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Abstract Under the 3:1 internal resonance condition, the steady-state periodic re-
sponse of the forced vibration of a traveling viscoelastic beam is studied. The viscoelastic
behaviors of the traveling beam are described by the standard linear solid model, and the
material time derivative is adopted in the viscoelastic constitutive relation. The direct
multi-scale method is used to derive the relationships between the excitation frequency
and the response amplitudes. For the first time, the real modal functions are employed
to analytically investigate the periodic response of the axially traveling beam. The unde-
termined coefficient method is used to approximately establish the real modal functions.
The approximate analytical results are confirmed by the Galerkin truncation. Numer-
ical examples are presented to highlight the effects of the viscoelastic behaviors on the
steady-state periodic responses. To illustrate the effect of the internal resonance, the
energy transfer between the internal resonance modes and the saturation-like phenomena
in the steady-state responses is presented.
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1 Introduction

This paper presents a profound study for the nonlinear forced vibration of an axially trav-
eling beam with 3:1 internal resonance. The main target of the present paper is to investigate
the effects of the viscoelastic properties and the internal resonance on the steady-state response
of the traveling beam. Axially traveling beams play an important role in the design of mod-
ern machinery. Therefore, the linear and nonlinear dynamics of the axially traveling beams
have drawn many researchers’ attention[1–3]. Marynowski and Kapitaniak[4] have reviewed the
research progress of the dynamics of the axially traveling continua in the past sixty years.

Traditionally, the investigations were focused on the dynamics of the traveling elastic beams.
Very recently, researchers have paid their attention on the viscoelastic behaviors of the traveling
beam. Yao and Zhang[5] established the equations of motion for the viscoelastic moving belt
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by use of the Kelvin-type viscoelastic constitutive law. Ozhan and Pakdemirli[6–7] and Yang
and Zhang[8] adopted the Kelvin model containing the partial time derivative for describing
the viscoelastic behavior of beam materials. To study the nonlinear vibration of the traveling
viscoelastic beams, Ding and Zu[9], Yan et al.[10], and Tang et al.[11] proved that the material
time derivative should be contained in the Kelvin model. The standard linear solid model has
been employed in modelling axially traveling viscoelastic beams. Wang et al.[12] investigated
the effect of an arbitrary varying length on the nonlinear free vibration of an axially translating
viscoelastic beam. Chen and his co-workers worked on the steady-state responses of the axially
traveling strings[13] and beams[14] with the standard linear solid model. Saksa and Jeronen[15]

studied the characteristic behaviors of an axially traveling viscoelastic beam by modelling the
viscoelasticity with the Poynting Thomson version of the standard linear solid. In the present
paper, the effect of the standard linear solid model on the nonlinear dynamics of the traveling
beams with internal resonance is firstly investigated.

Generally, internal resonance can complicate the dynamics of the nonlinear system. There-
fore, the nonlinear vibration of the traveling beam under internal resonance has been widely
concerned. With the Galerkin method, Ghayesh and Amabili[16] tuned the first two transverse
modes to a 3:1 internal resonance, and studied the coupled longitudinal and transverse vibration
of an axially traveling beam. By combining the incremental harmonic balance method with the
Galerkin method, Chen and his co-workers discovered the planar motion[17] and the nonlinear
vibration to periodic lateral force excitations[18] for an axially traveling beam. Wang et al.[19]

considered the multimode dynamics of the inextensional beams on the elastic foundation with
2:1 internal resonance based on a similar process. Since the governing equations are discretized
into ordinary differential equations, the research techniques in the above-mentioned literatures
are called as the indirect perturbation method. The nonlinear dynamics of the traveling beams
have also been studied by the direct perturbation method. By use of the direct multi-scale
method, Sahoo et al.[20] focused on the nonlinear transverse vibration of an axially moving
beam subjected to two frequency excitations in the presence of internal resonance. By use
of the direct multi-scale method to establish the solvability conditions, Tang et al.[11] investi-
gated the parametric and 3:1 internal resonance of the axially moving viscoelastic beams on
the elastic foundation. Without internal resonance, the multi-scale method has been directly
used to solve the nonlinear dynamics of the traveling beams. Forced vibrations are studied
for traveling beams via the direct multi-scale analysis[21]. Liu et al.[22] derived the analytical
expression of the first-order uniform expansion of the solution by directly using the multi-scale
method. One thing should be mentioned, by use of the direct multi-scale method to study the
nonlinear dynamics of traveling beams, all the above-mentioned studies establish the solvability
conditions with complex modal functions. The reason is that it is difficult to obtain the real
modal functions for the derived equation of the nonlinear continuous Gyro system.

