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Abstract A reduced model is proposed and analyzed for the simulation of vortex-
induced vibrations (VIVs) for turbine blades. A rotating blade is modelled as a uniform
cantilever beam, while a van der Pol oscillator is used to represent the time-varying char-
acteristics of the vortex shedding, which interacts with the equations of motion for the
blade to simulate the fluid-structure interaction. The action for the structural motion on
the fluid is considered as a linear inertia coupling. The nonlinear characteristics for the
dynamic responses are investigated with the multiple scale method, and the modulation
equations are derived. The transition set consisting of the bifurcation set and the hystere-
sis set is constructed by the singularity theory and the effects of the system parameters,
such as the van der Pol damping. The coupling parameter on the equilibrium solutions is
analyzed. The frequency-response curves are obtained, and the stabilities are determined
by the Routh-Hurwitz criterion. The phenomena including the saddle-node and Hopf bi-
furcations are found to occur under certain parameter values. A direct numerical method
is used to analyze the dynamic characteristics for the original system and verify the va-
lidity of the multiple scale method. The results indicate that the new coupled model is
useful in explaining the rich dynamic response characteristics such as possible bifurcation
phenomena in the VIVs.
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1 Introduction

Vortex shedding is often observed in engineering, such as circular cylinders in cross-flow[1],
oscillating airfoils and turbomachine blades[2], and micro air vehicles[3]. Lai and Platzer[2]

studied different vortex patterns shedding from the trailing edge of an NACA 0012 airfoil, and
found that the vortex patterns oscillated sinusoidally in the plunge were captured in water
tunnel tests with a Reynolds number range from 500 to 21 000 based on the airfoil chord.
Gostelow et al.[4] showed a strong similarity between the vortex wakes shed from cylinders
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and airfoils with the sinusoidal plunge motion in the low-speed flow and the wakes shed from a
turbine nozzle cascade in the transonic flow, and presented the thermo-acoustic effect associated
with the vortex shedding in the rotating machines. Lawaczek and Heinemann[5–6] found a
turbine blade with a blunt trailing edge to shed a von Kármán vortex street. Aeroelastic
problems may occur easily in operating the conditions owing to the vortex shedding, such as
the flutter for the aircraft wings, helicopter, and turbine blades.

For a fluid-structure interaction (FSI) problem, the vortex-induced vibration is difficult in
modelling the coupled loads. Because both experimental[7] and numerical[8–11] approaches are
expensive to obtain robust results, simplified models were developed to reveal the nonlinear
effects of the system parameters on the dynamic responses of the system. Generally, turbine
blades are simplified as the elastic clamped-free beams in both experimental[12] and numerical
analyses[13–16]. Cao et al.[17] and Chu et al.[18] analyzed the two-dimensional friction contact
problem and impact vibration characteristics of a rotational blade in the centrifugal force field,
and simplified the blade as a continuous cantilever.

The van der Pol model for the FSI problem have been widely studied. The results show that
the self-excited oscillation for the structure owns to the characteristic of the time-varying[19–21].
Lee et al.[22] used a van der Pol oscillation to model an aeroelastic system possessing limit cycle
oscillations. Specifically, Hartlen and Currie[23] introduced a van der Pol-based model, which
captured many of the features seen in experimental results. Skop and Griffin[24] subsequently
modified and improved the van der Pol-based model. The vortex-induced vibrations for a
cylinder[25], an offshore riser[26], and a turbine blade[27] have also been analyzed, where the
time-varying characteristics of the vortices are modelled by the van der Pol oscillation, and the
effects of the structural motion on the fluid are studied. Barron and Sen[15] added a van der
Pol damping term to the equations of four coupled elastic beams to represent the self-excitation
and fluid-structure interaction of the system. Barron[16] simulated the FSI problem for turbine
blades by adding a van der Pol self-exciting term to a single partial differential equation of
a linear beam. Wang et al.[28] used the van der Pol oscillator to simulate the time-varying
characteristics of the lift coefficient for the fluid-structure interactions of turbine blades.

Moreover, it has been demonstrated that the vortex shedding from oscillating airfoils and
cylinders can be significantly affected by the body oscillation[1,25–26,29–33]. Therefore, to analyze
the vibrations of the vortices further, it is necessary to consider the action of the structural
motion on the fluid.

The motivation of this paper is to investigate the dynamic response and bifurcation char-
acteristics for the vortex-induced vibrations of a rotating blades. The blade is modelled as a
cantilever beam, while a van der Pol equation is used to mimic the time-varying characteristics
for the vortices. The reaction of the structural motion on the fluid is considered and represented
by a linear inertial coupling. The 1:1 internal resonance analysis is carried out with the multiple
scale method. The two-parameter bifurcation diagram is derived by the singularity theory, and
the frequency-response curves in different parameter regions are obtained. The time histories,
phase portraits, and Lyapunov exponents are calculated by the Runge-Kutta method for the
original system to verify the validity of the multiple scale method.

2 Mathematical modelling

2.1 Cantilever beam model for blade

In engineering practice, the rotating Euler-Bernoulli beam[34–35] is often used to analyze the
dynamic characteristics of engineering systems, such as turbomachinery, wind turbines, robotic
manipulators, and rotorcraft blades. To investigate the interaction mechanism of the structure
and fluid, the blade is assumed to be a continuous uniform straight cantilever beam based on
the Euler-Bernoulli formulation in the centrifugal force field (see Fig. 1).

The transverse motion of the beam will be mainly studied, and the effects of the shear
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Fig. 1 Sketches of blades excited by upstream vortices

deformation and rotatory inertia are neglected. Özgür and Gökhan[35] studied the in-plane
vibrations of a rotating Euler-Bernoulli beam with the Coriolis force, and revealed that all the
coefficients related to the Coriolis force would vanish during the reduction processing, where
a single degree-of-freedom model for the ith mode vibration was extracted by the Galerkin
method. Therefore, there is no Coriolis term in the single degree-of-freedom equation. Xu et
al.[36] demonstrated that the Coriolis force had no influence on the axial and torsional vibrations
of the rotating blades, and the effect on the tangential vibration was very small and could be
neglected. Therefore, the effect of the Coriolis force on the rotating blade is neglected in this
study.

