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Abstract The heat transfer of a magnetohydrodynamics nanofluid inside an annu-
lus considering the second-order slip condition and nanoparticle migration is theoret-
ically investigated. A second-order slip condition, which appropriately represents the
non-equilibrium region near the interface, is prescribed rather than the no-slip condi-
tion and the linear Navier slip condition. To impose different temperature gradients, the
outer wall is subjected to q2, the inner wall is subjected to q1, and q1 > q2. A modified
two-component four-equation non-homogeneous equilibrium model is employed for the
nanofluid, which have been reduced to two-point ordinary boundary value differential
equations in the consideration of the thermally and hydrodynamically fully developed
flow. The homotopy analysis method (HAM) is employed to solve the equations, and the
h-curves are plotted to verify the accuracy and efficiency of the solutions. Moreover, the
effects of the physical factors on the flow and heat transfer are discussed in detail, and
the semi-analytical relation between NuB and NBT is obtained.
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Nomenclature

B0, magnetic field strength;
Cp, specific heat (m2 · s−2 · K−1);
qw, surface heat flux;
Np, non-dimensional pressure drop;
Nu, Nusselt number;
Ha, Hartmann number;
φ, nanoparticle volume fraction;
NBT, ratio of the Brownian to thermophoretic

diffusivities;

Chtc, dimensionless heat transfer coefficient;
λ1, λ2, slip parameters of the velocity;
ρ, density (g·m−3).
R, radius (m);
p, pressure (Pa);
U , axial velocity (m·s−1);
η, transverse direction;
σ, electrical conductivity;
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µ, dynamic viscosity (kg·m−1·s−1);
k, thermal conductivity (W·m−1·K−1);
h, heat transfer coefficient (W·m−2·K−1);

γ, ratio of the temperature difference
between the wall and the fluid to the
absolute temperature.

1 Introduction

Nowadays, the study on the heat transfer and nanofluid flow inside a annular pipe has
been a topic of great interest. Nanofluids are significant for the production of nanostructured
materials, whose sizes are below 100nm, the engineering of complex fluids, and the cleaning oil
from solid surfaces[1] owing to their excellent wetting and spreading behaviors. Heat transfer
is very important in the high-temperature processes like gas turbines, nuclear plants, thermal
energy storage, etc. Some researchers[2–4] have investigated the effects of the slip condition in
nanofluids via molecular dynamics simulations.

The slip degree at the boundary depends on a number of interfacial parameters, including
the strength of the thermal roughness of the interface, the liquid-solid coupling, and the liquid
densities[5]. A second-order slip condition, which appropriately represents the non-equilibrium
region near the interface, is prescribed rather than the no-slip condition and the linear Navier
slip condition. First, the conventional no-slip boundary conditions at the walls may not be
accurate when the dimensions are reduced to microscale. Secondly, the linear Navier slip
condition performs well when it is at a sufficiently low shear rate. However, at higher shear rates,
when the slip length increases rapidly, the Navier slip condition will break down. Therefore,
many researchers[6–7] proposed the nonlinear slip conditions. Thirdly, due to the comparison
between the calculation results and the experimental data, the values calculated by the second-
order slip boundary condition are more close to the experimental data[8]. Therefore, many
scholars investigated the effects of the velocity slip condition on the flow and heat transfer
with NuB. Zhu et al.[9] studied the effects of the second-order velocity slip and nanoparticle
migration on the Buongiorno nanofluid flow.

Originally, the proposed models are twofold, i.e., homogeneous flow models and dispersion
models. In 2006, Buongiorno[10] certified that homogeneous models were more suitable to pre-
dict the nanofluid heat transfer coefficient. Simultaneously, the dispersion effect was completely
negligible due to the nanoparticle size. Therefore, he proposed a two-component four equation
non-homogeneous equilibrium model for the convective transport in nanofluids. On the basis of
this model, Sheikholeslami et al.[11] studied the forced convection heat transfer in a semi-annulus
under the influence of a variable magnetic field. Kasaeipoor et al.[12] studied the convection of
the Cu-water nanofluid in a vented T-shaped cavity in the presence of magnetic field.