In the present work, the forced periodic response of an axially traveling viscoelastic beam
is investigated in the presence of 3:1 internal resonance. The standard linear solid model and
the material time derivative are used to model the transverse vibration of the axially traveling
beam. The effects of the viscoelastic property on the periodic response are determined. The
approximate real modal functions are established based on the corresponding linear derived
equation. Therefore, the direct multi-scale method is firstly used to establish the solvable con-
ditions with the real modal functions. The approximate analytical stable steady-state response
is confirmed by the Galerkin method.

2 Mathematical model

Consider a slender axially traveling beam with simply supported boundary conditions (see
Fig. 1). The traveling beam is modelled as an Euler-Bernoulli viscoelastic beam. The transverse
vibration of the traveling beam with the external harmonic excitation is governed
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Fig. 1 Traveling beam with simply supported ends

by[23]

ρA(u,tt +γ̇u,x +2γu,xt +γ2u,xx ) + M,xx = ((P + Aσ)u,x ),x +F, (1)

where t is the time, and x is the neutral axis coordinate along the traveling beam. A comma
preceding t or x denotes partial derivatives. u(x, t) presents the transverse displacement. More-
over, L and A are, respectively, the length and the cross-section area of the beam. F = b sin(ωt)
denotes the transverse load, where b and ω are the excitation amplitude and the frequency, re-
spectively. P is the initial axial load. σ(x, t) presents the disturbed axial stress. For a slender
traveling beam, the bending moment M(x, t) is expressed as follows:

M(x, t) = −

∫

A

zσ(x, t)dA. (2)

The standard linear solid model with the material time derivative is used to characterize the
viscoelastic property of the traveling beam. Therefore, the stress-strain relation is expressed in
a differential form as follows:

(E1 + E2)σ + α
dσ

dt
= E1E2εL + E1α

dεL

dt
, (3)

where E1 and E2 are the stiffness constants, σ denotes the normal stress due to that bending α
represents the dynamic viscosity, and εL(x, t) is the Lagrangian axial bending strain expressed
by

εL(x, t) =
1

2
u2,x . (4)

The total time derivative is given by

d

dt
=

∂

∂t
+ γ

∂

∂x
. (5)

Therefore, substituting Eqs. (4) and (5) into Eq. (3) yields

(E1 + E2)σ + ασ,t +αγσ,x =
1

2
(E1E2(u

2,x) + E1α(u2,x),t +E1αγ(u2,x),x ). (6)

In this paper, only small deflections are considered. Therefore, the displacement-strain rela-
tionship can be written as follows:

εS(x, z, t) = −zu,xx . (7)

Therefore, for the standard linear solid, the viscoelastic material of the beam has the following
constitution relationship:

(E1 + E2)M + αM,t +αγM,x = (E1E2u,xx +E1αu,xxt +E1αγu,xxx)

∫

A

z2dA. (8)
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Due to bending and the bending moment, the normal stresses are, respectively, derived from
Eqs. (6) and (8). In the following investigation, the simply supported boundary conditions of
the traveling beam are considered as follows:

u(0, t) = u(L, t) = 0, u,xx (0, t) = u,xx (L, t) = 0. (9)