The transverse displacement of the cantilever beam is assumed as w(x, t), and the equation
of the blade motion can be derived by considering the equilibrium of the forces and moments
acting on the differential segment of the blade with the length of dx (see Fig. 2). For more
details, please refer to Ref. [17].

Fig. 2 Free-body diagram of differential segment

The first dynamic equilibrium relationship with respect to the transverse displacement
w(x, t) can be obtained by summing all the forces in the transverse direction for the segment,
i.e.,

Q − f
∂w(x, t)

∂x
− c

∂w(x, t)

∂t
dx + Ffdx

−
(
Q +

∂Q

∂x
dx − f

∂w(x, t)

∂x
−

∂

∂x

(
f

∂w(x, t)

∂x

)
dx

)

= mdx
∂2w(x, t)

∂t2
, (1)
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where m = (ρ + ρf)A is the total mass consisting of the structure and the added mass induced
by the fluid, ρ and ρf are the densities of the structure and air flow, respectively, and A is
the area of the cross-section for the cantilever beam. ρ and A are constants according to the
beam assumption. Q is the shear force acting on the cross-section of the blade. c is the viscous
damping coefficient. f is the axial load expressed as follows (see Fig. 1(b)):

f(x) =

∫ L

x

ρAΩ2ξdξ =
1

2
ρAΩ2(L2 − x2),

where L is the length of the blade, and Ω is the rotating speed of the blade. Ff is the fluid force
acting on the blade induced by the vortices, i.e.,

Ff =
1

2
ρfU

2D0CL,

where CL is the lift coefficient representing the time-varying characteristics of the vortices, and
U is the total velocity defined by U =

√
V 2 + (Ωx)2 in which V is the freestream velocity and

D0 is the characteristic length of the cross-section of the cantilever beam.
Neglecting the shear deformation and the rotation of the cross-section according to the beam

assumption, when the condition of moment equilibrium is satisfied, we can introduce the basic
moment-curvature relationship as follows:

Q =
∂M

∂x
=

∂

∂x

(
EI

∂2w(x, t)

∂x2

)
, (2)

where M is the moment acting on the cross-section of the beam, and EI is the flexural rigidity
of the structure. With Eq. (2), we can simplify Eq. (1) as follows:

EI
∂4w(x, t)

∂x4
+ m

∂2w(x, t)

∂t2
+ c

∂w(x, t)

∂t

= Ff − ρAΩ2x
∂w(x, t)

∂x
+

1

2
ρAΩ2(L2 − x2)

∂2w(x, t)

∂x2
. (3)

Substitute the following non-dimensional variables:

v(x, t) =
w(x, t)

D0
, z =

x

L
, τ = Ωt, ω0 =

√
EI

mL4
, ζ =

c

mΩ
(4)

into Eq. (3). Then, we have

ω2
0

Ω2

∂4v(z, τ)

∂z4
+

∂2v(z, τ)

∂τ2
+ ζ

∂v(z, τ)

∂τ

=
Ff

mD0Ω2
−

ρAz

m

∂v(z, τ)

∂z
+

ρA(1 − z2)

2m

∂2v(z, τ)

∂z2
. (5)

The boundary conditions of the cantilever beam should meet the following conditions:
(i) When z = 0, the displacement and rotation of the beam should be equal to zero, i.e.,

v(0, τ) = 0, v′(0, τ) = 0.

(ii) When z = 1, the moment and shear force should be equal to zero, i.e.,

v′′(1, τ) = 0, v′′′(1, τ) = 0.
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2.2 Van der Pol oscillator

The van der Pol oscillator is often used to model the time-varying and self-sustained charac-
teristics of the flow in the analytical/experimental research of vortex-induced vibrations. The
lift coefficient can represent the flow characteristics[25–26], which can affect the lift force and
then the structural vibrations. Herein, the van der Pol oscillator is introduced to simulate the
time-varying characteristics of the lift coefficient, i.e.,

∂2q(z, t)

∂t2
+ λωf(q

2(z, t) − 1)
∂q(z, t)

∂t
+ ω2

f q(z, t) = FS, (6)

where q(z, t) = 2CL/CL0, in which CL0 is the reference lift coefficient, ωf = 2πStV/D0 is the
shedding frequency of the vortex, St is the Strouhal number, and λ is the van der Pol damping
coefficient. Moreover, the action of the structural vibration on the fluid motion FS is considered
to be outlined in the introduction. It has been shown in Refs. [25] and [26] that the inertial
coupling is the ideal form to describe the reaction of the blades to the flows. Therefore, the
linear inertial coupling is studied, and the force FS induced by the structural motion can be
assumed as follows:

FS = Ñ
∂2v(z, t)

∂t2
,

where Ñ is the linear coupling parameter.
To analyze in the same time scale, let τ = Ωt. Then, Eq. (6) becomes

∂2q(z, τ)

∂τ2
+ λ

(ωf

Ω

)
(q2(z, τ) − 1)

∂q(z, τ)

∂τ
+

(ωf

Ω

)2

q(z, τ) = Ñ
∂2v(z, τ)

∂τ2
. (7)

Therefore, the coupled equations (5) and (7) model the interactions of the blade and vortices.
2.3 Reduced model with Galerkin discretization

An arbitrary oscillation of the structure v(z, τ) can be accurately described with a sum of all
of its modal responses, which can be mathematically expressed with a Taylor series composed
of the individual modal components[37] as follows:

v(z, τ) =
∞∑

i=1

vi(τ)ṽi(z), (8)

where ṽi(z) and vi(τ) (i = 1, 2, · · · ) represent the mode shapes and the modal coordinates of
the beam, respectively. When the shapes of the deformation are known, the modal coordinates
vi(τ) (i = 1, 2, · · · ) define how the amplitudes of the associated deformations ṽi(z) (i = 1, 2, · · · )
change with time. Thus, the continuous system can be discretized by defining it on the modal
subspaces.

