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Abstract Thermal buckling behavior of cylindrical shell made of functionally graded

material (FGM) is studied. The material constituents are composed of ceramic and metal.

The material properties across the shell thickness are assumed to be graded according to

a simple power law distribution in terms of the volume fraction rule of mixtures. Based

on the Donnell shell theory, a system of dimensionless partial differential equations of

buckling in terms of displacement components is derived. The method of separation of

variables is used to transform the governing equations to ordinary differential equations

(ODEs). A shooting method is used to search for the numerical solutions of the differential

equations under two types of boundary conditions. Effects of the power law index, the

dimensionless geometrical parameters, and the temperature ratio on the critical buckling

temperature are discussed in detail.
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1 Introduction

Circular cylindrical shell is a common structure in many engineering fields such as gun
barrel, nuclear reactor, aerospace component, and heat supply pipeline. In many situations,
these structures are used in extreme high temperature environments. Recent studies on new
performance materials have addressed new materials known as functionally graded materials
(FGMs), which have a smooth and continuous spatial variation of mechanical properties from
one surface to the other. Typically, these materials consist of a mixture of ceramic and metal or
a combination of different materials. They are high-performance heat-resistant materials which
are able to withstand ultra high temperatures. With the increasing demand, FGMs have been
widely used in general structures, especially in the thermal environments. Hence, the studies
of the mechanical behavior of FGM structures, such as functionally graded beams, plates, and
cylindrical shells under the thermal and mechanical loading have attracted more and more
attention[1].
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Eslami et al.[2] and Eslami and Javaheri[3] studied the thermal buckling behavior of perfect
cylindrical shells made of homogeneous materials and cylindrical shells of composite materials
based on the Donnell and improved Donnell equations. Reference [4] is the extension of the
work of the authors to the thermal buckling analysis of imperfect cylindrical shells of isotropic
materials.

Based on different classical and high-order shear deformation theory of shells, some compre-
hensive researches on the mechanical and thermal buckling behavior of FGM cylindrical shells
have been reported[5–17]. Shahsiah and Eslami[5–6] investigated the thermal buckling behav-
ior of functionally graded cylindrical shells and obtained the critical temperatures under three
types of thermal loads with simply supported boundary conditions based on the Donnell and
improved Donnell equations. Mirzavand et al.[7] studied the effect of imperfections on thermal
buckling of simply supported FGM cylindrical shell by using the traditional Galerkin method.
Based on the classical shell theory, Wu et al.[8] discussed the thermal buckling of function-
ally graded thin cylindrical shell under various thermal environments without considering the
temperature-dependent material properties. Yaghoobi et al.[9] carried out a thermal buckling
investigation on the axially functionally graded thin cylindrical shell.

Under the mechanical loading, lots of studies on the buckling of FGM cylindrical shells were
performed. Li and Batra[10] studied the buckling of a simply supported three-layer circular
cylindrical shell under axial compressive load, and Flugge’s shell theory was used to study the
buckling loads for different values of the geometric parameters and the variation in material
parameters of the middle layer. By using the first-order shear deformation theory and the ad-
jacent equilibrium criterion method, Khazaeinejad et al.[11] investigated the stability problem
of an FGM circular cylindrical shell under combined external pressure and axial compression
loads. Huang and Han[12] and Huang et al.[13] studied buckling of FGM cylindrical shells un-
der axial compression and combined loads. Sun et al.[14] investigated the buckling of FGM
cylindrical shells under combined thermal and compressive loads based on the classical Don-
nell shell theory, and the Galerkin method was adopted to discuss the imperfection sensitivity
of an imperfect FGM cylindrical shell. An accurate buckling analysis for Reddy’s high-order
shear deformation FGM cylindrical shells under axial compression and thermal loads was pre-
sented by the same authors[15]. Sofiyev and Kuruoglu[16] investigated the buckling of FGM
orthotropic cylindrical shells under external pressures using the shear deformation shell theory.
The Galerkin method was used to solve the basic equations. Recently, some attention was at-
tracted to elastoplastic FGMs. Buckling behavior of elastoplastic FGM cylindrical shells under
combined axial compression and external pressure was investigated with classical shell theory by
Zhang et al.[17]

In this paper, the thermal buckling behavior of cylindrical shells made of FGM is studied.
The thermal loads are assumed to be uniform or transversely non-uniform temperature rise.
A system of complicated coupling ordinary differential equations (ODEs) is established based
on the Donnell shell theory by using the method of separation of variables. Then, two ends
simply supported and two ends clamped boundary conditions are assumed, respectively. The
shooting method is used to obtain numerical solutions of the two-point boundary value problem
of the coupling ODEs. Comparative studies are presented for examination of the accuracy of
the present analysis.