Till now, a number of works have been studied on the fluid flow and heat transfer with
asymmetric heating inside a annular pipe[13–14]. However, very limited investigation has been
given to the the heat transfer of nanofluids considering the nanoparticle migration under high-
order slip boundary conditions, and there is no attention on the analytic solution. Hence,
in the current research, a theoretical study of fully developed convection heat transfer of the
nanofluid with a uniform magnetic field inside a annular pipe is presented based on the modi-
fied Buongiorno model[10]. It is of particular interest to study the effects of a second-order slip
condition and NBT on the hydrodynamic and thermal characteristics of the system. The ana-
lytical approximations of the solutions are derived by the homotopy analysis method (HAM).
The residual error curves and h-curves are verified to the accuracy and efficiency for the HAM
solutions. Furthermore, the semi-analytical relation between NuB and NBT are obtained.

2 Mathematical analysis

Consider an magnetohydrodynamics, laminar, and two-dimensional flow of a nanofluid inside
a annular pipe with the second-order slip condition, which is subjected to different heat fluxes
at the outer wall q2 and the inner wall q1 such that q1 > q2. A two-dimensional coordinate



Heat transfer of nanofluids considering nanoparticle migration and second-order slip velocity 127

frame is selected, where the x-axis is aligned parallel and the r-axis is normal to the walls.
A modified two-component heterogeneous model is employed for the nanofluid. Consequently,
the basic incompressible conservation equations of the mass, momentum, thermal energy, and
nanoparticle fraction can be expressed as follows:
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where Ui represents the velocity components, T is the local temperature, p is the pressure, σ
is the electric conductivity, B0 is the uniform magnetic field strength, and DB and DT are
the Brownian diffusion and the thermophoretic diffusion coefficients, respectively. ρ, µ, k, and
Cp, depending on the nanoparticle volume fractions, are the density, the dynamic viscosity, the
thermal conductivity, and the specific heat capacity of the nanofluid, respectively. The relations
of Buongiorno[10], which correlate the viscosity and the thermal conductivity of the nanofluid
based on the experimental data of Pak and Cho[15], are used. The expressions are

µ(φ) =







µbf(1 + 39.11φ + 533.9φ2) (Al-water),

µbf(1 + 5.45φ + 108.2φ2) (TiO2-water),
(5)

k(φ) =







kbf(1 + 7.47φ) (Al-water),

kbf(1 + 2.92φ − 11.99φ2) (TiO2-water),
(6)











ρ = φρp + (1 − φ)ρbf ,

Cp =
φρpCpp + (1 − φ)ρbfCpbf

ρ
,

(7)

where bf stands for the base fluid, and p stands for the particle. The thermophysical properties
of Al and TiO2 nanoparticles and the base fluid-water are provided as follows:















































Cpbf
= 4 182 J · kg−1 · K−1, kbf = 0.597 W · m−1 · k−1,

ρbf = 998.2 kg · m−3, µbf = 9.93 × 10−4 kg · m−1 · s−1,

CpAl = 773 J · kg−1 · K−1, kAl = 36 W · m−1 · k−1,

ρAl = 3 380 kg · m−3, CpTiO2
= 4 182 J · kg−1 · K−1,

kTiO2
= 8.4 W · m−1 · k−1, ρTiO2

= 4 175 kg · m−3.

Assuming the hydrodynamically and thermally fully developed conditions, Eqs. (1)–(4) can
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be simply reduced, i.e.,
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The boundary conditions for this problem can be expressed as follows:
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Regarding the nanoparticle continuity equation, it is obvious that the Brownian diffusion flux
and the thermophoretic diffusion flux are cancelled out everywhere. Introduce the following
non-dimensional parameters:
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The radiative heat flux qr is described by the Rosseland approximation[16] such that

qr = −
4σ∗

3δ

∂T 4

∂r4
, (14)

where σ∗ and δ are the Stefan-Boltzmann constant and the mean absorption coefficient, respec-
tively. We assume that the temperature differences within the flow are sufficiently small so that
T 4 can be expressed as a linear function after using the Taylor series to expand T 4 about the
free stream temperature T∞ and neglecting the higher-order terms. The result is

