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Abstract A time integration algorithm for structural dynamic analysis is proposed by
uniform cubic B-spline functions. The proposed algorithm is successfully used to solve the
dynamic response of a single degree of freedom (SDOF) system, and then is generalized
for a multiple-degree of freedom (MDOF) system. Stability analysis shows that, with an
adjustable algorithmic parameter, the proposed method can achieve both conditional and
unconditional stabilities. Validity of the method is shown with four numerical simulations.
Comparison between the proposed method and other methods shows that the proposed
method possesses high computation accuracy and desirable computation efficiency.
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1 Introduction

During the last several decades, a large number of researches have been conducted on
the exploration of efficient time integration schemes for the linear and nonlinear analysis of
structures[1–4]. Generally, there are two major categories of time integration methods, namely,
the explicit method[5–7] and the implicit method[8–10].

The implicit method is popular for a practical use because it can give a stable solution in
the case of linear system, and the time increment can be easily selected. In the case of nonlinear
analysis, it may be necessary for implicit schemes to update the stiffness matrix and conduct
the iteration calculation within each time increment. Consequently, a lot of time is occupied for
matrix inversion and iteration calculation. Meanwhile, a numerical divergence may be easily
induced when a strong nonlinearity exists in a system[11]. Therefore, various explicit schemes
have been designed to overcome the above disadvantages of the implicit method. Compared
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with implicit methods, explicit methods need no effort for iteration calculation in each time
step. Thus, fewer storage and computational efforts are required for explicit methods[5]. The
shortcoming of the explicit method is that almost all explicit methods are conditionally stable.
Consequently, a small time increment and relatively large time steps may be required in a
time history analysis, which, to a great extent, lowers the computation efficiency. However, a
very small time increment can decrease the linearization errors for nonlinear systems. Actually,
a small time increment can effectively capture intermediate and high frequency modes with
desirable accuracy. Therefore, the explicit method is very suitable for the cases such as wave
propagation and shock response problems where intermediate and high frequency modes are
very significant for dynamic responses[12–14].

Recently, Bathe and Noh[9] developed a simple implicit time integration method. This
method can remain unconditionally stable, without the use of adjustable parameters. Then, Noh
and Bathe[15] presented an explicit time integration scheme for the solution of wave propagation
problems. The presented method possesses the second-order accuracy for different dynamic
systems. A clear advantage of this method is that it is very effective in suppressing or filtering
out spurious high-frequency modes. However, for the above two methods, each time step consists
of two sub-steps, and thus requires much larger computation efforts than other conventional
methods.

Recently, the B-spline method, as a powerful numerical tool, was used to develop a novel
explicit time integration method by Rostami et al.[16]. Compared with other conventional
schemes, the presented B-spline method possesses higher computation efficiency. However, it is
conditionally stable.

Wen et al.[17–18] developed an explicit time integration method using septuple and quintic
B-splines. With three adjustable algorithmic parameters, the presented methods can achieve
both conditional and unconditional stability. Although the proposed method possesses higher
computation accuracy, much more computation time is consumed, especially for the dynamic
system with high degrees of freedom.

In this study, a new method is thus proposed by use of a family of uniform cubic B-spline
functions. The paper is organized as follows. In Section 2, we introduce the explicit definition
of B-spline and the expression of cubic B-spline interpolation. Then, the cubic B-spline inter-
polation is used to solve the equilibrium equation of linear single degree of freedom (SDOF)
system in Section 3. Subsequently, the implementation of cubic B-spline interpolation on the
multiple-degree of freedom (MDOF) system coupled with its calculation procedure is given in
Section 4. The stability and accuracy analyses are conducted in Section 5. The validity of the
proposed method is verified with four numerical examples in Section 6. Finally, in Section 7,
we draw the conclusions of this study.

2 Overview of cubic B-splines

2.1 Explicit definition of B-spline function

There are many ways to define B-spline functions[17,19]. To simplify computer implemen-
tation, here we adopt an explicit definition to calculate B-spline functions[19]. Thus, the ith
B-spline basis function of the dth degree Bi,d(t), briefly denoted by Bi,d, can be defined by

Bi,0(t) =

{
1, ti 6 t 6 ti+1,

0, otherwise,
(1)

Bi,d(t) =
( t − ti

td+i − ti

)
Bi,d−1(t) +

( td+i+1 − t

td+i+1 − ti+1

)
Bi+1,d−1(t), (2)

where the knot span {t0, t1, · · · , ti, ti+1, · · · , td+i, td+i+1, · · · } must be a non-decreasing sequence
of real numbers, that is, ti 6 ti+1. Because Eq. (2) can yield the quotient 0/0, we define this
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quotient to be zero. Without going into details, Bi,d(t) are linear combinations of two (d − 1)-
degree B-spline functions.

Bi,d(t) are non-negative and local supported over the interval [ti, ti+d+1]. As shown in Fig. 1,
for cubic B-spline basis functions used in this study, the usable parameter range of Bi,3(t) is

[ti, ti+4]. Besides, we have
∞∑

i=−∞

Bi,d(t) = 1 within the usable interpolation domain [ti, ti+1].

Clearly, when ti < ti+1, Bi,d(t) are (d − 1) times continuously differentiable.

Fig. 1 Cubic B-spline basis functions, where usable interpolation range is from ti to ti+1

2.2 Preliminary results of cubic B-spline interpolation

In this study, we use piecewise polynomials for the subsequent analysis. Let the time domain
[a, b] be divided into n subintervals Ii ≡ [ti, ti+1] (i = 0, 1, · · · , n − 1) by a set of equidistant
knots ti = a + i∆t, where ∆t = h = b−a

n . As shown in Fig. 1, to construct the cubic B-spline
interpolation functions within the whole time domain [a, b], we should extend the set of knots
as t−3 < · · · < t−1 < a = t0 < t1 < · · · < tn = b < · · · < tn+3.