2 FGM properties

Consider a cylindrical shell made of FGM as shown in Fig. 1. Geometric parameters are
defined as the length l, mid-surface radius R, and thickness h. We use cylindrical coordinates
with the origin located at the mid-surface of the cylinder, and coordinates x, θ, and z in the
axial, the circumferential, and the thickness directions, respectively.

The effective material properties, such as Young’s modulus E, thermal expansion coefficient
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Fig. 1 Configuration and coordinate system of FGM cylindrical shell

α, and thermal conductivity K, are assumed changing[18] in the thickness direction z based on
the following rule over the whole range of volume fraction:

P = PbψP(η), (1)

where the subscript b refers to the homogenous material which is selected as the constituent at
the inner surface of the FGM cylindrical shell. It is defined by

Pb = P (−h/2). (2)

In (1), ψP(η) is designed as a continuous dimensionless function of the coordinate z (or stepwise
continuous function), which is expressed by

ψP = 1 + (fP − 1)
(1

2
+ η

)n

, −1/2 6 η 6 1/2, (3)

where fP = Pt/Pb, η = z/h, n is a non-negative number, and the subscript t refers to the
reference homogeneous material at the outer surface of the FGM cylindrical shell. Poisson’s
ratio ν of the shell is assumed to be constant since it usually varies very little in the thickness
direction.

3 Fundamental equations

3.1 Geometrical relationships

Based on the Donnell shell theory, the normal and shear strains at a distance z from the
shell middle surface are

εx = ε0x + zkx, εθ = ε0θ + zkθ, γxθ = γ0
xθ + zkxθ, (4)

where the strains of the mid-surface and the curvature defined in (4) are expressed as

(ε0x, ε
0
θ, γ

0
xθ) =

(

u,x,
1

R
(v,θ + w), v,x +

1

R
u,θ

)

, (5)

(kx, kθ, kxθ) =
(

−w,xx, −
1

R2
w,θθ, −

2

R
w,xθ

)

, (6)

where u, v, and w are the mid-surface displacements along the x-, θ-, and z-directions, respec-
tively, and the subscript “,” indicates a partial derivative.
3.2 Constitutive relations

The stress-strain relations are given by Hook’s law as follows:





σx

σθ

τxθ



 =
E

1 − ν2







1 ν 0
ν 1 0

0 0
1 − ν

2











εx

εθ

γxθ



 −
EαT

1 − ν





1
1
0



 , (7)
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where σx, σθ, and τxθ are the axial, circumferential, and shear stresses in the Oxθ-plane,
respectively, and T is the temperature rise with respect to the reference temperature. Here,
we assume that the temperature rise varies only in the thickness direction. The value of T is
defined as

T = TbψT(η), (8)

where Tb denotes the temperature change at the inner surface of the shell, and ψT is a temper-
ature variation function in the shell thickness direction.

The membrane forces and bending moments per unit length expressed in terms of the stress
components through the thickness are

(Nx, Nθ, Nxθ) =

∫ h/2

−h/2

(σx, σθ, τxθ)dz, (9)

(Mx,Mθ,Mxθ) =

∫ h/2

−h/2

(σx, σθ, τxθ)zdz. (10)

Substituting (4) and (7) into (9) and (10) results in the following constitutive relation:
















Nx

Nθ

Nxθ

Mx

Mθ

Mxθ

















=

















A11 A12 0 B11 B12 0
A12 A11 0 B12 B11 0
0 0 Q11 0 0 Q22

B11 B12 0 D11 D12 0
B12 B11 0 D12 D11 0
0 0 Q22 0 0 Q33

































ε0x
ε0θ
γ0

xθ

kx

kθ

kxθ

















−

















NT

NT

0
MT

MT

0

















, (11)

in which the stiffness coefficients are calculated by the following integrations:



































(A11, B11, D11) =

∫ h/2

−h/2

(1, z, z2)
E

1 − ν2
dz,

(A12, B12, D12) =

∫ h/2

−h/2

(1, z, z2)
νE

1 − ν2
dz,

(Q11, Q22, Q33) =

∫ h/2

−h/2

(1, z, z2)
E

2(1 + ν)
dz.

