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Abstract The non-Newtonian blood flow, together with magnetic particles in a stenosed

artery, is studied using a magneto-hydrodynamic approach. The wall slip condition is also

considered. Approximate solutions are obtained in series forms under the assumption

that the Womersley frequency parameter has small values. Using an integral transform

method, analytical solutions for any values of the Womersley parameter are obtained.

Numerical simulations are performed using MATHCAD to study the influence of stenosis

and magnetic field on the flow parameters. When entering the stenosed area, blood ve-

locity increases slightly, but increases considerably and reaches its maximum value in the

stenosis throat. It is concluded that the magnitude of axial velocity varies considerably

when the applied magnetic field is strong. The magnitude of maximum fluid velocity is

high in the case of weak magnetic fields. This is due to the Lorentz’s force that opposes

motion of an electrically conducting fluid. The effect of externally transverse magnetic

field is to decelerate the flow of blood. The shear stress consistently decreases in the

presence of a magnetic field with increasing intensity.
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Nomenclature

A0, amplitude of pressure gradient steady
(N/s3);

B, magnetic flux intensity (T);
B0, applied magnetic field;
b0, amplitude of body acceleration (N/s3);
L0, length of stenosis (m);

A1, amplitude of pressure gradient oscilla-
tions (N/s3);

R(z), radius of artery in stenosed region (m);
R(0), radius of normal artery (m);
E, electric field intensity (V/m);
Ehydp, effective hydrodynamic radius;
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Fem, electromagnetic force (N/m3);
Fm, magnetic force (N/m3);

Fb, buoyancy force (N/m3);
Fblood, fluidic force (N/m3);

G, Mµ

ρR
2
0K

particle mass parameter;

ψ, ( ξs

R(0)L
m
0

) mm/(m−1)

(m−1)
maximum height of

stenosis;

Ha,
q

σ
µ
B0R0 Hartmann number;

J, current density (A/m2);
k, unite vector of z-direction;
K, Stokes constant;
L, length of stenosis (m);
m, stenosis shape parameter (m > 2);
M , mass of single nanoparticles (Kg);

N , number of magnetic particles per unit vol-
ume;

p, pressure gradient (Pa);

R1,
KNR

2
0

µ
particle concentration parameter;

d, stenosis location;
r, radius (m);
t, time (s);
u, velocity of blood (m/s);
v , velocity field;
v, velocity of magnetic particles (m/s);
G(t), body acceleration.

Greek letters

α2,
wpR

2
0ρ

µ
Womersley frequency parame-

ter;
µ0, magnetic permeability (H/m);
τ , shear stress;
τy , yield stress;
ρ, density of blood (kg/m3);
µ, dynamic viscosity of blood (kg/(ms));

σ, electrical conductivity (S/m);
ωb, 2πfb frequency (Hz);
fb, pulse rate frequency (Hz);
ϕ, lead angle of body acceleration;
ωp, 2πfp heart pressure frequency;

fp, pulse rate frequency (Hz).

1 Introduction

Arterial stenosis is a serious medical problem as an obstruction in the blood artery that
disturbs the normal blood circulation[1–2]. Several authors have studied the blood flow through
artery with stenosis using Newtonian or non-Newtonian fluid models[3–6]. Nagarani and Saroja-
mma[7] have analyzed the pulsatile flow of the blood through a stenosed artery under the effect
of body acceleration using the Casson fluid model. They found that the yield stress of fluid and
the body acceleration strongly influence the flow rate in a stenosed artery. The effects of steno-
sis length on resistance to flow of the blood considered as a Bingham fluid, through an artery
with multiple stenoses have been studied by Yadav and Kumar[8]. They obtained that the flow
resistance decreases if the shape parameter increases and the flow resistance increases if increas-
ing the height/length of stenosis. Srikanth and Tedesse[9] have studied the pulsatile blood flow
in a multiple stenotic artery using the micropolar fluid model and the couple-stress fluid model.
Siddiqui et al.[10] have considered the blood flow through a stenosed artery with body acceler-
ation and oscillating pressure gradient, using the Bingham plastic fluid model. They obtained
analytic solution to the blood velocity, flow rate, shear stress, and effective blood viscosity. The
study reveals that the blood velocity and the flow rate increase with the body acceleration,
while the effective blood viscosity and shear stress decrease. Applications to the targeting of
a magnetic drug are an important subject of research in medical treatment methods for the
effective targeting and delivery of drugs to a specific target area[11–13]. Furlani and Ng[14] have
studied a mathematical model for transport of the therapeutic magnetic nanoparticles in the
human microvasculature. Furlani and Furlani[15], Sharma et al.[16] have studied the motion of
magnetic nanoparticles in blood vessels under the influence of magnetic field. Based on the
magneto-hydrodynamic approach, Sharma et al.[17] analyzed the flow of blood along with mag-
netic particles in a cylindrical tube under effects of the magnetic field and pressure waveform.
Nehad et al.[18] extended the work of Sharma[17] to a model with time-fractional derivatives of
Caputo type. Other interesting topics were studied in Refs. [19]–[25].