For the approximate solution, the orthonormal sets of the eigen amplitude functions for a
cantilever beam as the modal functions for the blade are introduced, i.e.,

ṽi(z) = cosh(βiz) − cos(βiz) −
coshβi + cosβi

sinhβi + sin βi

(sinh(βiz) − sin(βiz)), (9)

where βi (i = 1, 2, · · · ) are the roots of the transcendental equation

cosβ coshβ + 1 = 0,

which is derived from the boundary conditions of the cantilever beam.
Herein, the cross-section of the beam is assumed to be uniform. Therefore, the orthogonality

of different modal functions can be written as follows:
∫ 1

0

ṽi(z)ṽj(z)dz = 0, i 6= j. (10)
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It means that the spatial distributions of the structure are perpendicular to each other in the
modal space if they are not of the same order.

When the modal functions are in the same order, the integral can be calculated as follows:
∫ 1

0

ṽ2
i (z)dz =

∫ 1

0

(
cosh(βiz) − cos(βiz) −

coshβi + cosβi

sinhβi + sin βi

(sinh(βiz) − sin(βiz))
)2

dz

=
1

2βi(sin βi + sinhβi)2
(6(1 + cosβi coshβi)(cos βi sinhβi − sin βi coshβi)

+ βi(cosh(2βi) + 4 sinβi sinhβi) − βi cos(2βi)). (11)

It can be seen from Eq. (11) that the value of the integral can be determined by the correspond-
ing coefficient βi.

The span-wise distribution of the shedding variable has been widely studied[38–43], in which
the spatial component of q(z, τ) is described with the shape of the respective normal mode and
separated from the temporal part of the response. Hence, the form of the solution q(z, τ) can be
assumed to be expressed with a Taylor series of modal components as analyzed in Refs. [39]–[43],
i.e.,

q(z, τ) =

∞∑

i=1

qi(τ)q̃i(z), (12)

where the relations between the mode-shapes q̃i(z) (i = 1, 2, · · · ) and the modal coordinates
qi(τ) (i = 1, 2, · · · ) are the same as those in Eq. (7).

The modal functions for the van der Pol oscillator are introduced according to Ref. [43],
i.e.,

q̃i(z) = sin(iπz), i = 1, 2, · · · , (13)

which satisfy the following orthogonality condition:

∫ 1

0

q̃i(z)q̃j(z)dz =





1

2
, i = j,

0, i 6= j.

(14)

With the relation
∂4ṽi(z)

∂z4
= β4

i ṽi(z),

substituting Eq. (8) into Eq. (5) and orthogonalizing the latter with respect to the set ṽj(z), we
have

ω2
0

Ω2

∞∑

i=1

vi(τ)β4
i

∫ 1

0

ṽi(z)ṽj(z)dz +

∞∑

i=1

∂2vi(τ)

∂τ2

∫ 1

0

ṽi(z)ṽj(z)dz

+ ζ

∞∑

i=1

∂vi(τ)

∂τ

∫ 1

0

ṽi(z)ṽj(z)dz

=
CL0ρfL

2

4m

∞∑

i=1

qi(τ)

∫ 1

0

( V 2

(LΩ)2
+ z2

)
q̃i(z)ṽj(z)dz −

ρA

m

∞∑

i=1

vi(τ)

∫ 1

0

∂ṽi(z)

∂z
ṽj(z)zdz

+
ρA

2m

∞∑

i=1

vi(τ)

∫ 1

0

∂2ṽi(z)

∂z2
ṽj(z)(1 − z2)dz. (15)
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Because the fluid-structure interaction problem considered in this study is an ideal one, the
fluid force can induce the structural oscillation in only one mode. Therefore, the van der Pol
oscillator can be expected to have the same and single modal distribution in the space, and
the first modal approximations of the cantilever beam and the van der Pol oscillator can be
investigated.

The first mode equation of the structure can be derived from Eq. (15) when i = j = 1, i.e.,

ω2
0

Ω2
v1(τ)β4

1

∫ 1

0

ṽ2
1(z)dz +

∂2v1(τ)

∂τ2

∫ 1

0

ṽ2
1(z)dz + ζ

∂v1(τ)

∂τ

∫ 1

0

ṽ2
1(z)dz

=
CL0ρfL

2

4m
q1(τ)

∫ 1

0

( V 2

LΩ2
+ z2

)
q̃1(z)ṽ1(z)dz

−
ρA

m
v1(τ)

∫ 1

0

∂ṽ1(z)

∂z
ṽ1(z)zdz +

ρA

2m
v1(τ)

∫ 1

0

∂2ṽ1(z)

∂z2
ṽ1(z)(1 − z2)dz. (16)

Thus, the first-order equation for the cantilever beam can be simplified as follows:

d2v1(τ)

dτ2
+ ζ

dv1(τ)

dτ
+ ω2

Sv1(τ) = (bω2
R + d)q1(τ), (17)

where ωR = ωf/Ω is the non-dimensional frequency of the fluid, ωS =
√

ω2 + a is the non-

dimensional frequency of the structure, and ω =
ω0

Ω
β2

1 . In the above equations,






a =
ρA

2m

2

∫ 1

0

∂ṽ1(z)

∂z
ṽ1(z)zdz −

∫ 1

0

∂2ṽ1(z)

∂z2
ṽ1(z)(1 − z2)dz

∫ 1

0

ṽ2
1(z)dz

,

b =
ρfCL0D

2
0

16mπ2St2

∫ 1

0

q̃1(z)ṽ1(z)dz

∫ 1

0

ṽ2
1(z)dz

,

d =
ρfL

2CL0

4m

∫ 1

0

q̃1(z)ṽ1(z)z2dz

∫ 1

0

ṽ2
1(z)dz

.

