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Abstract The effect of internal heating source on the film momentum and thermal

transport characteristic of thin finite power-law liquids over an accelerating unsteady

horizontal stretched interface is studied. Unlike most classical works in this field, a

general surface temperature distribution of the liquid film and the generalized Fourier’s

law for varying thermal conductivity are taken into consideration. Appropriate similarity

transformations are used to convert the strongly nonlinear governing partial differential

equations (PDEs) into a boundary value problem with a group of two-point ordinary

differential equations (ODEs). The correspondence between the liquid film thickness and

the unsteadiness parameter is derived with the BVP4C program in MATLAB. Numerical

solutions to the self-similarity ODEs are obtained using the shooting technique combined

with a Runge-Kutta iteration program and Newton’s scheme. The effects of the involved

physical parameters on the fluid’s horizontal velocity and temperature distribution are

presented and discussed.
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Nomenclature

a, b, positive constant, s−1;
Cp, specific heat capacity, J · kg−1 · K−1;
d, positive constant, m−r1 ;
f , dimensionless stream function;
h, liquid film thickness, m;
K, viscosity coefficient, kg · m−1 · sn−2;
k, effective thermal conductivity,

W · m−1 · K−1;

n, power-law index;
Pr, generalized Prandtl number;
Rex, local Reynolds number;
r1, r2, power indices;
S, unsteadiness parameter;
S0, critical value;
T , temperature, K;
T0, temperature at origin, K;
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Tref , standard temperature, K;
Ts, temperature of stretched surface, K;
t, time, s;
u, v, liquid velocity components along with x-di-

rection and y-direction, respectively, m · s−1;

us, horizontal velocity of stretched surface,
m · s−1;

x, y, streamwise coordinate and cross-stream co-
ordinate, respectively, m.

Greek symbols

β, dimensionless film thickness;
η, similarity variable;
θ, dimensionless temperature;
ρ, density, kg · m−3;
τxy, modified shear viscous drag, N · m−2;

φ, heating source parameter;
ψ, stream function, m2 · s−1;
ω, consistency thermal coefficient,

kg · m · sn−4 · K−1.

Subscript

s, for wall surface or stretched surface.

1 Introduction

Recently, the study of flow and heat transfer of a finite thin film has attracted many re-
searchers’ attention because of its wide applications such as coating, polymer, metal extrusion,
and drawing of plastic sheets. Wang[1] first explored the motion behaviors of an unsteady thin
finite Newtonian liquid film formed on an accelerating stretched sheet. Following his pioneering
work, Andersson et al.[2] and Liu and Andersson[3] solved the nonlinear problem by using the
multiple shooting subroutine method. The exact similarity solutions were obtained by using
the homotopy analysis method (HAM)[4] and the differential transform method (DTM)[5]. A
general surface temperature distribution of the wall-surface was taken into account, and feasible
similarity transforms were obtained in Refs. [3] and [6]–[7]. Some of important references in the
vast literature regarding to the thin finite liquid film can be found in Refs. [8]–[14].

The Newtonian fluid is important, and the fluid can display the non-Newtonian behaviors.
Andersson et al.[15] investigated the unsteady flow of a finite thin film within a non-Newtonian
fluid following the power-law Ostwald-de Waele model. Chen[16–18] presented heat transfer of
power-law liquids in a finite thin film over an unsteady surface. The effect of viscous dissipation
was considered by Chen[17], and the Marangoni boundary condition was taken into account in
Ref. [18]. Wang and Pop[19] focused on the non-Newtonian behaviors of a power-law film and
obtained the analytical expression of the critical value for the unsteadiness parameter. In addi-
tion, the effects of different constitutive models for non-Newtonian fluids, i.e., the second grade
fluid[20], the biviscosity fluid[21], and the power-law fluid[22], were considered. Huang et al.[23]

solved the thin non-Newtonian power-law liquid film problem by using the Chebyshev finite dif-
ference technique. Vajravelu et al.[24–25] also obtained a set of effective solutions by using the
Keller-box technique. Recently, the topic of finite thin non-Newtonian fluid films was extended
to pseudo-plastic nanoliquid films by Lin et al.[26–27]. It should be noted that the base fluids,
i.e., sodium carboxymethyl cellulose (CMC) water, are non-Newtonian pseudo-plastic fluids in
Refs. [26] and [27].