(12)

The thermal axial force NT and bending moment MT are calculated by

(NT,MT) =

∫ h/2

−h/2

(1, z)
EαT

1 − ν
dz. (13)

Substituting (1) into (12) yields the stiffness coefficients as follows:






















(A11, A12, Q11) =
(

1, ν,
1 − ν

2

)

Aφ1(η),

(B11, B12, Q22) =
(

1, ν,
1 − ν

2

)

Bφ2(η),

(D11, D12, Q33) =
(

1, ν,
1 − ν

2

)

Dφ3(η),

(14)

where A, B, and D are related to the reference homogeneous material shells, whose definitions
are given by

A =
Ebh

1 − ν2
, B =

Ebh
2

1 − ν2
, D =

Ebh
3

12(1 − ν2)
, (15)
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and φi (i = 1, 2, 3) are dimensionless coefficients totally standing for the inhomogeneity of FGM
cylindrical shell which are calculated by the following integrations:

φ1 =

∫ 1/2

−1/2

ψEdη, φ2 =

∫ 1/2

−1/2

ψEηdη, φ3 = 12

∫ 1/2

−1/2

ψEη
2dη. (16)

For a homogeneous cylindrical shell, φ2 = 0, and φ1 = φ3 = fE when n=0, and φ1 = φ3 = 1
when the value of n tends to infinity.

4 Governing equations

The nonlinear equilibrium equations of functionally graded cylindrical shell according to the
Donnell theory are derived as follows[8]:

Nx,x +
1

R
Nxθ,θ = 0, (17)

1

R
Nθ,θ +Nxθ,x = 0, (18)

Mx,xx +
2

R
Mxθ,xθ +

1

R2
Mθ,θθ −

1

R
Nθ +Nxw,xx +

1

R2
Nθw,θθ +

2

R
Nxθw,xθ = 0. (19)

Once the buckling occurs immediately, the state variables can be assumed as the summations
of the pre-buckling (denoted by subscript “0”) and the incremental (denoted by subscript “1”)
deformations. Accordingly, the forces Nij and the moments Mij are divided into two terms
representing the stable equilibrium and the neighboring state. Eliminating the pre-buckling
equilibrium expressions and ignoring the nonlinear terms of the incremental variables, we obtain
the governing equations for buckling as follows:

Nx1,x +
1

R
Nxθ1,θ = 0, (20)

1

R
Nθ1,θ +Nxθ1,x = 0, (21)

Mx1,xx+
2

R
Mxθ1,xθ+

1

R2
Mθ1,θθ−

1

R
Nθ1+Nx0w1,xx+

1

R2
Nθ0w1,θθ+

2

R
Nxθ0w1,xθ =0. (22)

The forces and bending moments associated with the buckling state are































Nx1 = A11u1,x +
A12

R
(v1,θ + w1) −B11w1,xx −

B12

R2
w1,θθ,

Nθ1 = A12u1,x +
A11

R
(v1,θ + w1) −B12w1,xx −

B11

R2
w1,θθ,

Nxθ1 = Q11

(

v1,x +
1

R
u1,θ

)

−
2Q22

R
w1,xθ,

(23)































Mx1 = B11u1,x +
B12

R
(v1,θ + w1) −D11w1,xx −

D12

R2
w1,θθ,

Mθ1 = B12u1,x +
B11

R
(v1,θ + w1) −D12w1,xx −

D11

R2
w1,θθ,

Mxθ1 = Q22

(

v1,x +
1

R
u1,θ

)

−
2Q33

R
w1,xθ.

(24)

Substituting (23) and (24) into (20) to (22) and using (14), we get the stability equations in
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terms of the displacement components as follows:

φ1u1,xx +
1 − ν

2R2
φ1u1,θθ +

1 + ν

2R
φ1v1,xθ +

ν

R
φ1w1,x − hφ2w1,xxx −

h

R2
φ2w1,xθθ = 0, (25)

1 + ν

2R
φ1u1,xθ +

1 − ν

2
φ1v1,xx +

1

R2
φ1v1,θθ +

1

R2
φ1w1,θ −

h

R
φ2w1,xxθ −

h

R3
φ2w1,θθθ = 0, (26)