The values of the above definite integrals can be obtained when the coefficient β1 is determined.
Similarly, substituting Eq. (12) into Eq. (7) and orthogonalizing the obtained results with

respect to q̃j(z), we have

∞∑

i=1

∂2qi(τ)

∂τ2

∫ 1

0

q̃j(z)q̃i(z)dz + λ
(ωf

Ω

)∫ 1

0

q̃j(z)
(( ∞∑

i=1

qi(τ)q̃i(z)
)2 ∞∑

i=1

∂qi(τ)

∂τ
q̃i(z)

)
dz

− λ
(ωf

Ω

) ∞∑

i=1

∂qi(τ)

∂τ

∫ 1

0

q̃i(z)q̃j(z)dz +
(ωf

Ω

)2 ∞∑

i=1

qi(τ)

∫ 1

0

q̃j(z)q̃i(z)dz

= Ñ

∫ 1

0

∂2v(z, τ)

∂τ2
q̃j(z)dz. (18)
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Furthermore, it can be rewritten as follows:

∂2qi(τ)

∂τ2
+ 2λ

(ωf

Ω

) ∞∑

m=1

∞∑

n=1

∞∑

p=1

qm(τ)qn(τ)
dqp(τ)

dτ
Φmnpi

− λ
(ωf

Ω

)∂qi(τ)

∂τ
+

(ωf

Ω

)2

qi(τ)

= 2Ñ

∞∑

i=1

∂2vi(τ)

∂τ2

∫ 1

0

ṽi(z)q̃j(z)dz, (19)

where

Φmnpi =

∫ 1

0

q̃m(z)q̃n(z)q̃p(z)q̃i(z)dz. (20)

When m = n = p = i = 1, Eq. (20) can be simplified as follows:

Φmnpi =

∫ 1

0

q̃4
1(z)dz =

∫ 1

0

sin4(πz)dz =
3

8
. (21)

When i = j = 1, we introduce

N = 2Ñ

∫ 1

0

ṽ1(z)q̃1(z)dz

as the inertia coupling parameter, which denotes the action for the first mode motion of the
structure on the first mode motion of the van der Pol oscillator. Thus, the first mode motion
of the van der Pol oscillator can be derived as follows:

d2q1(τ)

dτ2
+ λωR

(3

4
q2
1(τ) − 1

)dq1(τ)

dτ
+ ω2

Rq1(τ) = N
d2v1(τ)

dτ2
. (22)

Equations (17) and (22) model the interactions between the structural vibration and the van
der Pol oscillation, and will be investigated in the following sections.

3 Bifurcation analysis

3.1 1:1 internal resonance analysis with multiple scale method

When the resonance occurs[44–45], such as the primary resonance, the internal resonance,
and the superharmonic/subharmnic resonance, the nonlinear systems display the rich dynamic
characteristics. The multiple scale method is a good way for understanding the qualitative
characteristics of the system presenting the internal resonance[46–48]. The phenomenon of lock-in
or synchronization is often analyzed in the vortex-induced vibration for the long cylinders (e.g.,
the offshore risers), which means that the vortex shedding frequency fV tends to the natural
frequency of the structure fS

[29]. Similarly, the phenomenon for the frequency approximation
can also be encountered in the coupled system proposed in this paper. For Eqs. (17) and (22),
the non-dimensional frequencies ωS and ωR of the first-order coupled system (see Fig. 3) are
approximate to each other around the rotating speed Ω ≈ 450 rad·s−1.

Hence, the 1:1 internal resonance of the coupled system is interesting, and will be investigated
by the multiple scale method. The relation between the non-dimensional frequencies ωS and
ωR can be written as follows:

ωS = ωR + εσ,

where σ is the detuning parameter. Introducing the scaling parameters

ζ → εζ, CL0 → εCL0, N → εN, λ → ελ
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Fig. 3 Non-dimensional frequencies ωS and ωR varying with rotating speed Ω

into Eqs. (17) and (22), we have

v̈1 + ω2
Sv1 = ε(bω2

R + d)q1 − εζv̇1, q̈1 + ω2
Rq1 = εNv̈1 − ελωR

(3

4
q2
1 − 1

)
q̇1. (23)

Assume the approximate form of the solutions as follows:

v1(τ) = v10(T0, T1) + εv11(T0, T1) + · · · , q1(τ) = q10(T0, T1) + εq11(T0, T1) + · · · . (24)

Then, substituting Eq. (24) into Eq. (23) and equating the coefficient of like powers of ε, we
have the results of the order ε0 as follows:

D2
0v10 + ω2

Sv10 = 0, (25)

D2
0q10 + ω2

Rq10 = 0 (26)

and the order ε1 as follows:

D2
0v11 + ω2

Sv11 =
(
bω2

R + d
)
q10 − ζD0v10 − 2D0D1v10, (27)

D2
0q11 + ω2

Rq11 = ND2
0v10 − λωR

(3

4
q2
10 − 1

)
D0q10 − 2D0D1q10, (28)

where
d

dτ
= D0 + εD1 + ε2D2 + · · · ,

d2

dτ2
= D2

0 + 2εD0D1 + · · · ,

and Dn =
∂

∂Tn

is the partial differential operator. Then, we can obtain the solutions of Eqs. (25)

and (26) as follows:

v10 = A(T1)e
iωSτ + A(T1)e

−iωSτ , (29)

q10 = B(T1)e
iωRτ + B(T1)e

−iωRτ . (30)

Substitute Eqs. (29) and (30) into Eqs. (27) and (28). Consider the internal resonance condition.
Then, we have

D2
0v11 + ω2

Sv11 =
(
bω2

R + d
)
Bei(ωS−εσ)τ − iωSζAeiωSτ − 2iωSe

iωSτD1A + c.c., (31)

