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Abstract The effects of axisymmetric flow of a Powell-Eyring fluid over an imperme-
able radially stretching surface are presented. Characteristics of the heat transfer process
are analyzed with a more realistic condition named the convective boundary condition.
Governing equations for the flow problem are derived by the boundary layer approxima-
tions. The modeled highly coupled partial differential system is converted into a system
of ordinary differential equations with acceptable similarity transformations. The con-
vergent series solutions for the resulting system are constructed and analyzed. Optimal
values are obtained and presented in a numerical form using an optimal homotopy analysis
method (OHAM). The rheological characteristics of different parameters of the velocity
and temperature profiles are presented graphically. Tabular variations of the skin friction
coefficient and the Nusselt number are also calculated. It is observed that the tempera-
ture distribution shows opposite behavior for Prandtl and Biot numbers. Furthermore,
the rate of heating/cooling is higher for both the Prandtl and Biot numbers.
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1 Introduction

Non-Newtonian fluids in industry and technology are now accepted more appropriate than
viscous fluids. Several materials such as polymer solutions or melts, greases, various oils,
lubricants, drilling mud, paints, yoghurt, shampoo, and ketchup are classified as non-Newtonian
fluids. Apart from thickening and thinning behaviors, other various rheological responses can be
seen in the flows of non-Newtonian fluids including normal and tangential stresses and relaxation
and retardation time. In view of these characteristics, several empirical and semi-empirical fluid
models have been presented in the literature in the past few years. Obviously, all these non-
Newtonian fluids due to their immense properties cannot be covered by one mathematical
equation. Therefore, many models have been proposed for the description of behavior of the
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shear thinning/thickening process, the normal stress differences, the stress relaxation, the elastic
effects, etc. For-instance, Fetecau et al.[1] presented the time dependent flow of an Oldroyd-B
fluid caused by a constantly accelerating plate between two side walls normal to the surface. The
authors utilized Fourier-sine transforms and computed the solutions for the Maxwell, second-
grade, and Newtonian fluids. The exact solutions for the rotating flows of a generalized Burgers
fluid in a cylindrical system were constructed by Jamil and Fetecau[2]. They used the finite
Hankel and Laplace transforms for the solution procedure and presented the computed results
in the form of Bessel functions. Hussain et al.[3] explored the oscillatory flows of second-grade
fluid in a porous medium. The investigation was presented by the modified Darcy’s law, and
the Hall current effects were also analyzed. Akbar[4] presented the impact of magnetic field on
the peristaltic flow of a Casson fluid in an asymmetric channel. He explained the application
of his work in the crude oil refinement industries. Comprehensive analysis of nano third-grade
fluid on a rotating vertical cone was presented by Nadeem and Saleem[5]. Solutions for the
momentum, energy, and diffusion equations in the boundary-layer region were presented and
analyzed. They used the thermal boundary conditions of the Neumann type on the walls
and computed the semi analytical solutions. Sheikholeslami et al.[7] presented the effects of
thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer for the two-
phase model. He studied the fourth-order Runge-Kutta method, and the variations of the
Reynolds numbers, the rotation effects, the thermophoretic parameter, etc. are analyzed in
detail. Thermal convective instability of the viscoelastic fluid in a rotating porous layer heat
from below was analyzed by Kang et al.[8]. Coriolis effects on thermal convective instability of
viscoelastic fluid in a rotating porous cylindrical annulus were studied by Kang et al.[9]. They
incorporated the modified Darcy-Jeffrey model in addition with the Coriolis term to mention the
non-viscous rotating rheology in the porous medium. Thermal instability of a nonhomogeneous
power law nanofluid in a porous layer with horizontal through flow was investigated by Kang et
al.[10]. In this analysis, they considered the power-law model to investigate the shear-thinning
behavior. Moreover, the physical quantities including the Lewis number and the Peclet number
were analyzed in detail. Unsteady flows of a generalized fractional Burgers’ fluid between two
side walls normal to a plate were analyzed by Kang et al.[11]. They computed the exact solution
of the momentum equation and presented them of Mittag-Leffler function.