T 4 ∼= 4T 3
∞T − 3T 4

∞. (15)

Equations (8)–(10) can be reduced to
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The boundary conditions are

η = 0 : u = λ1
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where the average value of the parameters can be calculated over the cross-section by
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Then, the bulk mean dimensionless temperature uB, the bulk mean dimensionless temperature
θB, and the bulk mean nanoparticle volume fraction φB can be obtained as follows:
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The dimensionless heat transfer coefficient Chtc at the inner and the outer walls can be defined,
respectively, by

Chtci =
q1(R2 − R1)

kbf(θi − θB)
= −

ǫ

(1 + ǫ)θB
, (22)
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q2(R2 − R1)
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=
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The total heat transfer ratio can be expressed as

Chtct =
Chtc0R2 + ChtciR1

R2 + R1
=

Chtc0 + Chtciζ

1 + ζ
, (24)

and the non-dimensional pressure drop can be defined by

Np =
−(dp/dx)

(µbfuB)/(R2 − R1)2
=

ρB

ρu
. (25)

3 Application of HAM

In this paper, the HAM, which has been proved to be a strong and effective mathematical
method to solve highly nonlinear problems, is employed to get the series solutions. For the
analytical solution of Eqs. (16)–(20), using the HAM, we can select the following initial guess
solutions:

u0(η) = η − 0.5η2, θ0(η) = −η + η2, φ0(η) = φB. (26)

The auxiliary linear operators are

Lu =
d2u

dη2
, Lθ =

d2θ

dη2
, Lφ =

dφ

dη
. (27)



130 Jing ZHU, Shengnan WANG, Liancun ZHENG, and Xinxin ZHANG

The properties satisfied by the auxiliary linear operator are

Lu(C1 + C2η + C3η
2) = 0, Lθ(C4 + C5η + C6η

2) = 0, Lφ(C7 + C8η) = 0, (28)

where Ci (i = 1, · · · , 8) are constants.

The mth-order deformation equations are constructed as follows:



















Lu(um(η) − χmum−1(η)) = qhuRm(η),

Lθ(θm(η) − χmθm−1(η)) = qhθRm(η),

Lφ(φm(η) − χmφm−1(η)) = qhφ(η)Rm(η).

(29)

4 Convergence of HAM solutions

Professor Liao[17] has pointed that the convergence rate of the approximation for the HAM
solution strongly depends on the values of the auxiliary parameters hu, hθ, and hφ. It is
straightforward to choose the proper values of hu, hθ, and hφ, which ensures that the solution
series is convergent. Figures 1–3 give the respective valid ranges of hu, hθ, and hφ, respectively.
From the figures, we can see that the valid ranges are

−4 6 hu 6 4, −0.1 6 hθ 6 0.01, −4 6 hφ 6 0.5.

Fig. 1 hu-curve of u′′(1) Fig. 2 hθ-curve of θ′′(0)

Fig. 3 hφ-curve of φ′(0)
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Besides, We can use the residual error to find the proper hu, hθ, and hφ. In this paper, we

define the residual error E
[18]
m,θ by

Em,θ =

∫ 1

0

(
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(

kθ′′ + k′θ′ − 2(1 + ǫ)
kw
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ρcu
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3k∗
θ′′

)

− kθ′
)

dη. (30)

Through following the square residual error function, Using BVPh2.0, the residual error in
Fig. 4 shows that the higher the order of the HAM approximation is, the more accurate the
result becomes. In addition, It can been seen that the present results agree well with those
in Ref. [19] (see Table 1). Besides, the semi-analytical relation between NuB and NBT can be
obtained by

a = 2.149 4(−4.589 51× 10−5 − 4.055 31 × 10−7NBT + 2.028 5 × 10−7N2
BT

+ 1.783 01 × 10−11N3
BT), (31)

b = −2.874 01 × 10−7NBT + 1.439 92 × 10−7N2
BT + 1.506 4 × 10−11N3

BT

+ 2.337 81 × 10−17N4
BT − 2.080 19× 10−5, (32)

c = 7.47(−1.689 15× 10−2 + 1.713 99× 10−2NBT − 8.630 23 × 10−3N2
BT)