φ2u1,xxx +
φ2

R2
u1,xθθ +

φ2

R
v1,xxθ +

φ2

R3
v1,θθθ +

ν

R
φ2w1,xx +

φ2

R3
w1,θθ −

h

12
φ3w1,xxxx

−
h

6R2
φ3w1,xxθθ −

h

12R4
φ3w1,θθθθ −

( ν

Rh
φ1u1,x +

1

R2h
φ1v1,θ +

1

R2h
φ1w1

−
ν

R
φ2w1,xx −

φ2

R3
w1,θθ

)

+
1

B

(

Nx0w1,xx +
1

R2
Nθ0w1,θθ +

2

R
Nxθ0w1,xθ

)

= 0. (27)

5 Buckling analysis of FGM cylindrical shell

Considering that the pre-buckling deformation is axial-symmetric, we have the following
initial membrane forces:

{

Nx0 = −NT,

Nθ0 = Nxθ0 = 0.
(28)

For convenience in the following analysis, we introduce the non-dimensional transformation
as follows:



























(ξ, U, V,W ) =
1

l
(x, u, v, w), (δ, λ) =

1

R
(h, l),

(nx, nθ, nxθ, nT) =
R2

D
(Nx, Nθ, Nxθ, NT),

(mx,mθ,mxθ,mT) =
R

D
(Mx,Mθ,Mxθ,MT).

(29)

Thus, the thermal internal forces in dimensionless forms are as follows:

nT = τβ1, mT = τδβ2, (30)

in which



































τ =
12(1 + ν)αbTb

δ2
,

β1(η) =

∫ 1/2

−1/2

ψEψαψTdη,

β2(η) =

∫ 1/2

−1/2

ψEψαψTηdη,

(31)

where τ is used as the reference thermal load parameter. βi(η) (i = 1, 2) are dimensionless
coefficients.

By using the above non-dimensional quantities, the governing equations (25) to (27) can be
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transformed into the dimensionless forms as follows:

φ1

λ

∂2U

∂ξ2
+

1 − ν

2
λφ1

∂2U

∂θ2
+

1 + ν

2
φ1

∂2V

∂ξ∂θ
+ νφ1

∂W

∂ξ
−
δφ2

λ2

∂3W

∂ξ3
− δφ2

∂3W

∂ξ∂θ2
= 0, (32)

1 + ν

2
φ1

∂2U

∂ξ∂θ
+

1 − ν

2

φ1

λ

∂2V

∂ξ2
+ λφ1

∂2V

∂θ2
+ λφ1

∂W

∂θ
−
δφ2

λ

∂3W

∂ξ2∂θ
− δλφ2

∂3W

∂θ3
= 0, (33)

φ2

λ2

∂3U

∂ξ3
+ φ2

∂3U

∂ξ∂θ2
+
φ2

λ

∂3V

∂ξ2∂θ
+ λφ2

∂3V

∂θ3
+ ν

φ2

λ

∂2W

∂ξ2
+ λφ2

∂2W

∂θ2
−

δφ3

12λ3

∂4W

∂ξ4

−
δφ3

6λ

∂4W

∂ξ2∂θ2
−
λδφ3

12

∂4W

∂θ4
−

(

ν
φ1

δ

∂U

∂ξ
+
λφ1

δ

∂V

∂θ
+
λφ1

δ
W − ν

φ2

λ

∂2W

∂ξ2

− λφ2
∂2W

∂θ2

)

−
δ

12λ
τβ1

∂2W

∂ξ2
= 0, (34)

which consist of a system of complicated coupled partial differential equations with three un-
known functions U(ξ, θ), V (ξ, θ), and W (ξ, θ).

To solve the system of (32) to (34), an effective method of separation of variables is adopted.
We assume the displacement solutions in the form:















U = U(ξ) cos(mθ),

V = V (ξ) sin(mθ),

W = W (ξ) cos(mθ),

(35)

in which 0 6 ξ 6 1, 0 6 θ 6 2π, and m indicates that the shell buckles in m half-wave in the
θ-direction. Substitution of (35) into (32) to (34) gives the ODEs as follows:

d2U

dξ2
−

1 − ν

2
m2λ2U +

1 + ν

2
mλ

dV

dξ
−
δφ2

λφ1

d3W

dξ3
+

(

νλ+m2 δλφ2

φ1

)dW

dξ
= 0, (36)