Incorporate the following dimensionless variables and parameters:







































































u ↔
u

L
, x ↔

x

L
, t ↔ t

√

P

ρAL2
,

γ ↔ γ

√

ρA

P
, α ↔

α

E1 + E2

√

P

ρAL2
, ω ↔ ω

√

ρAL2

P
,

b ↔
bL

P
, I =

∫

A

z2dA, Ea =
IE1E2

PL2(E1 + E2)
,

Eb =
IE1

PL2
, Ec =

E1E2A

P (E1 + E2)
, Ed =

E1A

P
,

(10)

where I denotes the area moment of inertial, α denotes the dimensionless viscous coefficient, Ea

and Eb are, respectively, represent the effects of the flexural stiffness of the traveling beam, and
Ec and Ed are the nonlinear coefficients. The governing equation of the transverse vibration of
the traveling beam and the boundary conditions are nondimensionalized as follows:

u,tt +2γu,xt +(γ2 − 1)u,xx +Eau,xxxx +α(Eb − Ea)(u,xxxxt +γu,xxxxx)

=
3

2
Ecu,2x u,xx −αu,x (Ec − Ed)(2u,xx (u,xt +γu,xx)

+u,x (u,xxt +γu,xxx)) + b sin(ωt), (11)

u(0, t) = u(1, t) = 0, u,xx (0, t) = u,xx (1, t) = 0. (12)

3 Natural frequencies and internal resonance condition

To construct the condition of the internal resonance of the traveling beam, the correspond-
ing linear equation can be adopted to abstract the natural frequencies of the traveling beam.
Omitting the nonlinear terms and viscosity terms of Eq. (11) yields

u,tt +2γu,xt +(γ2 − 1)u,xx +Eau,xxxx = 0. (13)

The solution to the linear derived equation (13) can be expressed as follows:

u(x, t) =
+∞
∑

n=1

Φn(x)eiωnt + c.c., n = 1, 2, · · · , (14)

where c.c. represents the complex conjugate of all preceding terms on the right-hand side of
the equation, and the modal function is assumed as follows:

Φn(x) =
+∞
∑

m=1

cn,m sin(mπx), Φn(x) =
+∞
∑

m=1

cn,m sin(mπx). (15)
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Substitute Eqs. (14) and (15) into Eq. (13). Then, multiplying both sides of the obtained equa-
tion by sin(mπx) (m = 1, 2, · · ·) and integrating it with respect to x from 0 to 1 yield a set of
second-order ordinary differential equations. The non-triviality of the solutions to the set of
the ordinary differential equations requires its determinant of coefficients to be zero. Therefore,
the following equation is obtained:

|−ω2
nM + iωnZ + K| = 0, (16)

where M represents the identity matrix, and Z and K are, respectively, the Coriolis acceleration
matrix and the stiffness matrix defined by

Zij = 4γ











ij(1 − (−1)i+j)

i2 − j2
, i 6= j,

0, i = j,

(17)

Kij =

{

i4π4Ea + i2π2(1 − γ2), i = j,

0, i 6= j.
(18)

The natural frequencies ωn can be obtained from Eq. (16).
In the following study, a V-belt is adopted as the prototype of the traveling beam. Figure 2

shows the shape of the cross-sectional area of the V-belt. Table 1 presents the physical param-
eters of the V-belt.

Fig. 2 Shape of cross-sectional area of V-belt

Table 1 Physical parameters of V-belt transmission

Item Notation Value

Cross-section area A 5.671×10−5 m2

Area moment of inertial I 2.775×10−9 m4

Initial axial tension P 20N

Length of belt L 0.35m

Modulus of elasticity E1 200 MPa

Creep modulus of elasticity E2 200 MPa

Based on Table 1, the dimensionless parameters can be determined based on Eq. (10). There-
fore,

Eb = 2Ea = 0.058, Ed = 2Ec = 567.2, b = 0.003, α = 0.005.

If there is no special designation, the traveling beam can be considered with these parameter
values in all the following examples. The first four natural frequencies are calculated and shown
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in Table 2 with the dimensionless axial speed γ = 0.598 29. As shown in Table 2, the internal
resonance condition ω2 : ω1 = 3 is satisfied.