In the present paper, we consider a blood model along with magnetic particles, starting from
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the model studied by Siddiqui et al.[10], in which the blood is considered as a non-Newtonian
Bingham plastic fluid. In their paper, Siddiqui and his collaborators have studied the effects
of the body acceleration, oscillating pressure gradient along the flow direction and of the slip
velocity on the fluid velocity and on the volumetric flow rate. They have not considered the
influence of the external magnetic field. Also, they determined only the approximate solution
under the assumption of small values of the Womersley parameter, α.

The aim of this paper is to study the blood flow along with magnetic particles through an
arterial stenosis under the influence of a magnetic field perpendicular to the flow direction, an
oscillating pressure waveform in the axial direction and the body acceleration. We assume that
the blood is flowing in the axial direction and the magnetic particles are uniformly distributed
throughout the blood. Using suitable non-dimensional variables, we have formulated the di-
mensionless initial-boundary value problem which governs the flow. Approximate solutions for
the axial fluid velocity, particles velocity, and shear stress are obtained for small values of the
Womersley parameter. In order to eliminate this restrictive condition, we have determined an
analytical solution using the Laplace and finite Hankel transforms. These analytical solutions
are new in the literature and can be used to study the fluid flow parameters for any value of
the Womersley parameter.

The influence of magnetic field on the blood velocity and the shear stress was numerically an-
alyzed using the MATHCAD software. We found that the flow parameters through the stenotic
arteries are significantly disturbed compared to flow through the arteries without stenosis. In
the non-stenosed area the blood flows with constant velocity. The blood velocity slightly in-
creases at the inlet of the stenosed area, then increases considerably and reaches its maximum
value in the stenosis throat. It is obtained that, the axial velocity has a considerable variation
in magnitude when the applied magnetic field is stronger. For the variation of the magnetic
field intensity, the magnitude of maximum value of the fluid velocity becomes higher in the
case of weak magnetic fields. This behavior is due to the Lorentz’s force which opposes the
motion of an electrically conducting fluid. The effect of externally magnetic field is to decelerate
the flow of blood. The shear stress consistently decreases in the presence of a magnetic field
with increasing intensity. The study of the shear stress distribution plays an important role,
because, the deterioration of the arterial wall is related to the generation of tension on the
arterial walls.

2 Mathematical model formulation

We consider the pulsatile blood flow along with magnetic particles through a stenosed artery
with slip velocity at the constricted wall. The blood is considered as a non-Newtonian fluid
of Bingham plastic model [10,17,26−28], in the presence of an applied magnetic field, an oscil-
lating pressure gradient in the axial direction, and periodic body acceleration. The magnetic
particles are flowing along the axis of the artery and are uniformly distributed throughout in
the blood.

2.1 Model equations

We suppose that the stenosis of the arterial wall (see Fig. 1) is a function of the axial
coordinate z, given by the following equation (see Siddiqui et al.[10]):

R(z)

R(0)
=







1 − ψ(L
m−1

0 (z − d) − (z − d)m), d 6 z 6 d+ L0,

1, otherwise,
(1)
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Fig. 1 Geometry of stenosis

where R(z) is the radius of the artery in the stenosed region, R(0) = R0 is the radius of the nor-

mal artery, L0 is the length of the stenosis, d is the stenosis location, and ψ = ( ξs

R(0)L
m
0

)mm/(m−1)

(m−1)

is the maximum height of the stenosis at z = d+ (L0/m
m/(m−1)) such that ξs/R(0) < 1.

