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Abstract A numerical analysis model based on two-dimensional shallow water differ-
ential equations is presented for straight open-channel flow with partial vegetation across
the channel. Both the drag force acting on vegetation and the momentum exchange
between the vegetation and non-vegetation zones are considered. The depth-averaged
streamwise velocity is solved by the singular perturbation method, while the Reynolds
stress is calculated based on the results of the streamwise velocity. Comparisons with
the experimental data indicate that the accuracy of prediction is significantly improved
by introducing a term for the secondary current in the model. A sensitivity analysis
shows that a sound choice of the secondary current intensity coefficient is important for
an accurate prediction of the depth-averaged streamwise velocity near the vegetation and
non-vegetation interfaces, and the drag force coefficient is crucial for predictions in the
vegetation zone.
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1 Introduction

Vegetation growing in natural rivers not only contributes to the stabilization of river banks,
but also helps in ecological restoration. Vegetation increases flow resistance and results in a
more complicated flow structure, which retards water flow. The flow depth and the velocity
vary with changes in aquatic vegetation types and their distribution in the river. For open
channels with partial vegetation, such as riparian vegetation in simple or compound channels,
vegetation has a profound effect on the flow characteristics within both the vegetation and
non-vegetation regions.

Numerous experiments have been carried out to study the effect of vegetation on flows. Li
and Shen[1] concluded that the flow velocity was affected by the planting density and array
mode of the vegetation. Tanino and Nepf[2] investigated the drag force exerted by randomly
distributed, rigid, and emergent circular cylinders via laboratory experiments. They presented
the general range of the drag force coefficient both in a straight and wandering channel. The
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relationships between the drag force coefficient and the parameters such as the volume fraction
were also presented.

Numerical simulations have been presented to predict the complex turbulent flow features
in open channels with partially vegetation[3–7]. Shimizu and Tsujimoto[8] simulated the behav-
ior of turbulent flow in a partially vegetated channel with the k-ε model. Van Prooijen and
Knight[9] proposed a new eddy viscosity model incorporating horizontal coherent structures
and bottom turbulence to evaluate the transverse momentum exchange. Tang and Knight[10]

presented a new boundary condition at the interface between the main channel and adjoined
floodplain, and the predicted lateral velocity distribution closely matched field measurements.
Rameshwaran and Shiono[11] proposed a quasi-two-dimensional model to calculate the depth-
averaged velocity and the bed-shear stress in a prismatic channel with an emergent vegetated
floodplain, and introduced the vegetation drag term and porosity to investigate the feasibility
of this model.

This paper examined the secondary current between the vegetated and non-vegetated re-
gions. The secondary current is caused by the lateral momentum exchange due to velocity
differences between the two regions. Shiono and Knight[12] conducted an experimental investi-
gation in a compound channel with partial vegetation. They concluded that the shear stress due
to the secondary flow, ρ(UV )d, decreased approximately linearly across the interface between
the floodplain and the main channel, and ρ(UV )d changed with ∂u

∂y , where ρ is the density
of water, U and V are the temporal mean velocity components corresponding to the x- and
y-directions, respectively, (UV )d = 1

H

∫ H

0 UV dz, and u is the depth-averaged streamwise flow
velocity. Ervine et al.[13] suggested an analytical model with consideration of the secondary
flow term to estimate velocity and shear stress for straight and meandering overbank flow. In
their model, a secondary current intensity coefficient was introduced, and the lateral velocity
was assumed to be a fraction of the depth-averaged streamwise velocity. Liu et al.[14] applied
this model to predict the velocity and the bed shear stress in compound channels, and the
results closely matched the experimental data.

Ikeda et al.[15] adopted the singular perturbation method to predict the velocity distribu-
tion. The singular perturbation method is an important mathematical tool used in theoretical
research and is effective for the analysis of weakly nonlinear problems. It relies on a dimension-
less parameter that is relatively small, and approximate solutions can be obtained through the
perturbation method. In Ref. [15], the secondary flow at the interface between the vegetation
and non-vegetation zones was not included. In this paper, we consider the transverse momen-
tum exchange to improve the prediction accuracy for lateral distribution of streamwise velocity
with the singular perturbation method.