The study of the non-Newtonian rheological behaviors becomes more and more important
because most liquids, such as pulps, varnishes, and multi-grade oils, do not obey the Newton
inner friction law, and the molecular structures are different from the Newtonian fluids. Pop et
al.[28] and Gorla et al.[29] developed a new constitutive model that the thermal diffusion coeffi-
cient of power-law liquids is a power-law function of the velocity gradient. The non-Newtonian
heat transfer behaviors of power-law fluids were further explored in Refs. [30]–[36].
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The aim of this research is to explore the influence of the internal heating source on mo-
mentum and heat transfer characteristic on a thin finite power-law liquid film, driven by an
accelerating unsteady horizontal stretched sheet. Pop’s thermal conductivity model and a gen-
eral temperature distribution are taken into account. Numerical solutions to the similarity
two-point boundary value differential equations are obtained by the shooting method coupled
with the BVP4C, the Runge-Kutta method, and Newton’s scheme.

2 Problem formulation and governing equations

Here, we consider an unsteady incompressible laminar flow and heat transfer within a finite
thin non-Newtonian liquid film formed on a horizontal accelerating surface. The liquid film is
issued from a narrow slot, and the thin film is smooth. The free interface wave, the shear viscous
drag, and the thermal flux are in the adiabatic boundary interface. The schematic of the physical
problem is shown in Fig. 1. Based on the above assumptions and the continuous medium
hypothesis, the time-dependent governing partial differential equations (PDEs) for the mass
conservation, momentum conservation, and thermal energy conservation can be written as
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Fig. 1 Schematic of physical system

The corresponding boundary conditions can be expressed as

u = us, v = 0, T = Ts at y = 0, (4)

∂u

∂y
=
∂T

∂y
= 0, v = u

∂h

∂x
+
∂h

∂t
at y → h(x, t), (5)

where t is the time. u and v are the liquid velocity components in the x- and y-directions,
respectively. τxy = K|∂u∂y |

n−1 ∂u
∂y is the modified shear viscous drag of the power-law liquids,

and K is the viscosity coefficient, which is a positive constant. n is the power-law index. The
case 0 < n < 1 represents the pseudo-plastic fluid, the case n = 1 represents the Newtonian
fluid, and the case n > 1 represents the dilatant fluid. T is the temperature of the liquids film,
T0 is the temperature at the origin of the narrow slot, Cp is the specific heat capacity, and ρ is
the density of power-law fluids. In this research, the effects of a power-law velocity gradient and
a viscosity coefficient on the thermal conductivity of power-law fluids are taken into account
based on a new constitutive model proposed in Refs. [28]−[29], i.e., k = ω|∂u∂y |

n−1, which k is
the effective thermal conductivity of non-Newtonian liquids, and ω is the consistency thermal
coefficient. Q(t) is the thermal absorption (< 0) or the thermal generation (> 0), and it is
proposed to have the form of [7]

Q(t) =
φb

1 − at
(T − T0), (6)
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where φ is the heating source parameter. φ < 0 is for the thermal absorption, and φ > 0 is for
the thermal generation. us is the horizontal velocity of the stretched surface of the thin finite
film for the continuously movement on the wall interface, and has the form of

us =
bx

1 − at
, (7)

where a and b are both positive constants with the same unit. Furthermore, the wall interface
temperature of the stretched surface Ts is supposed to have a generalized power-law form of
the time t and the horizontal coordinate x as

Ts = T0 − Tref
b2−nx2

K/ρ

xr1d

(1 − at)r2
, (8)

where Tref is a constant, i.e., it is regarded as a standard temperature, d is a positive constant,
and r1 and r2 are the power indices. Equation (8) is restricted to r1 + 2 > 0 and r2 > 0, and
the relational expressions given by Eqs. (7) and (8) are limited to the condition t < a−1.

To proceed, we introduce the following similarity transformation (ψ satisfies u = ∂ψ
∂y and

v = −∂ψ
∂x ):

ψ =
(b1−2n

K/ρ

)−1/(n+1)

x2n/(n+1)(1 − at)(1−2n)/(n+1)f(η), (9)
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xr1d

(1 − at)r2
θ(η), (11)
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K/ρ

)1/(n+1)
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a

b
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s xn

K/ρ
=
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K/ρ
(1 − at)n−2, (13)

Pr =
KCp
ω

. (14)

Using these new variables, Eqs. (1)−(3) and (6)−(7) can be written as

(|f ′′|n−1f ′′)′ − S
(

f ′ +
2 − n

n+ 1
ηf ′′

)

− f ′2 +
2n

n+ 1
ff ′′ = 0, (15)

(|f ′′|n−1θ′)′ + Pr
( 2n

n+ 1
fθ′ − (r1 + 2)f ′θ − S

(2 − n

n+ 1
ηθ′ + r2θ

)

+ φθ
)

= 0, (16)

f(0) = 0, f ′(0) = 1, θ(0) = 1, (17)

f(β) =
2 − n

2n
βS, f ′′(β) = 0, θ′(β) = 0, (18)

where Pr represents the generalized Prandtl number, S represents the unsteadiness parameter,
β represents the dimensionless liquid film thickness, and Rex represents the local Reynolds
number.