1 + ν

2
mλ

dU

dξ
−

1 − ν

2

d2V

dξ2
+m2λ2V −m

δφ2

φ1

d2W

dξ2
+

(

mλ2 +m3 δλ
2φ2

φ1

)

W = 0, (37)

φ2

λ2

d3U

dξ3
−

(

m2φ2 + ν
φ1

δ

)dU

dξ
+m

φ2

λ

d2V

dξ2
−

(

m3λφ2 +m
λφ1

δ

)

V −
δφ3

12λ3

d4W

dξ4

+
(

ν
2φ2

λ
+m2 δφ3

6λ
−

δ

12λ
τβ1

)d2W

dξ2
−

(

2m2λφ2 +m4 δλφ3

12
+
λφ1

δ

)

W = 0. (38)

(36) to (38) are coupled ODEs including unknown functions of U(ξ), V (ξ), and W (ξ). For
the convenience of solving the boundary value problem by the shooting method, (36) to (38)
are rewritten as the following standard forms:

d2U

dξ2
= a11U + a12

dV

dξ
+ a13

dW

dξ
+ a14

d3W

dξ3
, (39)

d2V

dξ2
= a21

dU

dξ
+ a22V + a23W + a24

d2W

dξ2
, (40)

d4W

dξ4
= c

(

a31
dU

dξ
+ a32V + a33W + a34

d2W

dξ2

)

, (41)

where c = 1/(φ3 − 12φ2
2/φ1), aij (i = 1, 2, 3; j = 1, 2, 3, 4) are coefficients listed in Appendix A.

So far, we finally arrive at a system of ODEs as (39) to (41). These equations and the
corresponding boundary conditions constitute a two-point boundary value problem.
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6 Temperature field distribution

We assume that the temperature rise of the FGM cylindrical shell changes from the inner
surface to the outer one in the thickness direction. The value of T is found by solving the
one-dimensional steady-state heat conduction equation

d

dz

(

K(z)
dT (z)

dz

)

= 0, (42)

where K(z) is the thermal conductivity. By integrating (42) and using the boundary conditions
T (h/2) = Tt and T (−h/2) = Tb, we assume that Tb 6= 0 and write the expression of T in form
of (8), in which ψT is given by

ψT(η) = 1 + (fT − 1)

∫ η

−1/2

1/K(η)dη

∫ 1/2

−1/2

1/K(η)dη

, (43)

where fT = Tt/Tb is the ratio of the temperature rise at the outer and inner surfaces of the
FGM cylindrical shell, and is the parameter to represent the inhomogeneity of the temperature
field in the thickness direction. From (43), if fT = 1, it follows that ψT = 1, which means that
the temperature rise is uniform. Conversely, if fT 6= 1, the temperature field distribution is
non-uniform.

7 Numerical results and discussion

In the numerical computation, the following two types of boundary conditions are considered.
The first one is that the FGM cylindrical shell is immovably simply supported at the two ends
(S-S). The boundary conditions are given by[5]

U
′
= 0, V = 0, W = 0, W

′′
= 0 at ξ = 0, 1. (44)

The second one is that the cylindrical shell is immovably clamped at the two ends (C-C).
The boundary conditions in terms of the displacements can be written by

U = 0, V = 0, W = 0, W
′
= 0 at ξ = 0, 1. (45)

The FGM cylindrical shell is assumed to be made of a ceramic (alumina) and a metal (steel)
with pure metal and pure ceramic at the outer and inner surfaces, respectively. The material
properties of the constituents are as follows:

Steel : Et = 200 GPa, αt = 11.7 × 10−6 (◦C)−1, Kt = 80 W/(m · K).

Alumina : Eb = 380 GPa, αb = 7.4 × 10−6 (◦C)−1, Kb = 10.4 W/(m · K).