D2
0q11 + ω2

Rq11 = −ω2
SNAei(ωR+εσ)τ − iλω2

R

(3

4
B3e3iωRτ +

(3

4
BB − 1

)
BeiωRτ

)

− 2iωRD1BeiωRτ + c.c., (32)
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where c.c. stands for the complex conjugate of the proceeding terms.
The solvable conditions of Eqs. (31) and (32) are derived by equating the coefficients of the

secular terms to be zero, i.e.,
(
bω2

R + d
)
Be−iσT1 − iωSζA − 2iωSD1A = 0, (33)

− ω2
SNAeiσT1 − iλω2

R

(3

4
BB − 1

)
B − 2iωRD1B = 0. (34)

The derivatives of the amplitudes A and B with respect to T1 can be obtained by Eqs. (33) and
(34) as follows:

D1A =
−1

2ωS

(
i
(
bω2

R + d
)
Be−iσT1 + ωSζA

)
, (35)

D1B =
1

2ωR

(
iω2

SNAeiσT1 − λω2
R

(3

4
BB − 1

)
B

)
. (36)

The functions A and B can be expressed in the polar coordinates as follows:

A(T1) =
a1(T1)

2
eiθ1(T1), B(T1) =

a2(T1)

2
eiθ2(T1), (37)

where aj and θj (j = 1, 2) are the amplitudes and phase angles, respectively. Substituting
Eq. (37) into Eqs. (35) and (36) yields the following first-order differential equations after sep-
arating the real and imaginary parts:

a′
1 =

1

2ωS
((bω2

R + d)a2 sin ϕ − ωSζa1), (38)

θ′1 =
−(bω2

R + d)a2 cosϕ

2a1ωS
, (39)

a′
2 =

ω2
SNa1 sin ϕ

2ωR
−

λωR(3a2
2 − 16)a2

32
, (40)

θ′2 =
Nω2

Sa1

2a2ωR
cosϕ, (41)

where (′) denotes the derivatives with respect to T1, and ϕ = θ2−σT1−θ1. The derivative of ϕ
with respect to T1 can be obtained by eliminating θ1 and θ2 from Eqs. (39) and (41) as follows:

ϕ′ =
Nω2

Sa1

2a2ωR
cosϕ − σ +

(bω2
R + d)

2a1ωS
a2 cosϕ. (42)

The equilibrium solutions of Eqs. (38), (40), and (42) correspond to the periodic motion of the
coupled system. To obtain the equilibrium solutions, a′

j (j = 1, 2) and ϕ′ in Eqs. (38), (40), and
(42) are assumed to be equal to zero. Then, we can obtain the frequency-response equations as
follows:

(bω2
R + d)λω2

R

(3a2
2

16
− 1

)
a2
2 − ζω3

SNa2
1 = 0, (43)

(Nω2
Sa1

2a2ωR
+

(bω2
R + d)a2

2a1ωS

)2

= σ2 +
(ζ

2
+

λωR

2

(3a2
2

16
− 1

))2

. (44)

Equations (43) and (44) can reveal the effects of the system parameters on the responses.
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3.2 Singularity analysis for steady-state responses

The structural motion and the van der Pol damping have important effects on the vibration
of the fluid. Then, the fluid motion in turn can affect the structural vibration. To investigate
the bifurcation characteristics of the coupled system in a wider parameter space, an engineering
unfolding analysis is carried out (see Refs. [49]–[51] for the details). Equations (43) and (44)
can be rewritten as follows:

G1(a1, a2) = (bω2
R + d)λω2

R

(3a2
2

16
− 1

)
a2
2 − ζω3

SNa2
1 = 0, (45)

G2(a1, a2, σ) = 4σ2ω3
Rω4

Sa2
1a

2
2 + ω3

Rω4
S(ζ − λωR)2a2

1a
2
2

+
9λ2

256
ω4

Rω2
Sa2

1a
6
2 − N2ω6

Sa
4
1 +

3λ

8
(ζ − λωR)ω2

Sω3
Ra2

1a
4
2

− 2ωRω3
S(bω

2
R + d)Na2

1a
2
2 − ω2

R(bω2
R + d)2a4

2

= 0, (46)

where σ is the bifurcation parameter, λ and N are the engineering unfolding parameters, and
a1 and a2 are the state variables. The transition set is derived by the singularity method as
follows[52]:

Σ = B ∪ H ∪ D, (47)

B =

{
(λ, N ) ∈ R2 : ∃(z, σ), s.t. G1(z, λ, N) = 0, G2(z, σ, λ, N) = 0,

G1a1
G2a2

− G1a2
G2a1

= 0, G1a2
G2σ − G2a2

G1σ = 0, z = (a1, a2),
(48)

H =






(λ, N) ∈ R2 : ∃(z, σ), s.t. z = (a1, a2), G1 = 0,

G2 = 0, G1a1
G2a2

− G1a2
G2a1

= 0,

(G1a1,a1
G2

1a2
+ G2

1a1
G1a2,a2

− 2G1a1,a2
G1a1

G1a2
)G2a1

− (G2a1,a1
G2

1a2
+ G2

1a1
G2a2,a2

− 2G2a1,a2
G1a1

G1a2
)G1a1

= 0,

(49)

D =

{
(λ, N ) ∈ R2 : ∃(z1, z2, σ), s.t. z1 6= z2, G1 = 0, G2 = 0,

det(dG)zi,σ,λ,N1 = 0, z = (a1, a2), i = 1, 2,
(50)

where B, H , and D represent the bifurcation set, the hysteresis set, and the double limit set,
respectively. The partial derivatives of the bifurcation functions G1 and G2 with respect to σ,
a1, and a2 are calculated to obtain the bifurcation sets (see Appendix A for details). Therefore,
the transition set of the coupled system can be derived by solving the algebraic equations shown
in Eqs. (48)–(50). According to the analysis in Refs. [17], [25], and [43], the other parameters
are fixed as follows:






A = 4.2 × 10−4 m2, ρ = 7 800 kg · m−3, ρf = 1.225 kg · m−3,

EI = 300 N · m, V = 100 m · s−1, Ω = 450 rad · s−1, D0 = 0.1 m, L = 0.3 m,

c = 6 N · s · m−1, St = 0.1, CL0 = 0.3.