2 Theoretical background

Consider a straight open channel wide enough to allow cylinders acting as vegetation to be
arranged symmetrically on both sides along the flow. The regions occupied by the cylinders
are considered as the vegetation region, while the free-flow region between the two vegetated
regions is the non-vegetation region. The diameter of each cylinder is small compared with the
full width of the channel. Because of its symmetrical nature, the model is simplified by only
considering one half of the channel. The rectangular coordinates are shown in Fig. 1.

For a uniform steady flow, the depth-averaged momentum equation in the streamwise di-
rection can be simplified as

∂H(UV )d
∂y

= gHS +
∂

∂y

(
Hεy

∂u

∂y

)
−

(
Cf +

CDaH

2

)
u2, (1)

where g is the gravitational acceleration, H is the local flow depth, S is the longitudinal energy
slope, εy is the depth-averaged eddy viscosity, Cf is the resistance coefficient, CD means the
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drag force coefficient, and a is the mean projected area per unit volume.

Fig. 1 Sketch of open channel with lateral partial vegetation

Analogous with Shiono and Knight’s[12] approach in a compound channel, we assume that
∂H(UV )d

∂y = E ∂u
∂y , where E is a constant. The dimension analysis suggested that E can be

replaced by HV
′
, where V

′
is the section-averaged lateral velocity. Further, V

′
is replaced by

V
′
= KU

′
based on Ervine’s assumption, where U

′
is the section-averaged velocity, and K is

the secondary current intensity coefficient accounting for the intensity of the secondary cell.
We assume that the lateral velocities in the two sections both flow toward the interface, i.e.,
V

′
= −|K|U ′

in the non-vegetation and V
′

= |K|U ′
in the vegetation. εy can be replaced

by λHU∗, where λ is the lateral dimensionless eddy viscosity, and U∗ =
√

Cfu is the friction
velocity. Thus, Eq. (1) can be expressed as

− H |K|U ′ ∂u

∂y
= gHS +

H2λ
√

Cf

2
∂2u2

∂y2
− Cfu

2 (non-vegetation zone), (2)

H |K|U ′ ∂u

∂y
= gHS +

H2λ
√

Cf

2
∂2u2

∂y2
−

(
Cf +

CDaH

2

)
u2 (vegetation zone). (3)

In the region laterally far away from the vegetation, Eq. (2) reduces to

gHS − Cfu
2
∞ = 0. (4)

Divide Eqs. (2) and (3) by Eq. (2), respectively,

1
μ

+
dφ

dη
+ ω

d2φ2

dη2
− 1

μ
φ2 = 0, (5)

1
μ
− dφ

dη
+ ω

d2φ2

dη2
− 1 + χ

μ
φ2 = 0, (6)
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where

μ =
H |K|U ′

CfBu∞
, ν =

λH2

2
√

CfB2
, χ =

CDaH

2Cf
,

ω =
ν

μ
=

λH
√

Cfu∞
2B|K|U ′ , φ =

u

u∞
, η =

y

B
.

ω is very small, and then the singular perturbation method can be applied.
Further, the variable φ can be expanded with respect to the small perturbation parameters

as follows:
φ = φ0 + ωφ1 + · · · , (7)

where φ0 and φ1 mean the solutions of φ in 0th and 1st order, respectively. Substitution of
Eq. (7) into Eq. (5) yields

O(ν0) :
1
μ

+
dφ0

dη
− 1

μ
φ2 = 0, (8)

O(ν1) :
1
μ

+
d(φ0 + ωφ1)

dη
+ ω

d2(φ0 + ωφ)2

dη2
− 1

μ
(φ0 + ωφ)2 = 0. (9)

Solving the equations yields
φ0 = (1 + C0e−

η
μ )

1
2 , (10)

where η = 0, and φ = 1. Therefore, φ0 = 1, and φ1 = 0.
For the non-vegetation zone, another independent variable should be introduced to obtain

the inner solution near η = 0. The most suitable variable is η = ωN . Then, Eq. (5) can be
written as

ω

μ
+

dφ

dN
− d2φ2

dN2
− ω

μ
φ2 = 0. (11)

Substitution of Eq. (7) into Eq. (11) yields

O(ν0) :
dφ0

dN
− d2φ2

0

dN2
= 0, (12)