Poisson’s ratio for both materials is chosen to be ν = 0.3.
To ensure the validity and accuracy of the present numerical method for buckling analysis of

FGM cylindrical shell under thermal loads, some comparative studies are carried out. Assuming
the length to radius ratio λ = 1, and the power law index n = 0 or n tends to infinity, the
critical buckling temperature rise, ∆Tcr, of homogeneous cylindrical shell with two ends simply
supported for different values of the thickness to radius ratio δ under uniform temperature rise
is obtained in Table 1. An excellent agreement can be seen between the results of the present
and those in the literature. In Table 1, ∆Tcr = τδ2/(12(1 + ν)αb).
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Table 1 Comparison of present values of critical temperature rise ∆Tcr (◦C) with those in literature
for uniformly heated simply supported homogenous cylindrical shell

n δ = 0.001 δ = 0.005 δ = 0.007 5 δ = 0.01

0 (metal)

Present 36.21 181.06 271.61 363.22
Ref. [2] 36.21 181.21 272.86 362.76
Ref. [9] 36.23 181.19 271.79 362.39

106 (ceramic)

Present 57.25 286.26 429.41 574.26
Ref. [2] 57.26 286.51 431.41 573.56
Ref. [9] 57.29 286.48 429.73 572.90

First, we consider the case that the temperature rise is uniform. Namely, fT = 1. Figure 2
shows the continuous variation of the critical buckling temperature of the FGM shell under S-S
and C-C end constraints with the thickness to radius ratio δ for some specified values of power
law index n. As seen in this figure, the dimensionless critical buckling temperature decreases
with an increase in the values of δ. Also, it is clear that for the shell with a larger value of
power index n the critical buckling temperature is higher. This is due to that the shell has
a larger amount of the ceramic components which leads to a stronger bending stiffness of it.
Furthermore, Fig. 2 illustrates the critical buckling temperature of FGM cylindrical shell under
the two types of boundary conditions for some specified values of power law index n. Critical
buckling temperatures of the shell under C-C end constraints are higher than those of the shell
under S-S end constraints because bending rigidity produced by C-C ends is stronger than that
by S-S ends. However, with the increase of the thickness to radius ratio δ, the difference of the
critical temperatures produced by the boundary conditions tends to be not obvious.

Fig. 2 Curves of dimensionless critical buckling temperature τcr of FGM shell versus thickness to
radius ratio δ for some specified values of n under uniform temperature rise

Next, for the case of transversely non-uniform temperature rise, the values of the dimension-
less critical buckling temperature of the FGM cylindrical shell for different values of parameters
of n and δ for some specified values of the temperature ratio fT are listed in Table 2. For the
fixed values of n and fT, the results in the first and the second rows correspond, respectively, to
the S-S and C-C shells. The difference between the results of the two rows reveals the effect of
the boundary constraints on the critical buckling temperature. It is observed that the critical
buckling temperature increases with the increase in the power law index n and decreases along
with the increase of the thickness to radius ratio δ. This is because the increase of n leads to
the increase of both the extensional and the bending rigidities of the shell. It needs to notice
that from the definition of the dimensionless thermal load parameter τ in (31), we can see that
the actual critical buckling temperature Tb is proportional to the square of δ. Therefore, the
actual critical buckling temperatures are higher for δ = 0.01 than those for δ = 0.001. From
the table, we can also find that the non-dimensional critical buckling temperature for a given
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Table 2 Dimensionless critical buckling temperature τcr varying with parameters of n and δ under
transversely non-uniform temperature rise (λ = 1.0)

n fT

δ

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010

0

3
a 2 090.16(7)1 045.08(17) 696.78(7) 522.55(4)418.04(4)348.36(11)298.84(1)261.30(5)232.25(2)209.65(1)

b 2 196.17(7) 1 094.35(2) 708.79(6) 534.48(4)429.84(4) 359.25(5) 309.51(6)271.41(6)240.35(7)218.05(7)

5
a 1 393.44(7) 696.72(17) 464.52(7) 348.37(4)278.69(4)232.24(11)199.14(1)176.46(1)154.84(2)139.77(1)

b 1 464.45(7) 729.56(2) 471.96(6) 356.34(3)286.54(4) 239.34(5) 206.34(6)180.94(6)160.23(7)144.19(7)

9
a 836.06(7) 418.07(11) 278.71(7) 209.02(4)167.21(4) 139.36(6) 119.49(1)104.52(5) 92.90(2) 83.86(1)

b 878.47(9) 437.74(2) 283.69(6) 213.79(3)171.92(4) 144.35(4) 123.80(6)108.74(6) 97.61(7) 87.48(7)

3

3
a 2 468.17(1) 1 233.21(5) 822.95(1) 616.63(5)493.29(5) 413.22(1) 352.35(2)310.66(1)274.09(4)246.84(1)

b 2 690.83(4) 1 287.25(5) 836.08(6) 629.70(5)506.18(5) 422.95(5) 366.07(3)319.66(6)286.94(4)259.40(5)