For any knot tj (j = −3,−2, · · · , tn+3), we have tj = ti + (j − i)h. Thus, Bi,3(t) (i =
0, 1, · · · , n − 1) can be simplified as

Bi,3(t) =
1

3!h3






(t − ti)
3, t ∈ [ti, ti+1],

(t − ti)
3 − 4(t − ti+1)

3, t ∈ [ti+1, ti+2],

(ti+4 − t)3 − 4(ti+3 − t)3, t ∈ [ti+2, ti+3],

(ti+4 − t)3, t ∈ [ti+3, ti+4].

(3)

Equation (3) shows that Bj,3(t) are the shifted instances of Bi,3(t), that is, Bj,3(t) = Bi,3(t −
(j − i)h). For any usable interpolation subinterval Ii ≡ [ti, ti+1] in Fig. 1, only four piecewise
cubic B-spline functions are contributory to the B-spline interpolation.

In this study, the extended subintervals I ′i ≡ [ti, ti+ϕ] (1 6 ϕ < 2, i = 0, 1, · · · , n − 1) are
used for the analysis. More specifically, the cubic B-spline interpolation function over any
subinterval I ′i is used to approximate the exact solution within the subintervals Ii.

Further, let τi = (t− ti)/(ϕ∆t) (i.e., t = ti + τiϕ∆t, 1 < ϕ < 2), the cubic B-spline functions
in Fig. 2 and their lth derivatives with respect to the variable t can be expressed as

B
(l)
−3,3(τi) =

(−ϕ∆t)−l

(3 − l)!
(1 − τi)

3−l, (4)

B
(l)
−2,3(τi) =

(−ϕ∆t)−l

(3 − l)!
((2 − τi)

3−l − 4(1 − τi)
3−l), (5)

B
(l)
−1,3(τi) =

(ϕ∆t)−l

(3 − l)!
((τi + 1)3−l − 4(τi)

3−l), (6)

B
(l)
0,3(τi) =

(ϕ∆t)−l

(3 − l)!
(τi)

3−l, (7)
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where l = 0, 1, 2.

Fig. 2 Usable piecewise cubic B-splines within time subintervals I ′

i ≡ [ti, ti+ϕ]

Thus, the cubic B-spline interpolation function within any subinterval I ′i can be defined by

Si(t) =
0∑

k=−3

Ci
kBk,3(τi), i = 0, 1, · · · , n − 1, (8)

where Ci
k are unknown real coefficients.

With Eqs. (4)–(7), Eq. (8) can be extended as

S
(l)
i (t) = B(l)(τi)Ci, ∀t ∈ I ′i(t), ∀τi ∈ [0, 1], ϕ ∈ [1, 2), l = 0, 1, 2, (9)

where

B(l)(τi) = [B
(l)
−3,3(τi) B

(l)
−2,3(τi) B

(l)
−1,3(τi) B

(l)
0,3(τi)], (10)

Ci = [Ci
−3 Ci

−2 Ci
−1 Ci

0]
T. (11)

Clearly, for t = ti, t = ti+ϕ, and t = ti+1, we have, respectively,

S
(l)
i (ti) = B(l)(0)Ci, (12)

S
(l)
i (ti+ϕ) = B(l)(1)Ci, (13)

and

S
(l)
i (ti+1) = B(l)

( 1

ϕ

)
Ci. (14)

To solve B(l)(0) and B(l)(1), we tabulate B
(l)
i,3(τi) (i = −3,−2,−1, 0, l = 0, 1, 2) that evaluate

at τi = 0 (i.e., t = ti) and τi = 1 (i.e., t = ti+ϕ) in Table 1.

Table 1 Values of B
(l)
i,3(0) and B

(l)
i,3(1)

l B
(l)
−3,3(0) B

(l)
−2,3(0) B

(l)
−1,3(0) B

(l)
0,3(0) B

(l)
−3,3(1) B

(l)
−2,3(1) B

(l)
−1,3(1) B

(l)
0,3(1)

0 1/6 2/3 1/6 0 0 1/6 2/3 1/6

1 −1/(2ϕ∆t) 0 1/(2ϕ∆t) 0 0 −1/(2ϕ∆t) 0 1/(2ϕ∆t)

2 1/(ϕ2(∆t)2) −2/(ϕ2(∆t)2) 1/(ϕ2(∆t)2) 0 0 1/(ϕ2(∆t)2) −2/(ϕ2(∆t)2) 1/(ϕ2(∆t)2)
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3 Implementation of cubic B-spline on SDOF systems

For an SDOF system, a linear differential equation of motion can be written as

u(2)(t) + 2ξωu(1)(t) + ω2u(t) = f(t), (15)

where ξ, ω, and f(t) are the damping ratio, the undamped circular natural frequency, and
the modal forcing excitation of the system, respectively. u(t), u(1)(t), and u(2)(t) are the
displacement, velocity, and acceleration functions, respectively.

The initial value problem is to solve Eq. (15) to meet the given initial conditions of u(t0) = a0,
u(1)(t0) = a1, and u(2)(t0) = a2.