O(ν1) :
ω

μ
+

dφ0

dN
+ ω

dφ1

dN
+

d2(φ0 + ωφ1)2

dN2
− ω

μ
(φ0 + ωφ1)2 = 0. (13)

The inner solutions are

φ0 = 1, (14)

φ1 = C1e−
N
2 + C2. (15)

Matching the inner and outer solutions allows us to solve the momentum equation as

φ = 1 + ωC1e−
N
2 . (16)
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The solution for the vegetation zone is derived in a similar way

φ =
1√

1 + χ
+ ωC3e

− N
2
√

1+χ . (17)

The constant C1 and C3 can be determined by matching at the boundary N = 0. The di-
mensionless velocities φ and dφ/dN are matched at the boundary. Then, the solutions for the
region without vegetation are reduced to

φ = 1 − 1 − J

1 + J
e−

η
2ω . (18)

For the vegetation zone,

φ = J + J
1 − J

1 + J
e

η
2ωJ , (19)

where J = 1/
√

1 + χ.
If the secondary current is ignored, the momentum equation can be written as follows:

gHS +
H2λ

√
Cf

2
∂2u2

∂y2
−

(
Cf +

CDaH

2

)
u2 = 0. (20)

The numerical solutions for Eq. (20) are

φ = (1 + (J − 1)e−n/
√

ν)1/2 (non-vegetation zone), (21)

φ = (J2 + J(J − 1)en/(J
√

ν))1/2 (vegetation zone). (22)

3 Experimental data

3.1 Depth-averaged velocity distribution
The data of White and Nepf[16] are selected to verify the predictions (see Table l). Their

experiment was carried out in a 13m long and 1.2m wide straight channel with rigid emergent
vegetation along one side of the channel. The plants are wooden circular cylinders with a
diameter of 6.5mm, and the width of the vegetation zone is 40 cm. The velocities are measured
by laser Doppler velocimetry (LDV).

Table 1 Parameters of White and Nepf’s experiments[16]

Case H/cm CDa/cm S/(10−4) u∞/(cm·s−1) U∗/(cm·s−1)

1 6.8 0.092 2.29 17.68 1.81

4 6.6 0.285 2.27 17.37 2.06

6 6.0 0.255 0.92 12.32 1.48

7 6.6 2.430 2.29 16.82 1.93

10 7.8 1.770 7.15 29.59 3.44

According to the experimental research of Ervine et al.[13] on the secondary flow in straight
channels, the secondary current coefficient K ranged from 2% and 4%. Here, |K| = 3% is
adopted. The research of Tang and Knight[10] showed that the lateral dimensionless eddy
viscosity λ varied from 0.067 to 0.7, and here λ = 0.25 is selected by calibration.

The measured and predicted velocities from Eqs. (18)–(19) (with consideration of secondary
currents) and from Eqs. (21)–(22) (without consideration of secondary currents) are plotted in
Fig. 2.
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Figure 2 clearly shows that the model with consideration of the secondary flow agrees better
with the experimental data compared with the model without the secondary flow, especially in
the non-vegetation zone adjacent to the interface between the vegetation and non-vegetation
zones.

  

Fig. 2 Lateral distributions of u

3.2 Reynolds stress
Through Eliana’s[17] research, the Reynolds stress can be calculated by the equation

τ = −εy
∂u

∂y
, (23)

where εy = λU∗H . With the predicted velocity from Eqs. (18)–(19) (with consideration of the
secondary current term), the Reynolds stress is obtained from Eq. (23) with the same λ = 0.25.
Three cases are chosen for verification (see Fig. 3).

It can be seen from Fig. 3 that the Reynolds stress reaches a peak value at the interface
between the vegetation and non-vegetation zones because the turbulence is the strongest here.
In the vegetation zone, the Reynolds stress decreases sharply from its maximum to zero, which
suggests that the turbulence cannot penetrate deeply into the vegetation zone.
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4 Results and discussion

According to Figs. 2–3, the predictions match well with the experimental data. However,
there are some differences between the calculated and experimental data. Errors may arise from
the assumptions we made when simplifying the equations. For example, in the momentum equa-
tion, the viscous shear stress is ignored because it is relatively small compared with the turbulent
shear stress. We neglect the depth variation in the section and replace the depth-averaged ve-
locity by the section-averaged velocity when simplifying the secondary flow component. All
these simplifications may cause some discrepancies with the experimental results.