− 7.585 78 × 10−7N2
BT)(−5.544 67× 10−1 − 3.189 53× 10−5NBT)−1 + 1, (33)

NuB =
a

bc
. (34)

Table 1 Comparison of HAM results with results in Ref. [19]

φB NBT
ρCpu × 10−4 Ndp NuB

Ref. [19] HAM Ref. [19] HAM Ref. [19] HAM

0.5 10.280 40 10.286 52 108.108 107.070 5.030 96 5.037 00

0.06 1.0 10.491 50 10.491 83 142.857 143.222 5.128 21 5.143 00

5.0 10.539 60 10.520 39 149.365 149.201 5.157 64 5.158 00

Figure 5 plots the semi-analytical relation between NuB and NBT.

5 Results and discussion

For the Al-water nanofluid, when dp
∼= 10 nm and φB

∼= 0.01, the ratio of the Brownian
motion to the thermophoretic forces NBT ∝ 1/dp ranges from 0.1 to 10. Moreover, when

γ =
Tw − TB

Tw
= 0.01,

its effects on the solution is negligible (see Ref. [8]). Hence, in the paper, the results are obtained
for γ = 0.01. The effects of NBT, λ1, and λ2 on the nanoparticle velocity u/uB, the nanoparticle
volume fraction φ/φB, the temperature profiles θ/θB, the total heat transfer rate Chtct, and the
pressure drop Np are shown in Table 2 and Figs. 6–17. In these figures, η = 1 corresponds to
the inner region of the microtube, whereas η = 0 corresponds to the outer region.
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Fig. 4 Residual errors with HAM approxi-
mations order m in different nanoflu-
ids

Fig. 5 Effects of NBT on NuB

Table 2 Results of concentration gradient |u′(0)|
‚

‚

‚

Ha λ2 λ1 NBT ǫ |u′(0)|
‚

‚

‚
Ha λ2 λ1 NBT ǫ |u′(0)|

‚

‚

‚

0 0.1 0.1 0.5 0.5 3.997 60
‚

‚

‚
0 0.1 0.2 0.5 0.5 2.857 15

5 0.1 0.1 0.1 0.5 3.997 36
‚

‚

‚
0 0.2 0.2 0.5 0.5 4.000 01

10 0.1 0.1 0.1 0.5 3.995 92
‚

‚

‚
0 0.3 0.2 0.5 0.5 6.666 72

0 0.1 0.1 0.5 0.5 3.997 60
‚

‚

‚
0 0.1 0.1 0.1 0.5 3.998 32

0 0.1 0.2 0.5 0.5 2.857 14
‚

‚

‚
0 0.1 0.1 5.0 0.5 3.998 08

0 0.1 0.3 0.5 0.5 2.222 22
‚

‚

‚
0 0.1 0.1 10.0 0.5 3.997 60

When nanoparticles migrate, the viscosity and thermal conductivity distributions are mainly
decided by the mutual effects of the Brownian diffusion and the thermophoresis. The Brownian
diffusion is proportional to the concentration gradient, while the thermophoresis is proportional
to the temperature. From Table 2, we can see that the nanoparticles migrate from the heated
wall towards the colder wall at lower values of NBT. This is because that the migration reduces
the viscosity and the shear stress. Considering Eqs. (5) and (6), the thermal conductivities of
the nanoparticles strongly depend on the volume fraction. Therefore, when NBT increases, the
thermal conductivity of the heated wall and pressure drop increases, while the temperature
gradient of the heated wall decreases (see Fig. 6). The nanoparticle concentration φ

φB

∼= 1 at
the higher values of NBT can be observed from Fig. 7, which means that it becomes uniform.