5
a 1 576.34(1) 787.61(5) 525.10(9) 393.82(5)315.05(5) 263.91(1) 225.03(2)198.41(1)175.05(4)157.65(1)

b 1 719.07(3) 822.06(6) 533.65(7) 402.17(5)324.03(5) 270.12(6) 233.80(3)205.93(6)184.52(4)165.67(5)

9
a 923.42(1) 460.53(1) 304.82(9) 228.61(5)182.88(5) 153.20(1) 130.63(2)115.18(1)101.62(4) 91.51(1)

b 997.92(4) 477.20(5) 309.78(7) 233.46(5)187.66(5) 156.81(5) 135.72(3)118.67(5)106.38(4) 96.17(5)

106

3
a 3 304.34(7) 1 652.26(1) 1 101.54(7)826.10(4)660.88(4)550.73(11)472.24(1)413.09(5)367.17(2)331.44(1)

b 3 473.27(6) 1 730.05(2) 1 118.79(8)844.96(4)679.48(4) 567.57(6) 489.30(6)430.55(4)383.11(6)344.71(6)

5
a 2 202.86(7)1 101.52(11) 734.35(7) 550.73(4)440.58(4) 367.18(6) 314.82(1)275.39(5)244.78(2)220.96(1)

b 2 314.58(9) 1 153.35(2) 745.99(7) 563.32(3)452.98(4) 378.62(6) 326.19(6)286.50(5)257.20(6)229.81(6)

9
a 1 321.70(7) 660.85(17) 441.22(17) 330.43(4)264.34(4)221.78(12)188.89(1)167.38(1)146.86(2)132.57(1)

b 1 388.73(9) 692.00(2) 448.20(6) 337.99(3)271.78(4) 228.19(4) 195.71(6)171.90(5)154.32(6)137.88(6)

Note: numbers in brackets are circumferential half-wave numbers of buckling modes
aS-S; bC-C

value of n decrease with an increase in fT, which is due to the fact that the increase in the
value of fT results in the increase of the non-uniform degree of the temperature fields.

Finally, we investigate the effect of the variation of the length to radius ratio on the critical
buckling temperature. For some specified values of n, dimensionless critical buckling tem-
peratures τcr as a function of the length to radius ratio λ for both uniformly (fT = 1) and
non-uniformly (fT = 3) heated FGM cylindrical shells with S-S ends are shown in Fig. 3 and
Fig. 4, respectively. From these two figures, it can be found that the critical buckling tempera-
ture is almost constant for different values of λ. Hence, the value of the length to radius ratio
λ has no effect on the critical buckling temperature of the shell.

Fig. 3 Dimensionless critical buckling temperature of shell under uniform temperature rise versus
parameter λ for some specified values of n
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Fig. 4 Dimensionless critical buckling temperature of shell under non-uniform temperature rise versus
parameter λ for some specified values of n

8 Conclusions

Based on the classical Donnell shell theory, the thermal buckling responses of an FGM
cylindrical shell have been analyzed by solving the system of dimensionless partial differential
governing equations for buckling in terms of the displacement components. The material prop-
erties are assumed to vary in the thickness direction according to a power law function of the
radial coordinate except that Poisson’s ratio is assumed to be a constant. Method of separation
of variables is used to transform the governing equations into ODEs with three coupled un-
known functions. Then, considering the S-S and C-C ends, a buckling analysis of functionally
graded shell under uniform and transversely non-uniform thermal loads is carried out by using
the shooting method. The following conclusions are drawn from the numerical results.

(i) The values of critical buckling temperature for the functionally graded cylindrical shell
with S-S ends are generally smaller than the corresponding values for the C-C cylindrical shell.

(ii) The dimensionless critical buckling temperature for the two types of thermal loads
decreases with the increase of the thickness to radius ratio δ. Regarding to the simply supported
shell, the increase in the length to radius ratio λ has no effect on the buckling temperature.

(iii) The dimensionless critical buckling temperature increases along with the increase of the
power law index n because the increment of the ceramic constituent can produce more stiffness
in the FGM cylindrical shell structure.

(iv) The value of the ratio of the outer and inner surface temperature rise of the shell, fT, has
obvious effects on the inhomogeneity of the temperature fields. The non-dimensional critical
buckling temperature decreases with the increase of fT.
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Appendix A

Expressions for coefficients in (39) to (41) are

a11 =
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