Fig. 3 Lateral distributions of Reynolds stress

5 Sensitivity analysis

Sensitivity analysis is important because it tells us how uncertainty propagates from the
parameters in the model to the final results. The sensitivity of the streamwise velocity to the
parameter A is computed by the following expression:

S′ =
∂ ln u

∂ ln A
≈ ln(u(Ab)) − ln(u(Aa))

ln(Ab) − ln(Aa)
. (24)

To code the above formula, we can set Ab = αAa +Aa, where α is an increment that can be an
arbitrarily small number. For the sensitivity analysis, α = 10%. By considering the relationship
between Ab and Aa shown above, we have

S′ ≈ ln(u(Ab)/u(Aa))
ln(1 + α)

. (25)
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When u does not depend on the parameter α, S′ = 0. If u increases with an increase in α,
S′ is positive. On the contrary, S′ is negative if u decreases with an increase in α.

The drag force coefficient CD and the secondary coefficient K are chosen for the sensitivity
analysis. Case I is selected as the reference condition. The bed friction coefficient is Cf = 0.009,
the lateral dimensionless eddy viscosity is λ = 0.025, the secondary flow coefficient is |K| = 0.03,
and the drag force coefficient is CDa = 0.255.

First, we keep the other parameters unchanged and increase CDa by 10% (CDa = 0.280 5).
The results are plotted in Fig. 4 as a solid line. Then, the above process is repeated with an
increase in the drag force coefficient (K = 0.033) of 10%, and the results are plotted in Fig. 4
by the dashed line.

Fig. 4 Sensitivity analysis

It can be seen from Fig. 4 that the sensitivity of CD is quite close to the horizontal axis
when η > 0, which means that the drag force has little influence on the flow velocity in the
non-vegetation zone. When η < 0, the sensitivity parameter S′ is negative, and u decreases
by nearly 5% with a 10% increase in CD. It is clear that the drag force hinders the movement
of water and this increases with a rise in CD, ensuring that the velocity decreases as a result.
The secondary current coefficient mainly affects the velocity at the interface between the non-
vegetation and vegetation zones, and extends through almost the whole non-vegetation zone.
When η < −0.05, the change in the secondary current coefficient has almost no effect on the flow
velocity, because the secondary current is impeded by the vegetation. When −0.05 < η < 0,
u decreases with an increase in K. When η > 0, u increases with an increase in K, and u
increases 5% at most in the non-vegetation zone with a 10% increase in K. This is consistent
with the circulation of secondary currents.

The drag force coefficient varies along the vertical direction. Tang et al.[18] developed a
model to calculate the vertically distributed coefficient,

CDL =
2(gS − ∂u′w′

∂z )

aU
2 , (26)

where −u′w′ means the Reynolds stress. Equation (26) indicates that the drag force coefficient
is concerned with the Reynolds number. Considering that the present model is depth-averaged,
Eq. (26) can be integrated along the z-axis,

CDL =
2(gS − R)

au2
, (27)

where

R =
1
h

∫ h

0

∂u′w′

∂z
dz.
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The drag force coefficient may vary with different Reynolds numbers, and this feature should
be considered if a more accurate velocity distribution is required.

6 Conclusions

(i) This paper presents a two-dimensional solution for steady uniform flows in an open
channel with partially covered vegetation across the channel using the singular perturbation
method. The momentum exchange between vegetation and non-vegetation is considered by
introducing a secondary flow coefficient. Based on the singular perturbed solution of the depth-
averaged velocity, the Reynolds stress can be predicted. Comparisons with the experimental
data show that consideration of the secondary flow term in the model significantly improves
the prediction of velocity distributions, especially near the interface between the vegetation
and non-vegetation zones. The singular perturbed method proves to be a useful tool for solving
these nonlinear problems.

(ii) The effects of the secondary current intensity coefficient K and the drag force coefficient
CD on the precision of the predictions are analyzed. The drag force coefficient mainly acts in
the vegetation zone where the velocity is decreased by 5% with a 10% increase in CD. The
secondary flow coefficient mainly influences the interface. The effect extends across almost the
whole non-vegetation zone but decreases with an increasing distance from the interface.
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