Let t0, t1, t2, · · · , tn−1 be n time knots over the whole time interval [0, tf ] so that ti =
i∆t, i = 0, 1, 2, · · · , n − 1, t0 = 0, and tn−1 = tf . Using Eqs. (8) and (9), the approximate
solution to Eq. (15) and its lth derivatives, within any subinterval I ′i (i = 0, 1, 2, · · · , n− 1), can
be expressed as

u
(l)
i (t) =

0∑

k=−3

Ci
kB

(l)
k,3(τi), l = 0, 1, 2, (16)

where the subscript i of ui(t) denotes the number of time subinterval.
To simplify the subsequent deduction, we let

ũ
(l)
i (t) = (ϕ∆t)(l) · u

(l)
i (t), l = 0, 1, 2, (17)

B̃
(l)
k,5(τi) = (ϕ∆t)(l) · B

(l)
k,3(τi), l = 0, 1, 2. (18)

Substituting t = ti (i.e., τi = 0) and t = ti+ϕ (i.e., τi = 1) into Eq. (16) begets six equations.
With Eqs. (17) and (18) and Table 1, these six equations can be expressed in the explicit forms
of

ũi(ti) =
1

6
Ci

−3 +
2

3
Ci

−2 +
1

6
Ci

−1, (19a)

ũ
(1)
i (ti) = −

1

2
Ci

−3 + 0Ci
−2 +

1

2
Ci

−1, (19b)

ũ
(2)
i (ti) = Ci

−3 − 2Ci
−2 + Ci

−1, (19c)

and

ũi(ti+ϕ) =
1

6
Ci

−2 +
2

3
Ci

−1 +
1

6
Ci

0, (20a)

ũ
(1)
i (ti+ϕ) = −

1

2
Ci

−2 + 0Ci
−1 +

1

2
Ci

0, (20b)

ũ
(2)
i (ti+ϕ) = Ci

−2 − 2Ci
−1 + Ci

0. (20c)

Using Eqs. (19a)–(19c), Ci
k (k = −3,−2,−1, i = 0, 1, 2, · · · , n − 1) can be calculated by

Ci
−3 = ũi(ti) − ũ

(1)
i (ti) +

1

3
ũ

(2)
i (ti), (21a)

Ci
−2 = ũi(ti) + 0ũ

(1)
i (ti) −

1

6
ũ

(2)
i (ti), (21b)

Ci
−1 = ũi(ti) + ũ

(1)
i (ti) +

1

3
ũ

(2)
i (ti). (21c)
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Prescribing that Eq. (15) is satisfied at t = ti+ϕ (i.e., τi = 1) renders

u
(2)
i (ti+ϕ) + 2ξωu

(1)
i (ti+ϕ) + ω2ui(ti+ϕ) = f(ti+ϕ), i = 0, 1, 2, · · · , n − 1. (22)

With Eq. (17), Eq. (22) can be written as

ũ
(2)
i (ti+ϕ) + 2ξϕ · ω∆t · ũ

(1)
i (ti+ϕ) + ϕ2 · (ω∆t)2 · ũi(ti+ϕ) = (ϕ∆t)2 · f(ti+ϕ). (23)

Substituting Eqs. (20a)–(20c) into Eq. (23) yields

αCi
−2 + βCi

−1 + γCi
0 = (ϕ∆t)2f(ti+ϕ), i = 0, 1, 2, · · · , n − 1, (24)

where α, β, and γ are given by

α =
1

6
ϕ2 · (ω∆t)2 − ξϕω∆t + 1, (25a)

β =
2

3
ϕ2 · (ω∆t)2 − 2, (25b)

γ =
1

6
ϕ2 · (ω∆t)2 + ξϕω∆t + 1. (25c)

Ci
−3, Ci

−2, and Ci
−1 can be previously solved by Eqs. (21a)–(21c). Therefore, with Eq. (24), we

can solve Ci
0 as

Ci
0 =

1

γ
((ϕ∆t)2f(ti+ϕ) − αCi

−2 − βCi
−1). (26)

After solving Ci
−3, Ci

−2, Ci
−1, and Ci

0, we can use Eqs. (16)–(18) to determine ũ
(l)
i (ti+1) as

ũ
(l)
i (ti+1) =

0∑

k=−3

Ci
kB̃

(l)
k,3

( 1

ϕ

)
, l = 0, 1, 2, i = 0, 1, 2, · · · , n − 1. (27)

After solving ũ
(l)
i (ti+1), we need to substitute ũ

(l)
i (ti+1) into Eqs. (21a)–(21c) to proceed the

whole recurrence calculation. Obviously, we have ũ
(l)
i (ti+1) = ũ

(l)
i+1(ti+1).

After substituting ũ
(l)
i (ti) into Eq. (17), we can obtain all needed numerical displacements

(i.e., ui(ti)), velocities (i.e., u
(1)
i (ti)), and accelerations (i.e., u

(2)
i (ti)).

4 Implementation of cubic B-spline on MDOF systems

The dynamic equilibrium equations governing a linear MDOF system can be expressed as

MU (2)(t) + DU (1)(t) + KU(t) = F (t), (28)

where M , D, and K are the mass, damping, and stiffness matrices, respectively. F is the
vector of externally applied loads. U(t), U (1)(t), and U (2)(t) are the unknown displacement,
velocity, and acceleration function vectors of the discrete nodes on the structure.

The initial conditions are U(t0) = a0, U (1)(t0) = a1, and U (2)(t0) = a2.
As previously discussed in Section 3 for the SDOF system, Eq. (16) is used to represent the

approximate solution to Eq. (28). First, we let

U (l)(t) = [u
(l)
1 (t) u

(l)
2 (t) · · · u

(l)
j (t) · · · u

(l)
N (t)]T, l = 0, 1, 2. (29)
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Assume that uj,i(t) are the cubic B-spline interpolation functions of the exact solution uj(t)
within any time interval I ′i (i = 0, 1, 2, · · · , n − 1). Then, by use of Eq. (16), we have

u
(l)
j,i(t) =

0∑

k=−3

Ci
j,kB

(l)
k,3(τi), i = 0, 1, 2, · · · , n − 1, j = 1, 2, · · · , N, l = 0, 1, 2. (30)

Substituting Eq. (30) into Eq. (29) gives the approximate function vectors of the exact solu-
tion U (l)(t) within any time interval I ′i as

U
(l)
i (t) =

0∑

k=−3

B
(l)
k,3(τi)C

i
k, i = 0, 1, 2, · · · , n − 1, l = 0, 1, 2, (31)

where Ci
k are the unknown coefficient vectors of size N × 1. Ci

k can be written as

Ci
k = [Ci

1,k Ci
2,k · · · Ci

j,k · · · Ci
N,k]T, k = −3,−2,−1, 0. (32)