Table 2 First four natural frequencies of derived linear equation

Item Notation Value

First natural frequency ω1 2.797 92

Second natural frequency ω2 8.393 77

Third natural frequency ω3 17.123 50

Fourth natural frequency ω4 30.381 60

4 Scheme of approximate analytical solution

In this section, the multi-scale method is used to solve the steady-state periodic responses
of the axially traveling beam. In this work, only weak external excitation is considered. A
non-dimensional bookkeeping parameter is introduced to distinguish the different orders of
magnitude. Therefore, the following dimensionless variable and parameters are scaled:

b ↔ ε3b, α ↔ ε2α, u(x, t) ↔ εu(x, t). (19)

Then, the perturbation solution can be written as follows:

u(x, T0, T2) = u0(x, T0, T2) + ε2u2(x, T0, T2), (20)

where T0 = t, T2 = ε2t, and the following relationships are satisfied:

∂

∂t
=

∂

∂T0
+ ε2 ∂

∂T2
,

∂2

∂t2
=

∂2

∂T 2
0

+ 2ε2 ∂2

∂T0∂T2
+ ε4 ∂2

∂T 2
2

. (21)

Substituting Eqs. (19), (20), and (21) into Eq. (11) and equalizing the coefficients of ε0 and ε2

in the obtained equations yield

u0,T0T0
+ Eau0,xxxx + 2γu0,xT0

+ u0,xxγ2 − u0,xx = 0, (22)

2u0,T0T2
+ u2,T0T0

+ 2γu2,xT0
+ 2γu0,xT2

+ γ2u2,xx + αγ(Eb − Ea)u0,xxxxx

− 3Ecu
2
0,xu0,xx/2 + α(Eb − Ea)u0,xxxxT0

+ Eau2,xxxx − u2,xx + b sin(ωt) = 0. (23)

The solution of Eq. (22) can be written as follows:

u0(x, T0, T2) = A1(T2)Θ1(x)eiω1T0 + A2(T2)Θ2(x)eiω2T0 + c.c., (24)

where A1(T2) and A2(T2) are undetermined functions, c.c. represents the complex conjugate
of the two preceding terms on the right hand of the equation, and







Θk(x) = pk,1 sin(πx) + pk,2 sin(2πx) + pk,3 sin(3πx) + pk,4 sin(4πx),

Θk(x) = pk,1 sin(πx) + pk,2 sin(2πx) + pk,3 sin(3πx) + pk,4 sin(4πx),
(25)

where k = 1, 2. Substitute Eqs. (25) and (24) into Eq. (22). Then, pk,r and pk,r (k = 1, 2
and r = 1, 2, 3, 4) can be solved by the undetermined coefficient method, and the solution of
Eq. (23) can be written as follows:

u2(x, T0, T2) = Q1(x, T2)e
iω1T0 + Q2(x, T2)e

iω2T0 , (26)
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where

Qk(x, T2) = qk,1(T2) sin(πx) + qk,2(T2) sin(2πx) + qk,3(T2) sin(3πx) + qk,4(T2) sin(4πx). (27)

Introduce the detuning parameters σ1 and σ2. Then, the nearnesses of ω to ω1 and ω2 to
3ω1 can be, respectively, represented by

ω2 = 3ω1 + ε2σ1, ω = ω1 + ε2σ2. (28)

Substituting Eqs. (26) and (28) into Eq. (23) yields

2(iω1A1,T2
Θ1e

iω1T0 + iω2A2,T2
Θ2e

iω2T0 + c.c.) + 2γ(A1,T2
Θ1,x eiω1T0

+A2,T2
Θ2,x eiω2T0 + c.c.) − 3Ec(A1Θ1,x eiω1T0 + A2Θ2,x eiω2T0 + c.c.)2

· (A1Θ1,xx eiω1T0 + A2Θ2,xx eiω2T0 + c.c.)/2

− ω2
1Q1e

iω1T0 + α(Eb − Ea)(iω1A1Θ1,xxxx eiω1T0 + iω2A2Θ2,xxxx eiω2T0 + c.c.)