It can be seen from Fig. 4 that the two-parameter space is divided into twelve parts by the
transition set, where the red dashed lines denote the bifurcation set, and the blue solid lines
present the hysteresis set. Herein the double limit set is D = ∅ after calculation.
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Fig. 4 Transition set, where red dashed lines denote bifurcation sets, and blue lines denote hysteresis
sets

The transition set can be used to classify different kinds of responses of the system. The
responses of the coupled system can display different dynamic characteristics when the van der
Pol damping λ and the coupling parameter N are chosen in different parameter subspaces.

The representative frequency-response curves of the system in each region of the two-
parameter space shown in Fig. 4 are calculated, and the stability is determined by examining
the eigenvalues of the corresponding characteristic equation for Eqs. (38), (40), and (42). The
characteristic equation is a triple polynomial as follows:

λ3 + p1λ
2 + p2λ + p3 = 0. (51)

A solution is stable if all of the eigenvalues have negative real parts. It is decided by the
Routh-Hurwitz criterion[53] as follows: p1 > 0, p3 > 0, and p1p2 − p3 > 0.

Figure 5 shows that the amplitudes a1 and a2 of the steady-state solutions are unstable for
λ = −0.063 9 and N = 0.183 6 in Region I, and the varying trends of the amplitudes a1 and a2

with respect to the detuning parameter σ are opposite to each other.

Fig. 5 Frequency-response curves in Region I when λ = −0.063 9, and N = 0.183 6

Figure 6 depicts that the trivial solutions of the amplitudes a1 and a2 lose stabilities via a
saddle-node bifurcation at SN1

, resulting in the occurrence of a two-mode solution. One of the
two-mode solution is unstable for both the amplitudes a1 and a2, which has opposite varying
trends for the amplitudes a1 and a2 with respect to the detuning parameter σ. The other one of
the two-mode solution is unstable until a Hopf bifurcation occurs at H1, resulting in a change
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of the solutions from unstable to stable. The stable solutions decrease until encounter another
saddle-node bifurcation at SN2

, leading to a change of the solutions from stable to unstable.
Then, the unstable solutions decrease until another Hopf bifurcation occurs at H2, resulting in
a change of the solutions from unstable to stable.

Fig. 6 Frequency-response curves in Region II when λ = −0.037 2, and N = 0.372 0

Figure 7 shows that, as the detuning parameter σ increases, the trivial solutions jump to
the large unstable solutions via a Hopf bifurcation at σ = 0.018 3 (see H ). Then, the unstable
amplitude a1 decreases while a2 increases as σ increases. As σ decreases, the unstable solutions
jump to the trivial ones via a saddle-node bifurcation at σ = 0.018 1 (see SN ), leading to a
change of the solutions from unstable to stable.

Fig. 7 Frequency-response curves in Region III when λ − 0.004 3, and N = 0.300 0

It can be seen from Fig. 8 that as σ increases, the responses increase until encounter a
saddle-node bifurcation at SN1

, resulting in that the responses jump to the large solutions.
The large responses increase until reach the maximum values, then decrease until a saddle-node
bifurcation occurs at SN2

, leading to that the solutions jump to the small solutions. Then, the
responses decrease all the way as σ increases. Similarly, as σ decreases, the amplitudes a1 and
a2 have the same varying trends, and encounter two saddle-node bifurcations at SN3

and SN4
,

respectively.
Figure 9 shows that the amplitudes of the steady-state solutions of the beam and van der

Pol oscillator are stable for λ = 0.040 0 and N = 0.051 9. Both Fig. 8 and Fig. 9 show that the
varying trend of the amplitude a1 with respect to the detuning parameter is the same as that
of the amplitude a2.
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Fig. 8 Frequency-response curves in Region IV when λ = 0.062 9, and N = 0.217 8

Fig. 9 Frequency-response curves in Region V when λ = 0.040 0, and N = 0.051 9

It can be seen from Fig. 10 that the stable trivial solutions become unstable via a Hopf
bifurcation for σ = 0.009 0.

Fig. 10 Frequency-response curves in Region VI when λ = −0.001 3, and N = 0.065 5

Figures 11–13 show that the solutions in Regions VII–IX are unstable solutions expect the
trivial solutions. While the varying trends of the amplitudes a1 and a2 with respect to the
detuning parameter σ are opposite in Fig. 11 and the same in Figs. 12 and 13.



Bifurcation and dynamic response analysis of rotating blade excited by upstream vortices 1265

Fig. 11 Frequency-response curves in Region VII when λ = −0.009 0, and N = 0.031 5

Fig. 12 Frequency-response curves in Region VIII when λ = −0.011 0, and N = −0.045 5

m

Fig. 13 Frequency-response curves in Region IX when λ = −0.000 9, and N = −0.017 2

It can be seen from Fig. 14 that the trivial solutions jump to the large stable solutions via
a Hopf bifurcation at σ = −0.001 5 (see H1) as σ increases. Then, the amplitude a1 decreases
and the amplitude a2 increases to the trivial solutions as σ increases. While as σ decreases,
the amplitude a1 increases and the amplitude a2 decreases until a Hopf bifurcation occurs at
σ = −0.005 2 (see H2) , leading to a change of the solutions from unstable to stable. When σ
decreases beyond H2, the amplitudes a1 and a2 jump to the trivial solutions.
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Fig. 14 Frequency-response curves in Region X when λ = 0.020 0, and N = −0.100 0

It can be seen from Fig. 15 that as σ increases, the amplitude a1 grows while the amplitude
a2 decreases all the way until a Hopf bifurcation occurs at σ = 0.004 5 (see H1), after that, the
responses encounter a saddle-node bifurcation at σ = 0.006 4 (see SN1

), resulting in a change
of the solutions from unstable to stable. Beyond SN1

, the amplitude a1 jumps to the small
solution, while a2 jumps to the large solution. Then, the amplitude a1 decreases while a2

increases all the way as σ increases. The amplitudes a1 and a2 have symmetrical varying trends
as σ decreases.