Similar to the SDOF system, here, we let

Ũ
(l)
i (t) = (ϕ∆t)(l) · U

(l)
i (t). (33)

By substituting t = ti (i.e., τi = 0) and t = ti+ϕ (i.e., τi = 1) into Eq. (31) and using Eq. (33)
and Table 1, we have

Ũi(ti) =
1

6
Ci

−3 +
2

3
Ci

−2 +
1

6
Ci

−1, (34a)

Ũ
(1)
i (ti) = −

1

2
Ci

−3 + 0Ci
−2 +

1

2
Ci

−1, (34b)

Ũ
(2)
i (ti) = Ci

−3 − 2Ci
−2 + Ci

−1, (34c)

and

Ũi(ti+ϕ) =
1

6
Ci

−2 +
2

3
Ci

−1 +
1

6
Ci

0, (35a)

Ũ
(1)
i (ti+ϕ) = −

1

2
Ci

−2 + 0Ci
−1 +

1

2
Ci

0, (35b)

Ũ
(2)
i (ti+ϕ) = Ci

−2 − 2Ci
−1 + Ci

0. (35c)

With Eqs. (34a)–(34c), Ci
−3, Ci

−2, and Ci
−1 can be calculated by

Ci
−3 = Ũi(ti) − Ũ

(1)
i (ti) +

1

3
Ũ

(2)
i (ti), (36a)

Ci
−2 = Ũi(ti) + 0Ũ

(1)
i (ti) −

1

6
Ũ

(2)
i (ti), (36b)

Ci
−1 = Ũi(ti) + Ũ

(1)
i (ti) +

1

3
Ũ

(2)
i (ti). (36c)
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Prescribing that Eq. (28) is satisfied at t = ti+ϕ (i.e., τi = 1) yields

MU
(2)
i (ti+ϕ) + DU

(1)
i (ti+ϕ) + KUi(ti+ϕ) = F (ti+ϕ), i = 0, 1, 2, · · · , n − 1. (37)

Using Eq. (33), Eq. (37) can be further expressed as

MŨ
(2)
i (ti+ϕ) + ϕ∆t · DŨ

(1)
i (ti+ϕ) + (ϕ∆t)2 · KŨi(ti+ϕ) = (ϕ∆t)2 · F (ti+ϕ). (38)

Substituting Eqs. (35a)–(35c) into Eq. (38) yields

αCi
−2 + βCi

−1 + γCi
0 = (ϕ∆t)2 · F (ti+ϕ), i = 0, 1, 2, · · · , n − 1, (39)

where

α =
(ϕ∆t)2

6
K −

ϕ∆t

2
D + M , (40)

β =
2(ϕ∆t)2

3
K − 2M , (41)

γ =
(ϕ∆t)2

6
K +

ϕ∆t

2
D + M . (42)

Ci
−3, Ci

−2, and Ci
−1 have been previously solved by Eqs. (36a)–(36c). Thus, we can solve

Ci
0 by

Ci
0 = γ−1((ϕ∆t)2 · F (ti+ϕ) − αCi

−2 − βCi
−1), i = 0, 1, 2, · · · , n − 1. (43)

Then, substituting t = ti+1 into Eqs. (31) and (33) yields

Ũ
(l)
i (ti+1) =

0∑

k=−3

(ϕ∆t)(l) · B
(l)
k,3

( 1

ϕ

)
Ci

k, i = 0, 1, 2, · · · , n − 1, l = 0, 1, 2. (44)

In Eq. (44), to complete the recurrence procedure, we let Ũ
(l)
i+1(ti+1) = Ũ

(l)
i (ti+1). Mean-

while, after substituting Ũ
(l)
i+1(ti+1) into Eq. (33), we can obtain Ũ

(l)
i+1(ti+1)(l = 0, 1, 2, i =

0, 1, 2, · · · , n − 1).
To clarify the complete algorithm of the proposed method, we give the calculation procedure

of the MDOF system from the perspective of computer programming in Table 2.
Table 2 illustrates that all the Ci

k depend on the previous values already calculated. There-
fore, the proposed algorithm is an explicit one. From Table 2, we can see that only one sym-
metric matrix inversion needs to be conducted within each time step. Moreover, compared with
the methods of Refs. [9] and [15], all intermediate variables Ci

k have simpler forms and can be
easily solved, which, to a great extent, can save computation time greatly. Thus, theoretically,
the proposed method has the more desirable computation speed than the methods of Refs. [9]
and [15].

5 Numerical stability and accuracy analyses

5.1 Stability analysis

In general, any global equation of motion can be degraded into a set of uncoupled SDOF
systems by use of the modal decomposition. Meanwhile, the integration of the uncoupled
equations is equivalent to the integration of the original system. Therefore, to study the stability
properties of the proposed method, it suffices to only consider the SDOF system.
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Table 2 Calculation process of proposed algorithm for dynamic response of MDOF systems

A Initial calculation
(i) Form the stiffness matrix K, mass matrix M, and damping matrix D of the system
(ii) Initialize a0 and a1 as the displacement and velocity vectors. Then, ascertain the initial
acceleration vector a2 using the relationship as follows:

a2 = M−1(F (t0) − Da1 − Ka0)
(iii) Select the appropriate algorithmic parameter ϕ (1 6 ϕ < 2) and the time increment (∆t < ∆tcritical). Then,
specify (ϕ∆t)2 · F (ti+ϕ) (i = 0, 1, 2, · · · , n − 1)
(iv) Determine constant matrices α, β, and γ as follows:

α = (ϕ∆t)2

6
K −

ϕ∆t

2
D + M, β = 2(ϕ∆t)2

3
K − 2M, γ = (ϕ∆t)2

6
K + ϕ∆t

2
D + M

(v) Calculate the inverse of symmetric matrix γ, eγ = γ−1

(vi) Calculate three unknown vectors of coefficients C0
−3, C0

−2, and C0
−1 using the terms as follows:

C0
−3 = a0 − a1 + 1

3
a2,

C0
−2 = a0 + 0a1 −

1
6
a2,

C0
−1 = a0 + a1 + 1

3
a2

(vii) Calculate C0
0 using the following relationship:

C0
0 = eγ

B For each time step (i = 0, 1, 2, · · · , n − 1)
(i) Calculate the displacement vector and its two derivative vectors at t = ti+1 by

eU(l)
i (ti+1) =

0P
k=−3

(ϕ∆t)(l) · B
(l)
k,3

`
1
ϕ

´
Ci

k
, l = 0, 1, 2

(ii) Calculate three unknown coefficients Ci+1
−3 , Ci+1

−2 , and Ci+1
−1 by

Ci+1
−3 = eUi(ti+1) − eU(1)

i (ti+1) + 1
3

eU(2)
i (ti+1),

Ci+1
−2 = eUi(ti+1) + 0 eU(1)

i (ti+1) − 1
6

eU(2)
i (ti+1),

Ci+1
−1 = eUi(ti+1) + eU(1)

i (ti+1) + 1
3

eU(2)
i (ti+1)

(iii) Calculate Ci+1
0 using the following relationship:

Ci+1
0 = eγ((ϕ∆t)2 · F (ti+1+ϕ) − αCi+1

−2 − βCi+1
−1 )

(iv) Determine Ui(ti+1), U
(1)
i (ti+1), and U

(2)
i (ti+1) by

U
(m)
i (ti+1) = eU(m)

i (ti+1)/(ϕ∆t)(m) , m = 0, 1, 2

Note that analysis about the selection of algorithmic parameter ϕ is given in Section 5

The proposed method transfers the state at the ith step to the (i + 1)th step as elucidated
in Section 3. Clearly, the recurrence formula of the proposed algorithm for any SDOF system
can be intrinsically written as

ũi+1 = Aũi + f̃i, (45)

where A is the amplification matrix, ũi+1 and ũi are given by

ũi = [ũi(ti) ũ
(1)
i (ti) ũ

(2)
i (ti)]

T, (46)

ũi+1 = [ũi(ti+1) ũ
(1)
i (ti+1) ũ

(2)
i (ti+1)]

T. (47)

In addition, we need to define ũi+ϕ as

ũi+ϕ = [ũi(ti+ϕ) ũ
(1)
i (ti+ϕ) ũ

(2)
i (ti+ϕ)]T. (48)

To find the amplification matrix A, at first, we need to construct the relationships among ũi,
ũi+1, and ũi+ϕ by use of coefficients Ci

k (k = −3,−2,−1, 0).
If we solve Eqs. (20a)–(20c) to reach Ci

−2, Ci
−1, and Ci

0, we would have

Ci
−2 =

[
1 − 1

1

3

]
ũi+ϕ, (49a)

Ci
−1 =

[
1 0 −

1

6

]
ũi+ϕ, (49b)

Ci
0 =

[
1 1

1

3

]
ũi+ϕ. (49c)
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Similarly, with Eqs. (21a)–(21c), Ci
−3, Ci

−2, and Ci
−1 can be represented by

Ci
−3 =

[
1 − 1

1

3

]
ũi, (50a)

Ci
−2 =

[
1 0 −

1

6

]
ũi, (50b)

Ci
−1 =

[
1 1

1

3

]
ũi. (50c)

Combining Eqs. (49a)–(49c) with Eqs. (50a)–(50c) gives



1 −1
1

3

1 0 −
1

6


 ũi+ϕ =




1 0 −
1

6

1 1
1

3


 ũi. (51)

In addition, substituting Eq. (49c) and Eqs. (50b)–(50c) into Eq. (24) renders

[
1 1

1

3

]
ũi+ϕ + [ε1 ε2 ε3]ũi =

(ϕ∆t)2

γ
· f(ti+ϕ), (52)

where

ε1 =
α + β

γ
, ε2 =

β

γ
, ε3 =

2β − α

γ
. (53)

Actually, Eq. (52) is the equivalent form of Eq. (22). Equations (51) and (52) can be ex-
pressed in a unified form of

ũi+ϕ = A1ũi + fi, (54)

where

A1 =




5 − ε1

6

4 − ε2

6

7 − 6ε3

36

−
1 + ε1

6
−

ε2

2

1 − 6ε3

12

−(1 + ε1) −(ε2 + 2) −
5 + 6ε3

6




, fi =




(ϕ∆t)2

6γ
· f(ti+ϕ)

(ϕ∆t)2

2γ
· f(ti+ϕ)

(ϕ∆t)2

γ
· f(ti+ϕ)




. (55)

With Eq. (27), ũi+1 can be written as

ũi+1 = B̃1




Ci
−3

Ci
−2

Ci
−1


 + B̃2




Ci
−2

Ci
−1

Ci
0


 , (56)

where

B̃1 =




B̃−3,3(1/ϕ) B̃−2,3(1/ϕ) B̃−1,3(1/ϕ)

B̃
(1)
−3,3(1/ϕ) B̃

(1)
−2,3(1/ϕ) B̃

(1)
−1,3(1/ϕ)

B̃
(2)
−3,3(1/ϕ) B̃

(2)
−2,3(1/ϕ) B̃

(2)
−1,3(1/ϕ)


 , (57)

B̃2 =




0 0 B̃0,3(1/ϕ)

0 0 B̃
(1)
0,3(1/ϕ)

0 0 B̃
(2)
0,3(1/ϕ)


 . (58)
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With Eqs. (49a)–(49c) and Eqs. (50a)–(50c), we have

[Ci
−2 Ci

−1 Ci
0]

T = Pũi+ϕ, (59)

[Ci
−3 Ci

−2 Ci
−1]

T = Pũi, (60)

where

P =




1 −1
1

3

1 0 −
1

6

1 1
1

3




. (61)

Then, after substituting Eqs. (59) and (60) into Eq. (56) and using Eq. (54), we have

ũi+1 = B̃1Pũi + B̃2Pũi+ϕ = B̃1Pũi + B̃2P (A1ũi + fi)

= (B̃1P + B̃2PA1)ũi + B̃2Pfi = Aũi + f̃i. (62)

In Eq. (62), the amplification matrix A (i.e., B̃1P + B̃2PA1) is used to investigate stability
of the proposed algorithm. Because the amplification matrix A contains too many terms, the
concrete expression of A is not presented here. In fact, we can easily obtain A by virtue of
some general mathematical softwares.