The non-Newtonian fluid flows over a stretching surface have paramount value in polymer
industry and electrochemistry. It is generally acknowledged that the stretching of surface might
be of several types, i.e., linear and nonlinear stretching, bidirectional stretching, exponential
stretching, and radial stretching. In the recent years, various investigators have been engaged
in analyzing and predicting the non-Newtonian fluid flow behavior in a boundary layer domain.
For-instance, Ahmad et al.[12] presented the effects of thermal radiation on hydromagnetic
axisymmetric stagnation point flow and heat transfer of a micropolar fluid about a moving
sheet. They presented a detailed study of the hydromagnetic axisymmetric stagnation point flow
and heat transfer characteristic of an electrically conducting viscous incompressible micropolar
fluid over a shrinking sheet with radiation effects. Sochi[13] investigated the flow of power-law
fluids in axisymmetric corrugated tubes. He utilized the analytical method for modelling the
relationship between the pressure drop and the flow rate. Khan and Shahzad[14] presented an
axisymmetric flow of a Sisko fluid over a radially stretching sheet. They incorporated the two-
dimensional flow, modeled the problem as a combination of power law and Newtonian fluids,
and utilized suitable variables for the simplification of the considered analysis. Hayat et al.[15]

analyzed the axisymmetric flow of third-grade fluid between porous disks. The combined effects
of magnetic field and heat transfer were considered and analyzed for the axisymmetric fluid flow.
Hosseini et al.[16] presented the non-Newtonian fluid flow in an axisymmetric channel with the
porous wall. They used the optimal homotopy asymptotic method (OHAM) to construct the
solution expressions of momentum and energy equations. A comparison of numerical and
analytical solutions was also presented showing validity of the results. Mastroberardino[17]
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considered the annular axisymmetric stagnation point flow on a moving cylinder and computed
the series solutions for the momentum and energy equations. Hydromagnetic axisymmetric
third-grade fluid flow between stretching sheets with heat transfer was presented by Hayat et
al.[18]. Newtonian heating, thermal-diffusion, and diffusion-thermo effects in an axisymmetric
flow of a Jeffrey fluid over a moving surface were presented by Awais et al.[19]. The convergence
criterion was presented, and the effects of several important physical quantities were discussed.

In the recent years, investigators have shown interest in minimizing the skin friction coe-
fficient and maximizing the rate of heating/cooling in the rapid and advanced industrial and
technological processes. In this direction, serious attempts have been done by considering flows
over the surface of a wing, wind turbine rotor, and tail plane. It is noted that the skin friction
coefficient can be minimized by taking the boundary layer away from the separation and delay
the transition of laminar to turbulent flow. It is achieved via different physical concepts such as
by moving the surface and introducing fluid suction and injection. Recently, some investigators
have tried to increase the cooling/heating rate by different kinds of physical conditions over a
flat surface. Therefore, in this analysis, we investigate the mechanism of boundary layer flow
induced by a radially stretching convective wall. The nonlinear equations are mathematically
modeled and then solved with the OHAM. The optimized value of convergence control param-
eter is calculated using the OHAM. References [20]–[27] and the references there in utilized
this procedure for the computation of nonlinear problems. Graphical and numerical results are
presented to give the real insight of the considered problem.

2 Mathematical formulation

The two-directional axisymmetric flow of a Powell-Eyring fluid is considered. The motion
in the fluid is driven by a radially stretching wall located at z = 0, whereas the fluid occupies
the region z � 0, as shown in Fig. 1.

Fig. 1 Geometry of flow problem

The Cauchy stress tensor satisfying the Powell-Eyring fluid model can be stated as

T = −pI + τ , (1)
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where an extra stress tensor τij for the Powell-Eyring fluid yields

τij = μ
∂ui

∂xj
+

1
β

arc sin
( 1

C

∂ui

∂xj

)
. (2)

Here, μ represents the dynamic viscosity, p is the pressure, and I is the identity tensor. More-
over, β and C are the material fluid parameters.
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⎧
⎪⎪⎨
⎪⎪⎩

arc sin
( 1

C

∂ui

∂xj

) ∼=
( 1

C

∂ui

∂xj

)
− 1

6

( 1
C

∂ui

∂xj

)3

,

∣∣∣ 1
C

∂ui

∂xj

∣∣∣ � 1,

(3)

the equations of mass, momentum, and energy under boundary layer approximations give
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where the momentum and thermal boundary conditions are in the forms of
{

u = uw = ar, w = 0, −k
∂T

∂z
= h(Tf − T ), z = 0,

u → 0, T → T∞, z → ∞.
(7)

uw is the velocity at the wall, r is the radial direction, ν = μ/ρ is the kinematic viscosity, ρ is
the fluid density, σ is the thermal diffusivity, a is the dimensional constant related to the rate
of radially stretching sheet, h is the heat transfer coefficient, k is the thermal conductivity, T
is the fluid temperature, and Tf is the temperature of hot fluid.

