
in the formation, we exclude the unrealistic additional displacements within the formation
predicted with the existing method. Therefore, we can more realistically describe the squeezing
effect from the formation, and more accurately evaluate the stresses within the casing-cement-
formation system. Actually, in-situ stresses within the formation have already arisen during
the sedimentary and tectonic processes when the cement sheath and the steel casing are not
present. Placement of the casing and the cement sheath into the well perturbs the stress state
within the formation, from in-situ stresses to final stresses. It is this perturbation that generates
inward displacements within the formation, and thus the in-situ stress state should be taken
as a starting point, which justifies the requirement of treating the in-situ stresses as initial
stresses as proposed in the present method. Results of the validation example in Subsection 3.1
demonstrate that the existing method overestimates the compressive stress level in the casing
and the cement sheath, while the present method would give more accurate results.

Through a series of sensitivity analyses, effects of Young’s moduli of the formation and the
cement, Poisson’s ratio of the cement, and the inner pressure of casing on the stresses in the
casing and the cement are illustrated. It is shown that the compressive radial and hoop stresses
within the casing and the cement increase with the decreasing modulus of the formation, or
increasing modulus of the cement. It is also evident that influence of Poisson’s ratio of the
cement on the stresses within the casing is not as large as the influence of Young’s moduli of
the formation and the cement, while compressive radial and hoop stresses within the cement
increase with increasing Poisson’s ratio of the cement. In addition, results indicate that the soft
or flexible cement is likely to endure the high inner pressure of casing due to its insensitivity of
the inner pressure variation of casing.

Finally, it is worth mentioning that the present method should be viewed as an attempt
to revise the existing method by appropriately applying in-situ stresses in the formation. For
future improvement of the present method, factors like the evolution of cement properties during
the setting process, the chemical shrinkage or expansion of the cement and the poroelastic effect
of the formation that would complicate the stress field are needed to be incorporated.
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Appendix A

Non-zero entries of the 10-by-10 matrix M in Eq. (42) are given as

M12 = 1, M13 = 2/r2

1 , M14 = 3/r4

1 ,

M21 = 3r2

1, M22 = 1, M23 = −1/r2

1 ,

M24 = −3/r4
1 , M32 = 1, M33 = 2/r2

2 ,

M34 = 3/r4

2 , M35 = −1, M36 = −2/r2

2 ,

M37 = −3/r4

2 , M41 = 3r2

2 , M42 = 1,

M43 = −1/r2

2 , M44 = −3/r4

2 , M45 = −3r2

2,

M46 = −1, M47 = 1/r2

2 , M48 = 3/r4

2 ,

M56 = 1, M57 = 2/r2
3 , M58 = 3/r4

3 ,

M59 = −2/r2

3 , M5,10 = −3/r4

3 , M65 = 3r2

3 ,

M66 = 1, M67 = −1/r2

3 , M68 = −3/r4

3 ,

M69 = 1/r2

3 , M6,10 = 3/r4

3 , M71 = 2υ1r
3

2/G1,

M72 = r2/G1, M73 = −2(1 − υ1)/(G1r2),

M74 = −1/(G1r
3

2), M75 = −2υ2r
3

2/G2,

M76 = −r2/G2, M77 = 2(1 − υ2)/(G2r2),

M78 = 1/(G2r
3

2), M81 = (3 − 2υ1)r
3

2/G1,

M82 = r2/G1, M83 = −(1 − 2υ1)/(G1r2),

M84 = 1/(G1r
3

2), M85 = −(3 − 2υ2)r
3

2/G2,

M86 = −r2/G2, M87 = (1 − 2υ2)/(G2r2),

M88 = −1/(G2r
3
2), M95 = 2υ2r

3
3/G2,
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M96 = r2/G2, M97 = −2(1 − υ2)/(G2r3),

M98 = −1/(G2r
3
3), M99 = 2(1 − υ3)/(G3r3),

M9,10 = 1/(G3r
3

3), M10,5 = (3 − 2υ2)r
3

3/G2,

M10,6 = r3/G2, M10,7 = 2(1 − υ3)/(G3r3),

M10,8 = 1/(G3r
3

3), M10,9 = (1 − 2υ3)/(G3r3),

M10,10 = −1/(G3r
3

3),

where G1, G2, and G3 are shear moduli of the casing, the cement, and the formation, respectively, and

Gi =
Ei

2(1 + υi)
, i = 1, 2, 3.