In this study, the stability analysis is conducted by solving the eigenvalue problem of the
amplification matrix A. The eigenvalues of A are obtained by solving |A−λI| = 0, where I is
the identity matrix of size 3 × 3. Here, let λi (i = 1, 2, 3) be the eigenvalues of A. To obtain a
convergent algorithm, the norm of all eigenvalues should be less than unity, and thus we should
have ρ(A) = max(‖λ1‖, ‖λ2‖, ‖λ3‖) 6 1, where ρ(A) is called the spectral radius.

For the proposed step-by-step method, it suffices to investigate ρ(A) only at ξ = 0. At this
moment, ρ(A) is a function only in terms of ω∆t and the algorithmic parameter ϕ. The natural
frequency ω satisfies ω = 2π/T , where T is the period of the considered system. To ensure
that the algorithm in question is stable, the effects of the parameter ϕ on the spectral radius
ρ(A) need to be investigated. Here, we conduct this study through numerical experimentation
instead of rigorous mathematical operation.

The variation of the spectral radius as a function of ∆t/T is shown in Fig. 3. For the
convenience of comparison, only the spectral radius curves of some representative parameter
values are shown in Fig. 3, where the spectral radius curves move downward with the increase in
the parameter ϕ. Clearly, when ϕ > 1.37, the spectral radius achieves unconditional stability.
However, increasing the value of ϕ would undoubtedly lower interpolation accuracy of the
proposed method. Therefore, we give the suggested parameter condition as 1.0 6 ϕ 6 1.4.
Furthermore, we provide five parameter cases of the cubic B-spline method as

Case . ϕ = 1.00, ∆t/T 6 0.550;
Case / ϕ = 1.20, ∆t/T 6 0.764;
Case 0 ϕ = 1.30, ∆t/T 6 1.175;
Case 1 ϕ = 1.37 (unconditionally stable);
Case 2 ϕ = 1.40 (unconditionally stable).
In Fig. 4, the radii from the cubic B-spline method are especially compared with the radii

from the Noh-Bathe method[15]. Clearly, the cubic B-spline method is more flexible in control-
ling the stability and stable region than the Noh-Bathe method. In Fig. 4, for the Noh-Bathe
method, when the algorithmic parameter p is equal to 0.5, the spectral radius remains to be
1 for a slightly wider range than the one from any other given case. However, compared with
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the central difference method schemes, Case.has a much wider stable region. The proposed
scheme gives very similar spectral radii as the Wilson-θ method, but possesses different calcu-
lation procedure which is formulated based on the uniform B-spline interpolation.

Fig. 3 Spectral radii of proposed method for various ϕ

Fig. 4 Spectral radius comparison between proposed method and other schemes

5.2 Accuracy analysis

In general, a standard procedure used to estimate the numerical error of a step-by-step
time integration method is to quantify the difference between numerical displacements and
theoretical displacements for the free vibration of an undamped SDOF system. For the free
vibration problem, there are two definitions for error estimation: amplitude decay (AD) and
period elongation (PE). AD is sometimes reported as the “algorithmic damping ratio”.

In Fig. 5, the algorithmic damping ratio and period elongation curves from the cubic B-
spline method are compared with the curves from the Noh-Bathe method[15] and the Bathe-
Noh method[9]. Figure 5(a) illustrates that the algorithmic damping ratio from the cubic
B-spline method increases with the increase in the parameter ϕ. Figure 5(b) shows that the
period elongation from the cubic B-spline method decreases with the increase in the parameter
ϕ. Clearly, the Noh-Bathe method of Ref. [15] produces the smaller damping ratio and period
elongation than the proposed method. Figure 5(b) shows that the Bathe-Noh method of Ref. [9]
produces the larger period elongation than the proposed method. However, considering that
all curves in Fig. 5 are close, the proposed method has the desirable algorithmic damping ratio
and period elongation.
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Fig. 5 Accuracy analysis

6 Numerical examples

To demonstrate validity of the proposed method for dynamic analysis, four numerical ex-
amples have been tested in this section, and five parameter cases previously given in Subse-
ction 5.1 are used for computation. In addition, for comparison, the generalized-α (αf =
1
3 , αm = 0, β = 1

2 , γ = 5
6 ) method[2], the Bathe-Noh method[9], and the Noh-Bathe method[15]

are used in this section. Here, it is important to note that, for the Noh-Bathe method, we adopt
the suggested algorithmic parameter value p = 0.54 for computation[15].
6.1 Standard undamped system

To test the calculation accuracy of the proposed scheme, the free vibration of a standard
undamped SDOF system is considered. This system is

u(2)(t) + ω2u(t) = 0, u(0) = 1, u(1)(0) = 0, (63)

where ω = π, that is, T = 2.
A time duration of t = 2 s is considered and calculated for accuracy and efficiency tests, and

the global error norms El (l = 0, 1, 2) are employed and defined as

El =

√√√√
n−1∑

i=0

(u
(l)
i − ũ

(l)
i )2

/ n−1∑

i=0

(ũ
(l)
i )2 × 100%, (64)

in which u
(l)
i are numerical results at the time ti, and ũ

(l)
i are the corresponding exact ones.