The model for the blood motion consists of Navier-Stokes equations, the constitutive equa-
tions of the Bingham plastic fluid, and the Maxwell equations of the magnetic field is as follows:

∇ · B = 0, ∇× B = µ0J , ∇× E = −
∂B

∂t
, (2)

where B is the magnetic flux intensity, µ0 is the magnetic permeability, E is the electric field
intensity, and J is the current density given by

J = σ(E + v × B), (3)

σ is the electrical conductivity, and v is the velocity field.
The electromagnetic body force Fem is defined as

Fem = J × B = σ(E + v × B) × B = σB2
0u(r, t)k, (4)

where k is the unite vector of the z-direction, and v = u(r, t)k is the axial velocity of the blood.
The electromagnetic body force Fem is inserted in the momentum equation (5).

Under the assumption that the ratio of the maximum height of the stenosis and the radius
of the non-stenotic region, respectively, the ratio of the radius of non-stenotic region and the
length of stenosis are much smaller than unity, the governing equation of motion and stress
tensor are given by Ref. [23]:
Momentum equation

ρ
(∂u

∂t

)

= −

(∂p

∂z

)

−

(1

r

) ∂

∂r
(rτ ) +G(t) +KN(v − u) − σB2

0u. (5)

The constitutive Bingham plastic model stress tensor τ of the forms[10]

τ = τy − µ
(∂u

∂r

)

for τ > τy, (6)

∂u

∂r
= 0 for τ < τy, (7)

where u is the axial velocity of blood, v is the velocity of particles, t is the time, p is the
pressure, τ is the shear stress, G(t) is the body acceleration, B0 is the externally applied
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constant magnetic field, τy is the yield stress, ρ is the density of blood, µ is the dynamic
viscosity of the blood, K is the Stokes constant, N is the number of magnetic particles per unit
volume, and KN

ρ (v − u) is the interaction between motion of blood and magnetic particles. We
considered the Reynolds number of the relative velocity is small; therefore the force between
blood and magnetic particles is proportional to the relative velocity.

The periodic body acceleration G(t) and pressure gradient ∂p
∂z (z, t) for t > 0 , which appears

in (5), have the expression of the following forms[10]:

G(t) = b0 cos(ωbt+ ϕ), (8)

−
∂p

∂z
(z, t) = A0 +A1 cos(ωpt), (9)

where ωb = 2πfb is the frequency, fb is the pulse rate frequency, ϕ is the lead angle of the body
acceleration with respect to the pressure gradient, ωp = 2πfp is the heart pressure frequency,

fp is the pulse rate frequency, A0 is the amplitude of the steady state pressure gradient, and
A1 is the amplitude of the oscillating pressure gradient.

The motion of nanoparticles in the vascular system is governed by a number of forces[16].
In the current investigation, we consider the fluidic force and the unsteady flow analysis are
implemented. Therefore, the motion of magnetic single particle is governed by Newton’s law
for dynamic of particle motion

M
∂v

∂t
=

∑

Fext, (10)

where M is the mass of the single nanoparticles and
∑

Fext = Fm + Fb + Fblood represents
all the external forces exerted on the particle from which Fm is the magnetic force, Fb is the
buoyancy force, and Fblood is the fluidic force.

The fluidic force experienced by a particle, assuming a Reynolds number ℜ 6 1, is predicted
using Stokes’s law for viscous drag on a sphere

Fblood = −6πµEhyd,p(v − u), (11)

where Ehyd,p is the effective hydrodynamic radius of the particle, v is the particle velocity, the
– sign indicates that the fluidic force acts opposite to the direction of the particles motion. We
predict particle motion when only the force on the particle is fluidic and no buoyancy force

M
∂v

∂t
= K(u− v), (12)

where K = 6πµEhyd,p is the Stokes constant.

2.2 Initial and boundary conditions

For the proposed problem, we consider the following initial and boundary condition:

u = v = 0, at t = 0, (13)

u = us and v = vs, at r = R(z), (14)

τ is finite, at r = 0, (15)

where us, vs are the slip velocities at the stenotic walls (see Fig. 1).

The dimensionless forms of the governing equations are obtained by considering the following
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dimensionless variables:






































u =
u

A0R
2

0/(4µ)
, v =

v

A0R
2

0/(4µ)
, θ =

τy

A0R0/2
, R(z) =

R(z)

R0

,

t = twp, A =
A1

A0
, ξs =

ξs
R0

, B =
b0
A0

, r =
r

R0

,

us =
us

A0R
2

0/(4µ)
, vs =

vs

A0R
2

0/(4µ)
, ω =

wb

wp
, τ =

τ

A0R0/2
.