Fig. 15 Frequency-response curves in Region XI when λ = 0.078 0, and N = −0.116 3

Figure 16 shows that the trivial solutions jump to the stable solutions via a Hopf bifur-
cation for σ = 0.000 3. The amplitude a1 jump to the maximum values rapidly. Then, as σ
increases, the amplitude a1 decreases while the amplitude a2 increases gradually until to the
trivial solutions.

The results show that when λ and N have the same signs, i.e., λN > 0, the varying trends for
the structural and van der Pol vibrations are the same with respect to the detuning parameter
σ. Specifically, when λ > 0 and N > 0, the solutions are stable or can encounter the saddle-
node bifurcation as σ varies; when λ < 0 and N < 0, the solutions are unstable as σ varies.
When λ and N have opposite signs, i.e., λN < 0, the varying trends of the two coupled motions
are reverse to each other, which means the energy transfer between the two modes. The Hopf
bifurcation can occur for certain parameter values when λN < 0.
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Fig. 16 Frequency-response curves in Region XII when λ = 0.001 3, and N = −0.007 0

4 Numerical results

The response bifurcations of the coupled system including the Hopf and saddle-node bifur-
cations can occur under certain parameter values as analyzed in the previous section. To verify
the validity of the multiple scale method, the characteristics of the dynamic responses for the
original systems (17) and (22) are investigated. A representative point (σ = 0.028 5) after the
Hopf bifurcation shown in Fig. 6 is chosen with the unfolding parameters λ = −0.037 2 and
N = 0.372 0. The other parameters are fixed as follows:






A = 4.2 × 10−4 m2, ρ = 7 800 kg · m−3, ρf = 1.225 kg · m−3, EI = 300 N · m,

V = 100 m · s−1, Ω = 450 rad · s−1, D0 = 0.1 m,

L = 0.3 m, c = 6 N · s · m−1, St = 0.1, CL0 = 0.3.

The time histories, phase portraits, and Lyapunov exponents for the original structural and
van der Pol motions with the above parameter values are computed by the Runge-Kutta method
(see Figs. 17 and 18). It shows that the largest Lyapunov exponent of the original system with
the initial condition values v1(0) = 0.05, y(0) = 0.00, q1(0) = 0.50, and p(0) = 0.00 (assuming
v̇1(τ) = y(τ) and q̇1(τ) = p(τ)) tends to zero as time τ increases, which means that the quasi-
periodic solutions occurs under this parameter conditions. Therefore, the Hopf bifurcation
for the modulated solutions indicates the occurrence of the quasi-periodic solutions for the
original system, which can result in important physical consequences[54], such as a behavior
from transition to chaos.

The saddle-node bifurcation is another bifurcation type analyzed in this paper, which in-
dicates the stability changing of the responses, resulting in the occurrences for the jump phe-
nomenon and multiple solutions. A typical point (σ = 0.016) between the two saddle-node
bifurcation points when λ = 0.062 9 and N = 0.217 8 in Region IV (see Fig. 8) is chosen to
obtain two stable solutions by the Runge-Kutta method. The other parameters are fixed as
follows:





A = 4.2 × 10−4 m2, ρ = 7 800 kg · m−3, ρf = 1.225 kg · m−3,

EI = 300 N · m, V = 100 m · s−1, Ω = 450 rad · s−1

D0 = 0.1 m, L = 0.3 m, c = 6 N · s · m−1, St = 0.1, CL0 = 0.3.

The two sets of the time histories and phase portraits for the structural and van der Pol motions
are obtained with the initial condition values v1(0) = 0.1, y(0) = 0.0, q1(0) = 2.0, and p(0) = 0.0
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Fig. 17 Time histories and phase portraits of vibrations for original system at typical point (σ =
0.028 5) after Hopf bifurcation shown in Fig. 6 with initial conditions v1(0) = 0.05, y(0) =
0.00, q1(0) = 0.504, and p(0) = 0.00 when λ = −0.037 2, and N = 0.372 0

Fig. 18 Lyapunov exponents for original system at typical point (σ = 0.028 5) after Hopf bifurcation
shown in Fig. 5 with initial conditions v1(0) = 0.05, y(0) = 0.00, q1(0) = 0.50, and p(0) = 0.00
when λ = −0.037 2, and N = 0.372 0

and v1(0) = 0.40, y(0) = 0.00, q1(0) = 2.65, and p(0) = 0.00, respectively, which are shown in
Fig. 19.

Moreover, the time histories of the two-degree-of-freedom motions can be predicted by
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Fig. 19 Time histories and phase portraits of multiple-solutions when λ = 0.062 9, N = 0.217 8,
and σ = 0.016 0, where blue solid lines indicate vibrations with initial condition values
v1(0) = 0.1, y(0) = 0.0, q1(0) = 2.0, and p(0) = 0.0, and red dotted lines remark vibrations
with initial condition values v1(0) = 0.40, y(0) = 0.00, q1(0) = 2.65, and p(0) = 0.00

Eqs. (24), (29), and (38)–(41) analytically. The comparisons of the time histories obtained
by the analytical and numerical methods for the two different solutions shown in Fig. 19 are
carried out with the same system parameter values as follows:






A = 4.2 × 10−4 m2, ρ = 7 800 kg · m−3, ρf = 1.225 kg · m−3,

EI = 300 N · m, V = 100 m · s−1, Ω = 450 rad · s−1,

D0 = 0.1 m, L = 0.3 m, c = 6 N · s · m−1, St = 0.1, CL0 = 0.3.