In Fig. 6, global errors of various schemes are plotted in a log form. It can be noted that
accuracy of the proposed scheme decreases with the increase in the parameter ϕ. Case2shows
acceptable accuracy compared with other considered methods.
6.2 SDOF system

An SDOF system for numerical simulation is given by

u(2)(t) + 4u(1)(t) + 5u(t) = sin(2t), u(0) = 57/65, u(1)(0) = 2/65, (65)

whose exact solution is u(t) = e−2t(cos t + 2 sin t) − (8 cos(2t) − sin(2t))/65.
To investigate the quantified effects of ratio ∆t/T on calculation accuracy, we select four

different time increments ∆t for calculation and accordingly list the global errors thereof in
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Table 3. Here, the global errors are defined by

Ei =

√√√√
ng∑

k=1

(u
(i)
num(tk) − u

(i)
exact(tk))2

/ ng∑

k=1

(u
(i)
exact(tk))2 × 100%, i = 0, 1, 2, (66)

where u
(i)
num and u

(i)
exact are the numerical result and the exact solution at some given time,

respectively. ng is the number of time steps. ng is calculated by ng = ta/∆t, where ta is the
selected time duration. Here, we select ta = 4 s for computation.

Fig. 6 Global errors of various implicit methods for Subsection 6.1

Table 3 shows that the calculation accuracy of the proposed method decreases with the
increase in the parameter ϕ. Clearly, Case2gives roughly the same magnitude of displace-
ments and velocities as the generalized-α method[2]. Nevertheless, the acceleration errors from
Case2are almost one order of magnitude less than the generalized-α method. All the global
errors from Case.and Case/are much smaller than those from the generalized-α method.

In Table 3, compared with the Noh-Bathe method[15], Case.produces slightly larger dis-
placement errors, but gives clearly smaller velocity and acceleration errors. Table 3 shows that
the Bathe method[9] possesses higher accuracy than the cubic B-spline method. However, note
that the Bathe method adopts two sub-steps in each time step, and the computation time
consumed by these two methods is definitely larger than other conventional methods. Thus,
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Table 3 Global errors of proposed method and other given methods for Subsection 6.2

Global error ∆t/s Generalized-α[2] Bathe-Noh[9] Noh-Bathe[15]
Cubic B-spline method

Case . Case / Case 1

E0/%

0.20 2.305 0.454 0.606 6 1.344 2.034 2.648

0.10 0.598 0.114 0.187 4 0.345 0.537 0.718

0.05 0.152 0.029 0.049 7 0.088 0.138 0.187

0.02 0.025 0.004 0.008 2 0.014 0.023 0.031

E1/%

0.20 5.022 1.742 2.905 6 2.325 3.767 5.080

0.10 1.301 0.422 0.799 8 0.565 0.906 1.230

0.05 0.331 0.104 0.206 5 0.140 0.224 0.306

0.02 0.054 0.017 0.033 5 0.022 0.036 0.049

E2/%

0.20 23.510 1.631 3.844 8 3.705 5.903 7.885

0.10 13.810 0.471 1.117 7 1.061 1.691 2.287

0.05 7.505 0.128 0.310 1 0.288 0.460 0.627

0.02 3.159 0.022 0.057 3 0.049 0.078 0.107

to conduct the computation efficiency analysis, we give the time consumption results of various
methods in Table 4, where ∆t = 0.05 s and three different values of ng are considered for the
time consumption analysis. Table 4 shows that the proposed method spends almost the same
computation time as the generalized-α method. However, for the Bathe-Noh method[9] and
Noh-Bathe method[15], much more computation time than the proposed method is consumed.

Table 4 Time consumption analysis for Subsection 6.2

Time step ng Generalized-α[2] Bathe-Noh[9] Noh-Bathe[15]
Cubic B-spline method

Case. Case 2

5 000 11.988 6 24.505 0 35.324 3 11.921 4 11.884 8

10 000 24.344 8 47.361 4 68.430 7 23.548 0 23.686 9

20 000 47.246 8 93.211 2 135.190 6 45.770 3 46.569 6

In Table 5, to quantify the efficiency differences between the proposed method and two given
novel methods, various ∆t are adopted for different methods. In the table, we define the relative
errors for numerical results in the given time as

ηi =
|u

(i)
num − u

(i)
exact|

|u
(i)
exact|

× 100%, i = 0, 1, 2. (67)

Table 5 shows that the cubic B-spline method could give almost the same magnitude of
accuracy when roughly the same computation time as the Noh-Bathe method[15] is consumed.
Tables 3–5 demonstrate that, compared with the Bathe-Noh method[9] (unconditionally stable)
and Noh-Bathe method[15] (conditionally stable), the computation efficiency of the proposed
method is acceptable.
6.3 Two-dimensional Howe truss under impact loads

A Howe truss under four concentrated impact loads is shown in Fig. 7. Material properties
for all elements are shown in the figure. For comparison, the generalized-α method is used for
computation. The least period of this system (Tmin) is equal to 0.008 2 s. Thus, we select
∆t = 2 × 10−3 s (∆t 6 0.550Tmin) for Case., and ∆t = 8 × 10−3 s (∆t 6 1.175Tmin) for
Case 0.
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Table 5 Computation efficiency of proposed method and other given methods for Subsection 6.2

Time/s
Bathe-Noh[9] Noh-Bathe[15] Cubic B-spline method (∆t = 0.04 s)
(∆t = 0.06 s) (∆t = 0.12 s)

Case . Case / Case 2

η0/%

1.2 0.028 0 0.515 0 0.116 0 0.288 0 0.485 0
6.0 0.042 0 0.736 0 0.009 0 0.024 0 0.043 0

12.0 0.084 0 0.742 0 0.038 0 0.097 0 0.165 0
120.0 0.009 0 0.705 0 0.128 0 0.318 0 0.534 0