(16)

(5), (12), (6), and (7) become

α2 ∂u

∂t
= f(t) +R1(v − u) −

2

r

∂

∂r
(rτ ) −Ha2u, (17)

α2 ∂v

∂t
=

1

G
(u− v), (18)

τ = θ −
1

2

∂u

∂r
for τ > θ, (19)

∂u

∂r
= 0 for τ < θ. (20)

The dimensionless initial and boundary conditions are

u = v = 0, at t = 0, (21)

u = us, v = vs, at r = R(z), (22)

τ is finite, at r = 0, (23)

where α2 =
wpR

2
0ρ

µ , α is the Womersley frequency parameter, Ha =
√

σ
µB0R0 is the Hartmann

number, R1 =
KNR

2
0

µ is the particle concentration parameter, G = Mµ

ρR
2
0K

is the particle mass

parameter, and f(t) = 4((1 +A cos t) +B cos(ωt+ ϕ)),
It is important to point out that, if the particle concentration parameter is zero (R1 = 0)

and no magnetic field effect (Ha = 0), then (17) represents the classical model which was given
by Ref. [10].

3 Solution technique

Let the blood velocity u, the magnetic particles velocity v, and the shear stress τ be expressed
in the forms

u(z, r, t) = u0(z, r, t) + α2u1(z, r, t) + · · · , (24)

τ(z, r, t) = τ0(z, r, t) + α2τ1(z, r, t) + · · · , (25)

v(z, r, t) = v0(z, r, t) + α2v1(z, r, t) + · · · . (26)

Substituting u, v, and τ from (24)–(26) into (17)–(19) and equating the coefficients of α0 and
α2, respectively, we obtain

f(t) +R1(v0 − u0) −Ha2u0 −
2

r

∂

∂r
(rτ0) = 0, (27)

u0 − v0 = 0, (28)

τ0 = θ −
1

2

∂u0

∂r
, (29)
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and

∂u0

∂t
= R1(v1 − u1) −Ha2u1 −

2

r

∂

∂r
(rτ1), (30)

G
∂v0
∂t

= u1 − v1, (31)

τ1 = −
1

2

∂u1

∂r
. (32)

Substituting (28) and (29) into (27), we obtain

2

r

∂

∂r

(

r
(

θ −
1

2

∂u0

∂r

))

+Ha2u0 − f(t) = 0. (33)

Making the change of function

Ha2u0 − f(t) = 2F0(r, z, t), (34)

(33) becomes

r
∂2F0

∂r2
+
∂F0

∂r
−Ha2rF0 = θHa2. (35)

We seek the solution of (35) in the form of power series as

F0 =

∞
∑

n=0

Cn(z, t)rn. (36)

It follows that, the general terms for C2n+1 and C2n+2 can be immediately obtained, respectively
as:

C2n+1 = (2Ha)2n
( n!

(2n+ 1)

)2

C1 = (2Ha)2n
( n!

(2n+ 1)!

)2

θHa2, (37)

C2n+2 =
(Ha

2

)2(n+1) C0

((n+ 1)!)2
, n = 0, 1, 2, · · · . (38)

The function F0(r, z, t) is expressed as follows:

F0(r, z, t) =C0 +

∞
∑

n=0

C2n+1r
2n+1 +

∞
∑

n=0

C2n+2r
2n+2

=C0 + θHa2
∞
∑

n=0

(2Ha)2n
( n!

(2n+ 1)!

)

r2n+1

+ C0

∞
∑

n=0

(Ha

2

)2(n+1) r2n+2

((n+ 1)!)2
, (39)

which can be written in the simpler form

F0(r, z, t) = C0(z, t)I0(Har) +
πθ

2

∞
∑

n=0

1

(Γ(n+ 3
2 ))2

(rHa

2

)2n+1

. (40)

The solution u0 can be expressed as

u0 =
2F0(r, z, t) + f(t)

Ha2
. (41)
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Using the boundary condition u0 = us at r = R(z), we obtain

C0(z, t) =
1

2

(Ha2us − f(t) − πθHa2b(z)

I0(HaR(z))

)

(42)

with b(z) =
∞
∑

n=0

1
(Γ(n+ 3

2 ))2
(HaR(z)

2 )2n+1 and I0 is the modified Bessel function of order zero.