Figures 20 and 21 show that the analytical results for the time histories agree with the numerical
results obtained by the Runge-Kutta method.

5 Conclusions

The vortex-induced vibrations of a rotating blade are investigated. The blade is modelled
as a uniform and straight cantilever beam, and the van der Pol oscillator is used to simulate
the time-varying of the vortex. The reaction for the motion of the blade on the fluid is rep-
resented by a linear inertial coupling. The multiple scale method is used to analyze the 1:1
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Fig. 20 Comparisons of time histories obtained with analytical and numerical methods when λ =
0.062 9, N = 0.217 8, and σ = 0.016 0 with initial conditions v1(0) = 0.1, y(0) = 0.0,
q1(0) = 2.0, and p(0) = 0.0, where solid lines and circled lines denote analytical and numerical
results, respectively

Fig. 21 Comparisons of time histories obtained by analytical and numerical methods when λ =
0.062 9, N = 0.217 8, and σ = 0.016 0 with initial conditions v1(0) = 0.40, y(0) = 0.00,
q1(0) = 2.65, and p(0) = 0.00, where solid lines and circled lines denote analytical and
numerical results, respectively

internal resonance of the coupled system. The bifurcation equations are derived, and a two-
parameter bifurcation diagram for the van der Pol damping λ and the coupling parameter N
is obtained with the singularity theory of two state variables. The bifurcation characteristics
for the frequency-responses in different bifurcation regions are investigated. The phenomena
including the saddle-node and Hopf bifurcations are found to occur under certain parameter
regions. The bifurcation analysis shows that when the parameters λ and N have the same
signs, i.e., λN > 0, the varying trends of the structural and van der Pol motions are similar
to each other. Specifically, when both λ and N are positive, i.e., λ > 0 and N > 0, two kinds
of dynamic characteristics for the responses can occur, i.e., (i) the responses are totally stable
as σ varies, e.g., the responses in Region V; (ii) the solutions can encounter the saddle-node
bifurcation at a certain value for the detuning parameter σ, e.g., the responses in Region IV.
When both λ and N are negative, i.e., λ < 0 and N < 0, the solutions are unstable as σ varies,
e.g., the responses in Region VIII. When λ and N have opposite signs, i.e., λN < 0, the varying
trends of the two motions are opposite to each other, which means the energy transfer between
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the two modes. The Hopf bifurcation can be encountered for certain parameter values when
λ and N have opposite signs. The time histories, phase portraits, and Lyapunov exponents
are calculted with the Runge-Kutta method for the original system at a point after the Hopf
bifurcation in Region III. The results reveal that the occurrence of the Hopf bifurcation for the
modulation equations indicates the quasi-periodic motion for the original system. Additionally,
the coexisting multiple solutions generated for the saddle-node bifurcation in the parametric
Region IV are illustrated, whilst their corresponding numerical and analytical time histories are
compared subsequently, both of which are in good agreement with each other. These results
indicate the validity of the analytical solutions obtained by the multiple scale method.
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Appendix A

The partial derivatives of the bifurcation functions with respect to σ, a1, and a2 are derived as
follows:

G1a1
= −2ω

3

SNζa1, (A1)

G1a2
=

1

4
λω

2

R(bω2

R + d)(3a
2

2 − 8)a2, (A2)

G1σ = 0, (A3)

G2a1
= −8ω

2

Sω
2

Rσ
2
a1a

2

2 − 2ω
2

Sω
2

Ra1a
2

2

“

ζ +
“3a2

2

16
− 1

”

λωR

”2

+ 4ω
3

SNa1(ωR(bω2

R + d)a2

2 + Nω
3

Sa
2

1), (A4)

G2σ = −8ω
2

Rω
2

Sσa
2

1a
2

2, (A5)



1274 Dan WANG, Yushu CHEN, M. WIERCIGROCH, and Qingjie CAO

G2a2
= −8ω

2

Rω
2

Sσ
2
a
2

1a2 −
3

4
λω

3

Rω
2

Sa
2

1a
3

2

“

ζ +
“3a2

2

16
− 1

”

λωR

”

(A6)

− 2ω
2

Rω
2

Sa
2

1a2

“

ζ +
“3a2

2

16
− 1

”

λωR

”2

+ 4ωRa2(bω
2

R + d)(ωR(bω2

R + d)a2

2 + Nω
3

Sa
2

1

”

, (A7)

G1a1,a1
= −2Nω

3

Sζ, (A8)

G1a1,a2
= 0, (A9)

G1a2,a2
=

1

4
λω

2

R(bω2

R + d)(9a
2

2 − 8), (A10)

G2a1,a1
= −8σω

2

Rω
2

Sa
2

2 − 2ω
2

Sω
2

Ra
2

2

“

ζ +
“3a2

2

16
− 1

”

λωR

”2

+ 8N
2
ω

6

Sa
2

1 + 4Nω
3

S

“

ωRa
2

2(bω
2

R + d
”

+ Nω
3

Sa
2

1), (A11)

G2a2,a1
= G2a1,a2

(A12)

= −16σω
2

Rω
2

Sa1a2 −
3

2
λω

2

Sω
3

Ra1a
3

2

“

ζ +
“3a2

2

16
− 1

”

λωR

”

− 4ω
2

Rω
2

Sa1a2

“

ζ +
“3a2

2

16
− 1

”

λωR

”2

+ 8ωRω
3

SN(bω2

R + d)a1a2, (A13)

G2a2,a2
= −

135

128
λ

2
ω

4

Rω
2

Sa
2

1a
4

2 − 2ωRω
2

Sa
2

1(ωRζ
2 + 4ωRσ − 2ζλω

2

R + λ
2
ω

3

R − 2dNωS − 2bNω
2

RωS)

+
3

2
ω

2

Ra
2

2(8d
2 + 16ω

2

Rbd + ωR(8b
2
ω

3

R + 3ω
2

Sλ(λωR − ζ)a2

1)). (A14)