η1/%

1.2 0.178 0 1.360 0 0.123 0 0.296 0 0.487 0
6.0 0.256 0 0.960 0 0.058 0 0.145 0 0.244 0

12.0 0.150 0 0.963 0 0.019 0 0.048 0 0.079 0
120.0 0.066 0 0.965 0 0.002 0 0.007 0 0.011 0

η2/%

1.2 0.617 0 0.671 0 0.138 0 0.421 0 0.759 0
6.0 0.031 0 1.475 0 0.044 0 0.029 0 0.021 0

12.0 0.037 0 2.687 0 0.015 0 0.044 0 0.112 0
120.0 0.131 0 4.221 0 0.182 0 0.372 0 0.587 0

E0/% 120.0 0.072 0 0.617 0 0.053 0 0.131 0 0.166 0
E1/% 120.0 0.081 0 0.982 0 0.073 0 0.180 0 0.167 0
E2/% 120.0 0.116 0 1.401 0 0.161 0 0.252 0 0.231 0

Time cost/s 600.0 49.231 6 35.371 9 36.215 6 35.805 8 36.118 4

Fig. 7 Howe truss under impact loads

The time-history of vertical displacement over a time interval between 0 s and 2 s of Node 5
is illustrated in Fig. 8, and the horizontal displacement of Node 13 is plotted in Fig. 8. It is easily
observed that the displacement curves from two conditional B-spline cases match very well with
the curves from the generalized-α method[2]. As for Case 2, we can select a relatively large
time increment ∆t for computation as shown in Figs. 8 and 9, and thus the numerical results
from Case.are definitely less accurate than the other given B-spline cases. However, Figs. 8
and 9 show that all cases of cubic B-spline method are valid for dynamic responses.

Fig. 8 Vertical displacement of Node 5
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Fig. 9 Horizontal displacement of Node 13

As a sample, the results of time consumption for a complete analysis of Subsection 6.2 are
tabulated in Table 6, where all methods use ∆t = 4×10−4 s for computation. For different time
steps ng, the proposed method consumes almost the same time as the generalized-α method.
By contrast, the Bathe-Noh method[9] and Noh-Bathe method[15] consume much more time
than the proposed method. Furthermore, from Tables 4 and 6, we can safely conclude that the
cubic B-spline method has high computation efficiency for the SDOF and MDOF systems.

Table 6 Time consumption analysis for Subsection 6.3

Time step ng Generalized-α[2] Bathe-Noh[9] Noh-Bathe[15]
Cubic B-spline method

Case . Case 2

5 000 16.863 3 30.403 8 46.378 4 16.596 1 16.637 4

10 000 66.280 7 123.153 0 187.833 4 65.866 9 66.955 3

20 000 168.704 3 313.252 0 477.770 6 166.390 3 166.945 7

6.4 Forced vibration of simply supported uniform continuous beam

To verify validity of the proposed method for the finite element method (FEM) calculation,
a simply supported uniform continuous beam under a lateral concentrated variable load at the
middle point is shown in Fig. 10. The dimensions and parameters used for analysis are the
overall length L = 8 m, the radius of circular section R = 2 × 10−2 m, the cross-sectional area
A = πR2, the sectional inertia moment I = πR4/2, Young’s modulus E = 100 GPa, Poisson’s
ratio µ = 0.3, the material density of the beam ρ = 4 × 10−4 kg/m3, the damping ratio ξ = 0,
and the lateral concentrated variable load q(x, t) = F0 sin(ω0t) · δ(x − L/2). Here, we select
F0 = 1 kN, and ω0 = 4 rad/s. The analytical solution of the beam’s bending deflection can be
written as

w(x, t) =
2F0

ρAL

∞∑

r=1,3,5,···

(−1)(r−1)/2

ω2
r(1 − (ω0/ωr)2)

sin
rπx

L
·
(

sin(ω0t) −
ω0

ωr
sin(ωrt)

)
, (68)

where the natural frequency ωr is determined by ωr =
r2π2

L2

√
EI

ρA
.

Fig. 10 Simply supported uniform continuous beam under lateral concentrated variable load
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The equilibrium equation of this problem is formulated by use of the cubic Hermite finite
element with its element number Ns = 8. The boundary conditions are satisfied by directly
setting w = 0 at x = 0 and x = L. The least period of the equilibrium equation is equal to
0.005 6 s. Thus, similar to Subsection 6.2, we select ∆t = 3×10−4 s for Case ., ∆t = 5×10−3 s
for Case 0, and ∆t = 5×10−2 s for Case 1. For simplicity, Fig. 11 just provides response values
at the maximum deflection position (i.e., the middle point). In Fig. 11, although the various
time increments ∆t are used for different cubic B-spline cases, all curves from the proposed
method are in desirable agreement with the exact curves.

Fig. 11 Numerical results of different integration methods for Subsection 6.4

7 Conclusions

In this study, a new time integration method is proposed for the structural dynamic analysis
by use of the cubic B-spline interpolation. By solving the differential equations of motion, a
simple algorithm is formulated to calculate the dynamic responses of SDOF and MDOF systems.
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The stability analysis shows that the proposed method can achieve both unconditional and
conditional stability by adjusting the algorithmic parameter. The corresponding parameter
conditions for conditional stability have been given in this study. The proposed method gives
the acceptable numerical damping ratio and period elongation.

The validity of the proposed method has been confirmed with four numerical simulations.
Time consumption results from numerical simulations demonstrate that, compared with other
well-known methods, the proposed method has an appropriate computation speed. The compu-
tation efficiency analysis shows that the proposed method still possesses desirable computation
efficiency compared with other schemes. Thus, the proposed method is a good choice for the
structural dynamic analysis due to its high computation efficiency.

Actually, in terms of the capability of direct integration method for dealing with the nonlin-
ear dynamic analysis, this method has potential ability to be generalized for a nonlinear system.
This can be a good topic for the further research.
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