The solution of v0 and τ0 can be readily expressed as

v0 = u0, (43)

τ0 = θ −
1

Ha2

∂F0(r, z, t)

∂r
. (44)

Following the same procedure for obtaining u0, v0, and τ0, u1, v1, and τ1 can be achieved
similarly.

Substituting (31) and (32) into (30), we obtain

r
∂2u1

∂r2
+
∂u1

∂r
−Ha2u1r =

(

1 −

∞
∑

n=0

(Ha

2

)2(n+1) r2n+2

((n+ 1)!)2

)

h(t)r, (45)

where

h(t) =
4(1 +RG)

Ha2

df(t)

dt
. (46)

The solution of the problem (45), (46) with the boundary condition u1(R(z), z, t) = 0 is

u1(r, z, t) =
h(t)

4
r2 +D0(z, t) +D0(z, t)

∞
∑

n=1

(Ha

2

)2n+2 r2n+2

((n+ 1)!)2

+
∞
∑

n=1

D2n+1r
2n+1, D0 = −

h(t)
4 R2(z) +

∑∞
n=1R

2n+1(z)

1 +
∑∞

n=0(
Ha
2 )2n+2 R2n+2(z)

((n+1)!)2

. (47)

The solutions of v1 and τ1 are immediately as follows:

v1 = u1 −G
∂v0
∂t

, τ1 = −
1

2

∂u1

∂r
. (48)

The above obtained solution represents an approximate solution, and it was determined under
assumption that the Womersley number α has small values. This is a very restrictive condition.
In order to have a more general solution, we have determined an analytical solution by means
of the integral transform method (Laplace and finite Hankel transforms).

Applying the Laplace transform, with respect to the time variable t, to (17), (18), then
applying the finite Hankel transform of order zero, with respect to the radial variable r and
applying the inverse transforms we have the velocity u(z, r, t) in the following form:

u(z, r, t) =us −
2us

R(z)

∞
∑

n=1

J0(rrn(z))

rn(z)J1(R(z)rn(z))
Mn(z, t)

+
2

R2(z)

∞
∑

n=1

J0(rrn(z))

J2
1 (R(z)rn(z))

∫ t

0

Nn(z, τ)Sn(z, t− τ)dτ, (49)
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where

Mn(z, t) = 1 −
α2Gr2n(z)q1n(z) + r2n(z)

α4G(q1n(z) − q2n(z))

eq1n(z)t − 1

q1n(z)

+
α2Gr2n(z)q2n(z) + r2n(z)

α4G(q1n(z) − q2n(z))

eq2n(z)t − 1

q2n(z)
, (50)

Nn(z, t) =
α2Gq1n(z) + 1

α4G(q1n(z) − q2n(z))
eq1n(z)t

−
α2Gq2n(z) + 1

α4G(q1n(z) − q2n(z))
eq2n(z)t, (51)

Sn(z, t) = 4ρn(z)(1 +A cos(t) +B cos(ωt+ φ)) + σn(z), (52)

ρn(z) =
R(z)

rn(z)
J1(R(z)rn(z)), σn(z) = −2θ

∫ R(z)

0

J0(rrn(z))dr, (53)

q1n(z), q2n(z) =
−(1 +G(R +Ha2 + r2n(z)))

2α2G

±

√

(1 +G(R+Ha2 + r2n(z)))2 − 4G(Ha2 + r2n(z))

2α2G
, (54)

and rn(z) are the positive roots of the transcendental equation J0(R(z)rn) = 0.

4 Results and discussion

In this paper, we have investigated the mathematical model that represents non-Newtonian
flow of the blood through a stenosed artery, in the presence of an external magnetic field
perpendicular to the flow direction. Periodic body acceleration and an oscillating pressure
gradient along the flow direction are considered by the function f(t), periodic in time (see Fig. 2).
Under assumption of small values of the Womersley number, the approximate solutions to the
axial velocity of fluid and suspended particles as well as to the shear stress were determined. In
order to obtain information regarding the flow parameters, we carried out numerical calculations
using the software MATHCAD. The computed results are exhibited through Figs. 3–5, in order
to have their quantitative estimates. The profiles of axial fluid velocity and of the shear stress
were plotted versus axial z-coordinate, for different values of the radial coordinate r (few coaxial
fluid layers) and for different values of the time t or, of the Hartmann numberHa. For numerical
simulations we used the following values for the system parameters[8,10]:

α = 0.2, R1 = 0.8, G = 2,
d

R0

=
10

3
,

L0

R0

=
10

3
, A = 0.5, B = 0.065,

ξs

R0

=
1

3
,

ω = 5, ϕ = 1.571, n = 6, us = 1.5, θ = 0.75.