+ ib(eiωT0 − e−iωT0)/2 − ω2
2Q2e

iω2T0 + α(Eb − Ea)γ(A1Θ1,xxxxx eiω1T0

+ A2Θ2,xxxxx eiω2T0 + c.c.) + γ2(Q1,xx eiω1T0 + Q2,xx eiω2T0)

+ 2iγ(ω1Q1,x eiω1T0 + ω2Q2,x eiω2T0) + Ea(Q1,xxxx eiω1T0 + Q2,xxxx eiω2T0)

− (Q1,xx eiω1T0 + Q2,xx eiω2T0) = 0. (29)

Substituting Eqs. (24), (25), and (27) into Eq. (29), multiplying both sides of the obtained
equation by sin(mπx) (m = 1, 2, 3, 4), integrating with respect to x from 0 to 1, and then
abstracting the coefficients of exp(iω1T0) and exp(iω2T0) yield the following equation:









K11 − ω2
k −16iγωk/3 0 −32iγωk/15

16iγωk/3 K22 − ω2
k −48iγω1/5 0

0 48iγωk/5 K33 − ω2
k −96iγωk/7

32iγωk/15 0 96iγωk/7 K44 − ω2
k

















qk,1

qk,2

qk,3

qk,4









=









Hk,1

Hk,2

Hk,3

Hk,4









, (30)

where k = 1, 2. K11, K22, K33, and K44 are defined in Eq. (18). Hk,1, Hk,2, Hk,3, and Hk,4 are
defined by











































































Hk,1 = (B1 + 8pk,2γC1/3 + 16pk,4γC2/15 + c.c.) + D1(Ak(4pk,2/15) + c.c.)2 + E,

Hk,2 = (B2 + 8pk,1γC5/3 − 24pk,3γC6/5 + c.c.)

+ D2(A1(4pk,1/3 + 12pk,3/5) + c.c.)2 + E,

Hk,3 = (B3 + 24pk,2γC3/5 − 48pk,4γC4/7 + c.c.)

+ D3(Ak(12pk,2/5 − 24pk,4/7) + c.c.)2 + E,

Hk,4 = (B4 + 16pk,1γC5/15 + 48pk,3γC6/7 + c.c.)

+ D4(A1(8pk,2/15 + 24pk,3/7) + c.c.)2 + E,

(31)
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where















































Bi = iω1pk,i(A1,T2
+(iπ)4α(Eb − Ea)A1), i = 1, 2, 3, 4, k = 1, 2,

C1 = Ak,T2
−8α(Eb − Ea)π4Ak, C2 = Ak,T2

−128α(Eb − Ea)π4Ak,

C3 = Ak,T2
+8α(Eb − Ea)π4Ak, C4 = Ak,T2

+128α(Eb − Ea)π4Ak,

C5 = Ak,T2
+α(Eb − Ea)π4Ak/2, C6 = Ak,T2

+81α(Eb − Ea)π4Ak/2,

E = ib(eiωT0 − e−iωT0)/2, Di = 3Ec(i
2π2Akpk,i + c.c.)/4.

(32)

Therefore, the following solvability condition is derived:

Hk,1K22K33K44 − Hk,1K22K33ω
2
k − Hk,1K22ω

2
kK44 + Hk,1K22ω

4
k

− 9 216Hk,1K22γ
2ω2

k/49 − Hk,1ω
2
kK33K44 + Hk,1ω

4
kK33 + Hk,1ω

4
kK44

− Hk,1ω
6
k +

343 296

1 225
Hk,1ω

4
kγ2 −

2 304

25
Hk,1γ

2ω2
kK44 −

32

15
iHk,4γω3

kK33 −
16

3
iHk,2γω3

kK44

−
32

15
iHk,4γω3

kK22 +
32

15
iHk,4γω5

k −
16

3
iHk,2γω3

kK33 −
256

5
Hk,3γ

2ω2
kK44 +

768

35
Hk,3ω

4
kγ2

+
16

3
iHk,2γω5

k +
1 024

35
Hk,3K22γ

2ω2
k −

1 572 864

1 225
iHk,2γ

3ω3
k +

32

15
iHk,4γωkK22K33

+
16

3
iHk,2γωkK33K44 −

786 432

875
iHk,4γ

3ω3
k = 0. (33)

The solutions of A1(T2) and A2(T2) are expressed as follows:















A1(T2) =
1

2
a1(T2)e

iθ1(T2),

A1(T2) =
1

2
a2(T2)e

iθ2(T2),

(34)

where a1(T2) and a2(T2) are, respectively, the amplitudes of the primary resonance responses,
and θ1(T2) and θ2(T2) are the phase angles of the corresponding responses, respectively. Then,
the following four equations are obtained:



































Γ11a1 + Γ12a
2
1a2 sin β1 + Γ13b cosβ2 = 0,

Γ21a1a
2
2 + Γ22a1σ2 + Γ23a

2
1a2 cosβ1 + Γ24a

3
1 + Γ25b sinβ2 = 0,

Γ31a2 + Γ32a
3
1 sin β1 = 0,

Γ41a2σ2 + Γ42a2σ1 + Γ43a
3
1 cosβ1 + Γ44a

2
1a2 + Γ45a

3
2 = 0,

(35)

where Γ11, Γ12, Γ13, Γ21, Γ22, Γ23, Γ24, Γ25, Γ31, Γ32, Γ41, Γ42, Γ43, Γ44, and Γ45 are constant
coefficients, and

β1 = T2σ1 − 3θ1 + θ2, β2 = T2σ2 − θ1. (36)

The relationships between the detuning parameters and the modal amplitudes are built as
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follows:


















a2
2(Ξ11σ1 − Ξ12σ2 + Ξ13a

2
1 + Ξ14a

2
2)

2 + a2
2Ξ15 = a6

1,

(−Ξ21a
2
1a

2
2 − Ξ22a

2
1σ2 + Ξ23a

4
1 + Ξ24a

2
2σ2

−Ξ25a
2
2σ1 − Ξ26a

4
2)

2 + (Ξ27a
2
1 + Ξ28a

2
2)

2 = a2
1b

2,

(37)

where Ξmk ( m = 1, 2, 3, 4, 5, and k = 1, 2, · · · , 8) are constant coefficients. The stability of the
modal steady-state response amplitudes is determined by the Lyapunov stability theory.

5 Scheme of Galerkin method

The approximate analytic results are verified by the four-term Galerkin truncation. There-
fore, the transverse displacement of the traveling beam is assumed as follows[24–25]:

u(x, t) =
4

∑

m=1

qm(t) sin(mπx), m = 1, 2, 3, 4, (38)

where qm(t) (m = 1, 2, 3, 4) are the generalized coordinates. Substituting Eq. (38) into Eq. (11),
multiplying the resulting equation by the weighting function sin(gπx) (g = 1, 2, 3, 4), and
integrating the product from 0 to 1 yield

q̈1 + Cq̇1 − C1q̇2 − C2q̇4 + k11q1 − k12q2 − k14q4

− αA3q1(q1q̇1 + 4q2q̇2 + 9q3q̇3 + 16q4q̇4) + 3Ecπ
4q1(q

2
1 + 4q2

2 + 9q2
3 + 16q2

4)/4

− αEhπ4q̇1(q
2
1 + 4q2

2 + 9q2
3 + 16q2

4)/2 − 12αEhπ4q2q3q̇4

+ π4αEhγq2(7q2
1/3 + 88q2

2/21 + 88q2
3/7 + 32 608q2

4/693)16/5

+ 32π4αEhγq4(59q2
1/21 + 496q2

2/63 + 277q2
3/11 + 6 016q2

4/429)/5

+ 288π4αEhγq1q2q3/7 + 1 216π4αEhγq1q3q4/15 − 3αEhπ4q3q̇1q1/2

− 12αEhπ4q3q4q̇2 + 3αEhπ4q2
1 q̇1/4 − αEhπ44q2q̇4q1

− 3αEhπ4q̇3(q
2
1 + 4q2

2 + 16q2q4)/4 − 6αEhπ4q2q3q̇2 − αEhπ44q4q̇2q1

− 4αEhπ4q2q4q̇1 + 24Ecπ
4(12q2

2q3 + 3q2
1q3 + 48q2q3q4 + 16q1q2q4 − q3

1) − b sin(ωt) = 0, (39a)

q̈2 + 16Cq̇2 + C1q̇1 − C3q̇3 + k22q2 − k23q3 + k21q1

− 4αEhπ4q2(q1q̇1 + 4q2q̇2 + 9q3q̇3 + 16q4q̇4) + 3Ecπ
4q2(q

2
1 + 4q2

2 + 9q2
3 + 16q2

4)