The slip parameters λ1 and λ2 mean the amount of the slip velocity at the surface. The
effects of the first-order and second-order velocity slip parameters λ1 and λ2 on u

uB
, θ

θB
, and

φ
φB

are shown in Figs. 8–13. Because the mass flow rate is assumed to be constant, the velocity

in the core region must decrease if it increases at the wall due to the continuity law (see
Fig. 8). Apparently, when λ1 increases, the velocities increase near the outer wall while decrease
markedly near the inter wall (see Fig. 8). Figure 9 shows that a steeper temperature gradient
at the walls is obtained. From Fig. 10, we can see that, the nanoparticle volume fraction φ

φB
has

an increasing trend when λ1 increases. From Fig. 11, we can see that, when λ2 increases, the
velocities increase. However, the temperature profile θ

θB
and the nanoparticle volume fraction

profile φ

φB
show obvious differences when the second-order slip condition is considered (see

Figs. 12 and 13). The exchanges of the momentum between the fluid layers lead to an increase
in the heat transfer rate Chtct (see Fig. 14). However, an inverse trend can be observed for the
pressure drop Np (see Fig. 15). When λ2 increases, both the nanoparticle volume fraction φ

φB
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Fig. 6 Effects of NBT on θ
θB

Fig. 7 Effects of NBT on φ

φB

and the pressure drop Np increase (see Figs. 13 and 17). From Figs. 14–17, we can see that, no
matter increasing λ1 or λ2, the heat transfer rate Chtct has an increasing trend, meanwhile, the
pressure drop Np has an inverse trend. Hence, λ1 and λ2 are positive parameters in the current
heat transfer system.

Fig. 8 Effects of λ1 on u
uB

Fig. 9 Effects of λ1 on θ
θB

Fig. 10 Effects of λ1 on φ

φB
Fig. 11 Effects of λ2 on u

uB

Figures 18 and 19 show the effects of the nanoparticles volume fraction φB on the heat
transfer coefficient Chtct and the pressure drop Np for a range of NBT. From Eq. (5), we can see
that increasing the bulk nanoparticle concentration leads to an increase in the viscosity with
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Fig. 12 Effects of λ2 on θ
θB

Fig. 13 Effects of λ2 on φ

φB

Fig. 14 Effects of λ1 on Chtct Fig. 15 Effects of λ1 on Np

Fig. 16 Effects of λ2 on Chtct Fig. 17 Effects of λ2 on Np

nanoparticle concentration. Therefore, when the bulk nanoparticle concentration increases, the
pressure drop along the channel increases obviously. From Fig. 19, we can see that the total heat
transfer ratio increases when the nanoparticle volume fraction φB increases. Figure 19 depicts
the heat transfer variation with different values of the nanoparticle volume fraction φB. When
φB increases, since there are more suspended particles, the heat transfer coefficient increases
because of the increasing viscosity at the walls, which suppresses the convection rate.

The Hartmann number Ha is the ratio of the electromagnetic force. Figures 20 and 21 depict
the heat transfer coefficient Chtct and the pressure drop Np versus NBT for different values of
Ha. Figure 20 depicts the heat transfer variation with different values of Ha. From the figure,
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Fig. 18 Effects of φB on Chtct Fig. 19 Effects of φB on Np

we can see that the total heat transfer ratio decreases when Ha increases, which means that
in the presence of magnetic field, the advantage of nanofluids in heat transfer enhancement is
reduced. An opposite phenomenon happens with an increase in Ha (see Fig. 21).

Fig. 20 Effects of Ha on Chtct Fig. 21 Effects of Ha on Np

6 Conclusions

In this paper, the second-order velocity slip on the MHD flow and heat transfer of the
nanofluid in an annulus is studied by the HAM. The analytic solutions are obtained through
the HAM. The major findings of this paper can be assorted as follows:

(i) It can be observed that the nanoparticle concentration in the annulus is progressively
uniform when NBT increases.

(ii) Both the one-slip parameter and the second-order slip parameter have positive effects
on the total heat transfer rate and the pressure drop of the MHD flow.

(iii) The semi-analytical relation between NuB and NBT is obtained.

(iv) Increasing φB increases the heat transfer coefficient Chtct.