The liquid film velocity component and the shear viscous drag τxy are

u(x, y) = bx(1 − at)−1f ′(η) = usf
′(η), (19)

v(x, y) = −Re−1/(n+1)
x us

( 2n

n+ 1
f(η) +

1 − n

n+ 1
f ′(η)

)

, (20)

τxy = K1/(n+1)ρn/(n+1)b3n/(n+1)x2n/(n+1)(1 − at)−3n/(n+1)|f ′′(η)|n−1f ′′(η). (21)
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For practical applications, a quantity of major interest is the local Nusselt number Nux,
which can be expressed as Nux = xqw(x)k−1T−1

ref , where qw(x) = −k ∂T∂y |y=0 is the thermal flux

from the wall surface of the thin liquid film, and k = ω|∂u∂y |
n−1. Nux can be obtained as

Nux = Re
1

n+1
+1

x dxr1(1 − at)2−n−r2θ′(0). (22)

3 Numerical methods

In order to obtain effective solutions for Eqs. (15)−(18), we convert Eqs. (15)−(18) into the
following equations by denoting f , f ′, f ′′, θ, and θ′ using variables f1, f2, f3, θ1, and θ2,
respectively,

f ′
1 = f2, f ′

2 = f3, f ′
3 = f ′′′ =

1

n
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1−n
(
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)
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2 −

2n

n+ 1
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)

, (23)
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1−nPr

(

S
(
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n+ 1
ηθ2

)

+ (r1 + 2)f2θ1 −
2n

n+ 1
f1θ2 − φθ1

)

+
n− 1

n
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(

S
(

−
f2
f3

+
n− 2

n+ 1
η
)

−
f2
2

f3
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2n

n+ 1
f1

)

, (25)

f1(0) = 0, f2(0) = 1, f1(β) =
(2 − n)βS

2n
, f3(β) = 0, (26)

θ1(0) = 1, θ2(β) = 0. (27)

There are five first-order ordinary differential equations (ODEs) in the governing equations
(23)−(25), while there are six relational expressions in the boundary value conditions (26)−(27).
Therefore, there exists a relationship between the parameters β and S. The above boundary
value problem (23) with the condition (26) is solved by using the shooting technique coupled
with the Newtonian scheme for a given value of S. The initial guessed value of β is given
with the program BVP4C in MATLAB. And β is adjusted so that the iteration of the loop
program meets the condition f1(β) = (2− n)βS/(2n). This is done on the basis of a trial-error
method. Furthermore, the effective numerical solutions of the ODEs (23)−(25) and (26)−(27)
are achieved by using the shooting technique combined with Newton’s scheme and the standard
fourth-order Runge-Kutta iterative program for given values of S and β.

The relationship between the parameters β and S is solved by using the program BVP4C
in MATLAB. For example, when n = 0.8, Eqs. (23) and (26) are reduced to







f ′
1 = f2,
f ′
2 = f3,
f ′
3 = 1.25(−f3)

0.2(S(f2 + 0.666 67ηf3) + f2
2 − 0.888 89f1f3),

(28)

f1(0) = 0, f2(0) = 1, f1(β) = 0.75βS, f3(β) = 0. (29)

Equations (28)−(29) are a two-point boundary value problem with an unknown parameter S.
We solve it by using the program BVP4C in MATLAB and get S = 0.918 9 when β = 1.

Let β change as 0.01 → 1.00 and N be fixed, i.e., N = 100. Therefore, we can get the
relationship between the parameters β and S when 0.01 6 β 6 1.00. The initial value of S is
S = 1.3, and the initial solutions of Eqs. (28)−(29) are (when 0.01 6 β 6 1.00)















f1(η) = η +
1

2
iη2 +

1

6
jη3,

f2(η) = 1 + iη +
1

2
jη2,

f3(η) = i+ jη,

(30)
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where i = β−1(2.25S − 3) and j = β−2(3 − 2.25S). In the same way, we can obtain the
relationship between β and S when β > 1.00.