− 2αEhπ4q̇2(q
2
1 + 4q2

2 + 9q2
3 + 16q2

4) + 3Ecπ
4q2

1q4

+ 8π4αγEhq3(117q2
1/7 + 196q2

2/3 + 5 589q2
3/77 + 95 408q2

4/273)/5 − 18αEhπ4q2
3 q̇4

− 36αEhπ4q3q4q̇3 + 8π4αγEhq1(q
2
1/3 + 244q2

2/21 + 127q2
3/7 + 20 432q2

4/693)/5

− 2αEhπ4q2
1 q̇4 − 12αEhπ4q1q3q̇4 + π4αEhγq2q4(19 584q3/55 + 7 552q1/63)

− 12αEhπ4q3q4q̇1 + 3Ecπ
4(6q1q3q4 + 3q1q2q3 + 9q2

3q4 − 2q3
2) − 12αEhπ4q1q4q̇3

− 4αEhq1π
4q4q̇1 − 6απ4Ehq1q3q̇2 + 4αEhπ4q2

2 q̇2 − 6αEhπ4q1q2q̇3

− 6αEhπ4q2q3q̇1 = 0, (39b)
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q̈3 + 81Cq̇3 + C3q̇2 − C4q̇4 + k33q3 − k34q4 − 9αEhπ4q3(q1q̇1 + 4q2q̇2 + 9q3q̇3 + 16q4q̇4)

+ 27Ecπ
4q3(q

2
1 + 4q2

2 + 9q2
3 + 16q2

4)/4 − 9αEhπ4q̇3(q
2
1 + 4q2

2 + 9q2
3 + 16q2

4)/2

− 6αEhq1π
4q2q̇2 + 16π4αEhγq2(9q2

1/7 − 8q2
2/3 + 2 403q2

3/77 + 2 272q2
4/91)/5 + k32q2

+ 32π4αEhγq4(67q2
1/7 + 3 312q2

2/77 + 7 479q2
3/91 + 1 664q2

4/21)/5 + 243/4αEhπ4q2
3 q̇3

− 12αEhπ4q1q4q̇2 − 36αEhπ4q2q4q̇3 − 3αEhπ4q2
1 q̇1/4 − 3αEhπ4q2

2 q̇1 − 12αEhπ4q1q2q̇4

− 36αEhq3π
4q4q̇2 + π4αEhγq1q3(3 552q2/35 + 1 344q4/11) − b sin(ωt)/3 + 9Ecπ

4q2
2q1/2

− 36αEhq2π
4q3q̇4 − 12αEhπ4q2q4q̇1

+3Ecπ
4q3

1/8 + 3Ecπ
4(18q2q3q4 − 81q3

3/8 + 6q1q2q4) = 0, (39c)

q̈4 + 256Cq̇4 + C2q̇1 + C4q̇3 + k44q4 + k41q1 + k43q3 + 12Ecπ
4q4(q

2
1 + 4q2

2 + 9q2
3 + 16q2

4)

− 16αEhπ4q4(q1q̇1 + 4q2q̇2 + 9q3q̇3 + 16q4q̇4) − 8αEhπ4q̇4(q
2
1 + 4q2

2 + 9q2
3 + 16q2

4)

+ 16π4αEhγq3(11q2
1/21 − 1 332q2

2/77 − 2 673q2
3/91 + 1 713q2

4/21)/5 + 3Ecπ
4q2

1q2

+ 16π4αEhγq1(−13q2
1/21 + 428q2

2/63 + 511q2
311 + 22 288q2

4/429)/5 + 18q1q2q3Ecπ
4

+ 192αEhπ4q2
4 q̇4 + π4αEhγq2q4(2 521q1/1 155 + 547q3/91)256/3− 2αEhπ4q̇2(q1 + 3q3)

2

− 12αEhπ4q2q̇3(q1 + 3q3) − 4αEhπ4q̇1q2(q1 + 3q3) + 3(9q2
3q2 − 32q3

4)Ecπ
4 = 0, (39d)

where































C = α(Eb − Ea)π4, C1 = 16γ/5, C4 = 96γ/π,

A1 = π4αγEb, A2 = π4Ehγ, A3 = π4Eh, Eh = (Ec − Ed),

k12 = 128A1/5, k34 = 12 288A1/7, k41 = 16A1/15, k21 = 8A1/3,

k32 = 384A1/5, k43 = 3 888A1/7.