Function f(t) has the expression

f(t) = 4(0.05 +A cos(t) +B cos(ωt+ ϕ)).

The diagram of the pulsating function f(t) is sketched in Fig. 2. In the numerical calculation,
we used for the time t values t=1 and t=4. The first value corresponds to the descending
branch of the diagram, respectively; the second value corresponds to the ascending branch of
the diagram plotted in Fig. 2.

Figures 3 and 4 show the variation of dimensionless axial velocity with the axial coordinate
z, for different values of the Hartman number and time t. As we expected, in the absence of
stenosis, the axial blood velocity is constant at each instant t and in each circular fluid layer.
In the stenosed area of the circular tube, the fluid velocity has a strong variation, namely,
the axial fluid velocity increases. The stenosis height affects the flow velocity. The fluid ve-
locity increases slightly in the stenotic area but, increases considerable and reaches its maximum



388 I. A. MIRZA, M. ABDULHAMEED, and S. SHAFIE

Fig. 2 Function f(t)-oscillating pressure gradient and body acceleration

Fig. 3 Profiles of axial velocity u(z, r, t) for time t=1 and for different values of Hartman number Ha

Fig. 4 Profiles of axial velocity u(z, r, t) for time t=4 and for different values of Hartman number Ha

there where the stenosis height is maximum, i.e., in the area where the orifice of flowing has the
smallest diameter. One may, also, observe from these figures that when the Hartman number
increases (the applied magnetic field is stronger), the axial velocity has a considerable variation
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in magnitude. For the variation of the magnetic field intensity, the magnitude of the maximum
value of the fluid velocity becomes higher in the case of lower values of the Hartman number.
Therefore, in the case of weak magnetic fields. This behavior is due to the Lorentz’s force
which opposes the motion of an electrically conducting fluid. The effect of externally applied
transverse magnetic field is to decelerate the flow of blood.

Figure 5 exhibits how the shear stress is perturbed at the different Hartman numbers Ha,
different radial positions and also, at different axial positions of the stenosed artery. It is
observed from Fig. 5 that, the shear stress consistently decreases in the presence of a magnetic

Fig. 5 Profiles of shear stress τ (z, r, t) for time t=1, θ=0.75 and for different values of Hartman
number Ha
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field with increasing intensity. The peak stress occurs at the throat of the stenosis. The shear
stress distribution plays an important role, because, the deterioration of the arterial wall is
related to the generation of tension on the arterial walls.

Obviously, (24) is an approximate solution to fluid velocity and it can be used only for small
values of the Womersley number α. The solution given by (49) is true for all values of the
parameter α, and therefore it is more suitable for proposed problem. However, from Table
1 it is observed that an acceptable agreement was found between numerical results to both
solutions.

Table 1 Comparison between solutions u(z, r, t) given by (24) and (49) for α=0.45, r=0.3, t=0.5,
Ha=0.75, R=0.8, G=2, ω=0.86, ϕ=0.628, A=0.05, B=0.065, and θ=0.75

z u(z, r, t); (24) u(z, r, t); (49)

3.0 0.539 0.534

3.4 0.529 0.525

3.8 0.447 0.436

4.2 0.376 0.366

4.6 0.315 0.302

5.0 0.301 0.287

5.4 0.237 0.245

5.8 0.233 0.218

6.2 0.280 0.302

6.6 0.476 0.456

5 Conclusions

In this research, we formulated a mathematical model describing pulsating blood flow along
with magnetic particles through stenosed artery with applied magnetic field, oscillating pressure
gradient, external body acceleration, and slip velocity. The governing coupled flow equations
for both blood and magnetic particles are solved analytically and simulated on MATHCAD
software. The main results of the current study are summarized as follows:

(i) The blood velocity and magnetic particles velocity can be controlled by adjusting the
magnetic parameter.

(ii) The blood flow is constant with respect to the axial coordinate z, in the absence of
stenosis.

(iii) In the stenosed area of the artery the blood velocity has a strong variation.

(iv) The shear stress has variation from a constant in the area without stenosis and much
higher in the layers located close to the longitudinal axis of the artery

(v) The peak velocity and peak shear stress occur at the throat of the stenosis.
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