References

[1] Wang, F. C. and Wu, H. A. Enhanced oil droplet detachment from solid surfaces in charged
nanoparticle suspensions. Soft Matter, 9, 7974–7980 (2013)



136 Jing ZHU, Shengnan WANG, Liancun ZHENG, and Xinxin ZHANG

[2] Qin, X. C., Yuan, Q. Z., Zhao, Y. P., Xie, S. B., and Liu, Z. F. Measurement of the rate of water
translocation through carbon nanotubes. Nano Letters, 11, 2173–2177 (2011)

[3] Li, Y. Q., Wang, F. C., Liu, H., and Wu, H. A. Nanoparticle-tuned spreading behavior of nanofluid
droplets on the solid substrate. Microfluid Nanofluid, 18, 111–120 (2015)

[4] Yuan, Q. Z. and Zhao, Y. P. Precursor film in dynamic wetting, electrowetting, and electro-elasto-
capillarity. Physical Review Letters, 104, 1–4 (2010)

[5] Thompson, P. A. and Troian, S. M. A general boundary condition for liquid flow at solid surfaces.
nature, 389, 360–362 (1997)

[6] Wang, F. C. and Zhao, Y. P. Slip boundary conditions based on molecular kinetic theory: the
critical shear stress and the energy dissipation at the liquid-solid interface. Soft Matter, 7, 8628–
8634 (2011)

[7] Wu, L. A. A slip model for rarefied gas flows at arbitrary Knudsen number. Applied Physics

Letters, 93, 1–3 (2008)

[8] Beskok, A. and Karniadakis, G. E. Rarefaction and compressibility effects in gas microflows.
Journal of Fluids Engineering, 118, 448–456 (1996)

[9] Zhu, J., Yang, D., Zheng, L. C., and Zhang, X. X. Effects of second order velocity slip and
nanoparticles migration on flow of Buongiorno nanofluid. Applied Mathematics Letters, 52, 183–
191 (2016)

[10] Buongiorno, J. Convective transport in nanofluids. Journal of Heat Transfer, 128, 240–250 (2006)

[11] Sheikholeslami, M., Vajravelu, K., and Rashidi, M. M. Forced convection heat transfer in a semi
annulus under the influence of a variable magnetic field. International Journal of Heat and Mass

Transfer, 92, 339–348 (2016)

[12] Kasaeipoor, A., Ghasemi, B., and Aminossadati, S. M. Convection of Cu-water nanofluid in
a vented T-shaped cavity in the presence of magnetic field. International Journal of Thermal

Sciences, 94, 50–60 (2015)

[13] Asad, S., Alsaedi, A., and Hayat, T. Flow of couple stress fluid with variable thermal con-
ductivity. Applied Mathematics and Mechanics (English Edition), 37(3), 315–324 (2016) DOI
10.1007/s10483-016-2031-6

[14] Hassan, H. and Harmand, S. Effect of using nanofluids on the performance of rotating heat pipe.
Applied Mathematical Modelling, 39, 4445–4462 (2015)

[15] Pak, B. C. and Cho, Y. I. Hydrodynamic and heat transfer studyof dispersed fluids with submicron
metallic oxide particles. Experimental Heat Transfer, 11, 151–170 (1998)

[16] Hakeem, A. K. A. and Sathiyanathan, K. An analytic solution of an oscillatory flow through a
porous medium with radiation effect. Nonlinear Analysis: Hybrid Systems, 3, 288–295 (2009)

[17] Liao, S. J. On the homotopy analysis method for nonlinear problems. Applied Mathematics and

Computation, 147, 499–513 (2004)

[18] Fan, T. Applications of Homotopy Analysis Method in Boundary Layer Flow and Nanofluid Flow

Problems(in Chinese), Ph. D. dissertation, Shanghai Jiao Tong University, Shanghai (2012)

[19] Malvandi, A. and Ganji, D. D. Brownian motion and thermophoresis effects on slip flow of alu-
mina/water nanofluid inside a circular microchannel in the presence of a magnetic field. Interna-

tional Journal of Thermal Sciences, 84, 196–206 (2014)