(40)

The set of the second-order ordinary differential equation (39) is numerically calculated by
the fourth-order Runge-Kutta method. In the following numerical examples, the time step is
set as 0.001[26–27]. Moreover, the initial conditions are set as follows:

q1(t) = 0.001, qm(t) = 0, m = 2, 3, 4, q̇m(t) = 0, m = 1, 2, 3, 4. (41)

6 Numerical results

Figure 3 illustrates the comparisons of the steady-state periodic responses by use of the
multi-scale method and based on the Galerkin method. Similar comparisons with the weaker
flexural stiffness of the traveling beam, i.e., Eb = 0.03, are shown in Fig. 4. Both Figs. 3 and 4
clearly depict that the second-order mode resonates when the excitation frequency is close to
the first-order natural frequency. Therefore, the energy transfers from the second-order mode to
the first-order mode. Figures 3 and 4 also demonstrate that the approximate analytical results
and the numerical results are almost overlapping. Specially, the amplitude curves of resonance
at the first-order mode based on the two approaches overlap completely. Compared with the
results without the internal resonance in Refs. [10] and [21], the amplitude-frequency curves are
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Fig. 3 Comparison of analytical and Galerkin method’s results

Fig. 4 Comparison of analytical and Galerkin method’s results with weaker flexural stiffness

more complicate in the presence of the internal resonance, specially when the flexural stiffness
of the beam is relatively soft.

Figure 5 shows the effects of the amplitude of the excitation on the primary resonance
response with the internal resonance. The numerical results show the hysteresis phenomenon of

Fig. 5 Effects of excitation amplitude on resonance responses
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the axially traveling beam. Under the conditions of 3:1 internal resonance between the first two
modes and the first- and second-order mode resonates, the amplitude of the resonance response
changes with the excitation amplitude. Moreover, the saturated phenomenon is observed in
Fig. 5(b). This is an interesting phenomenon since the saturation of the second-order mode
happens at the first-order primary resonance.

The effects of the system parameters on the amplitude-frequency curves are presented in
Figs. 6, 7, and 8. The results indicate that the amplitudes of the resonance of the first two
modes are very sensitive to the system parameters. From Fig. 6, one can easily find that the
amplitude-frequency curves bend to the right with the increase in the nonlinear coefficient.
The simulations shown in Figs. 7 and 8 depict that the amplitude of the resonance with the
internal resonance increases with the decreases in the flexural stiffness and the viscous coefficient
of the beam. Moreover, the nonlinear dynamics of the axially traveling beam becomes more
complicate when the flexural stiffness and viscous coefficient of the beam become smaller.

Fig. 6 Effects of nonlinearity on resonance responses

Fig. 7 Effects of flexural stiffness of traveling beam on resonance responses

7 Conclusions

The purpose of this paper is to investigate the effects of the internal resonance and the vis-
coelastic behaviors on the primary response of the traveling viscoelastic beam. The standard
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Fig. 8 Effects of viscous coefficient on resonance responses

linear solid model with the material time derivative is adopted to describe the viscoelastic prop-
erties of the axially traveling beam. The real modal functions of the linear derived equation
are approximately established. Usually, the linear derived system of the nonlinear governing
equation is solved by complex modal functions. The steady-state response amplitudes are firstly
determined by the direct multi-scale method with the real modal functions. Then, the Galerkin
method is used to verify the approximate solutions. The verification of the Galerkin method
shows that the approximate analytical results are acceptable. Therefore, the direct multi-scale
method with approximate real modal functions is a reliable approach for studying the nonlinear
vibration of the traveling beam. The steady-state responses for the internal resonance modes
show that the effect of the internal resonance cannot be ignored.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
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