4 Results and discussion

For the hydrodynamic thin liquid film, there is a critical value of S0 for the unsteadiness
parameter, where no solution could be achieved[16–19]. Results for the critical value are com-
pared with those obtained from Refs. [16]−[19] in Table 1. It can be seen that the results of this
research agree well with the other related results for different values of n.

Table 1 Comparison of critical value S0 for various values of n

n Wang and Pop[19] Wang[1] Andersson et al.[15] Chen[16–18] Huang et al.[23] Present result

0.8 4/3 − 1.67 1.35 1.34 1.333

1.0 2 2 2.00 2.00 2.00 2.000

1.2 3 − 2.50 3.03 3.00 3.000

Figure 2 illustrates the influence of the power-law index n on the liquid film thickness β
and the unsteadiness parameter S. The β-S diagram displays that the liquid film thickness β
decreases as the power-law index n decreases at a specified value of the unsteadiness parameter
S. In general, for the fixed values of the power-law index n and other involved parameters,
the dimensionless thickness decreases monotonically with the increase of S from zero to the
critical value. The dimensionless thickness first decreases very quickly with the increase of
the unsteadiness parameter S, i.e., the β-S profile is close to the y-axis, then decreases more
gradually, i.e., the β-S profile in the middle zone is closely paralleled to the x-axis, and finally
drops to be zero rapidly as the unsteadiness parameter S comes close to S0 (these results are
similar to those of Ref. [19]).

Fig. 2 Effects of power-law index n on β-S profile

Figures 3 and 4 illustrate the influence of the unsteadiness parameter S on the horizontal
velocity component and temperature distribution. For particular values of n (n = 0.8) and
other parameters (Pr = 2.0, r1 = 0, r2 = 1, and φ = 0), the liquid film thickness β decreases
while the dimensionless horizontal wall interface velocity and temperature profiles increase as
the unsteadiness parameter increases. For example, Fig. 3 displays that the horizontal velocity
component at n = 0.8 varies by 14.33% through the non-Newtonian liquid film for S = 1.2,
while by as much as 55.00% for S = 0.8. Figure 4 shows that the temperature varies by 33.27%
across the film for S = 1.2 and by as much as 81.52% for S = 0.8.
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Fig. 3 Effects of unsteadiness parameter S on horizontal velocity component

Fig. 4 Effects of unsteadiness parameter S on temperature

Figures 5–7 illustrate the effects of the generalized Prandtl number and the power indices
(r1 or r2) of the wall surface temperature on the dimensionless temperature. The distribution
curves display the dimensionless temperature decreases when η changes from zero to β, i.e., from
the wall interface to the free interface of the thin liquid film, for both the power indices and the
generalized Prandtl number. It should be emphasized that the dimensionless temperature also
decreases as the generalized Prandtl number and the two power indices increase. Furthermore,
the temperature decreases from one to zero very quickly as Pr → +∞ or r1 → +∞, r2 → +∞,
and φ → +∞. The generalized Prandtl number and the two power indices of the power-law
fluid film have a significant effect on the results of the temperature distribution curves. In
addition, a temperature distribution of θ(η) ≈ 1.00 or T = Ts, i.e., the temperature of the fluid
field is a constant, is obtained to prevail in the thin finite liquid film as Pr → 0.

Fig. 5 Effects of generalized Prandtl number Pr on temperature
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Fig. 6 Effects of power indices r1 on temperature

Fig. 7 Effects of power indices r2 on temperature

Figure 8 illustrates the effects of the heating source parameter φ on the dimensionless tem-
perature distribution. In general, the thermal absorption (φ < 0) has a tendency to cool down
the liquid film, while the thermal generation (φ > 0) has a tendency to warm it up. The present
research shows that the dimensionless temperature distribution curve declines as the heating
source parameter (φ, both including the positive case and the negative case) decreases, and the
heating source parameter has a significant effect on the results of the temperature distribution.

Fig. 8 Effects of heating source parameter φ on temperature, where n=0.8, Pr=0.78, r1=0.0, r2=1.0,
S=1.0, β=0.816 8, and f ′′(0)=1.110 922

5 Conclusions

In this article, we present the research for flow and heat transfer of the non-Newtonian power-
law fluids within a finite thin liquid film over an unsteady stretching sheet. The Pop’s thermal
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conductivity model and a general surface temperature distribution are taken into account. Some
of the interesting results are listed as follows:

(a) The liquid film thickness increases while the free-surface horizontal velocity component
and temperature decrease as the unsteadiness parameter declines.

(b) The temperature distribution curves go down as the generalized Prandtl number and
the power indices increase, while go up as the heating source parameter increases.
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tions and comments.
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