By utilizing the following variables:

u(r, z) = arf ′(η), w(r, z) = −2
√

aνf(η), θ(η) =
T − T∞
Tf − T∞

, η =
√

a

ν
z, (8)

the incompressibility (4) satisfies identically, where the laws of conservation of momentum and
energy (5) and (6) become

(1 + ε)f ′′′ + 2ff ′′ − f ′2 − εδf ′′2f ′′′ = 0, (9)
θ′′ + 2Prfθ′ = 0, (10)
f(0) = 0, f ′(0) = 1, f ′(∞) = 0, θ′(0) = −γ(1 − θ(0)), θ(∞) = 0. (11)

In the above equations, γ represents the Biot number, Pr is the Prandtl number, and ε and δ
are the fluid parameters. They are defined as

Pr =
ν

σ
, ε =

1
μβC

, δ =
u3

2rνC2
, γ =

h

k

√
ν

a
. (12)

The skin friction coefficient Cf is given by
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τw

1
2
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and the local Nusselt number Nur is given by

Nur =
rqw

k(Tf − T∞)
, qw = −k

∂T

∂z
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z=0

, NurRe−1/2
r = −θ

′
(0). (14)

3 Solution methodology

We select the initial guesses in the forms of

f0(η) = 1 − exp(−η), θ0(η) = exp(−η), (15)

where the auxiliary linear operators are given by

Lf = f ′′′ − f ′, (15)
Lθ = θ′′ − 1. (16)

Now, (9) and (10) are subjected to the physical conditions (11) using the homotopy analysis
method (HAM)[20–27]. We select �f and �θ as the auxiliary parameters for the functions f
and θ, respectively. The convergence of derived series solutions can be adjusted and controlled
through these auxiliary parameters. The �-curves for f ′′(0) and θ′(0) are sketched at the 15th
iteration in Fig. 2. This plot depicts that the domains of suitable region of �f and �θ are −0.9
� �f � −0.25 and −1.35 � �θ � −0.15, respectively.

Fig. 2 �-curves for f ′′(0) and θ′(0) when γ = 0.8, δ = 0.1, and ε = Pr = 1.0

4 Optimal convergence control parameters

The homotopy series solution contains the non-zero auxiliary parameters cf
0 and cθ

0, which
is in fact the range of convergence of the homotopy solutions. To get the optimized values of
cf
0 and cθ

0, we use the idea of minimization by defining the squared average residual errors,
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Following Liao[20],

εt
m = εf

m + εθ
m, (19)

where the total squared residual error is εt
m. δy = 0.5, and k = 20. Table 1 is arranged to

show the minimized values of total averaged-squared residual error for the group of optimized
convergence control parameters at various iterations.

Both residual errors are given in Table 2 at various iterations against the 8th-order optimal
convergence control parameters. It is perceived that both the residual errors decrease with the
increasing iterations.

Table 1 Values of optimal convergence control parameters and total averaged squared residual errors

m cf
0 cθ

0 εt
m CPU time/s

2 −0.84 −1.36 2.12 × 10−5 3.41
4 −0.79 −1.32 6.42 × 10−7 12.16
6 −0.69 −1.34 2.40 × 10−8 44.17
8 −0.70 −1.21 1.80 × 10−9 120.00

Table 2 Individual averaged squared residual errors with optimized values at m = 8 from Table 1

m εf
m εθ

m CPU time/s

6 2.13 × 10−8 6.27 × 10−9 9.67
12 4.56 × 10−12 7.61 × 10−12 46.05
18 2.16 × 10−15 2.92 × 10−14 126.30

5 Results and discussion

The aim of this portion of the manuscript is to present the influence of several physical
quantities on the velocity and temperature profiles. Therefore, we prepare Figs. 3–7. Figure 3
presents the comparison of the Newtonian and Powell-Eyring fluid models. It is observed that
the magnitude of velocity is greater for the Powell-Eyring fluid model when compared with the
Newtonian model.

Fig. 3 Newtonian modle vs. Powell-Eyring model

It is because of the fact that the Powell-Eyring fluid is a shear thinning fluid, in which
the viscosity decreases with the shear rate which results in an increase of the fluid velocity, as
observed in Fig. 3. The impact of the fluid parameter ε against the velocity profile is shown in
Fig. 4.



Axisymmetric Powell-Eyring fluid flow with convective boundary condition: optimal analysis 925

Fig. 4 Effects of ε on f ′

It is noteworthy that the velocity profile depicts an increment with the increasing ε. Fur-
thermore, the boundary layer is thicker for larger values of the fluid parameter ε. In real, larger
values of ε result in the reduction of fluid viscosity because of the shear thinning property of
the fluid, which enhances the molecular movement and results into increase of the velocity field.
The behavior of ε on the temperature is shown in Fig. 5. This figure shows that the temperature
profile and the thickness of thermal boundary layer reduce when ε is increased. Physically, it
justifies that higher values of ε produce a reduction in the fluid viscosity. Therefore, less heat
is produced due to frictional forces. Hence, the temperature distribution decreases.

Fig. 5 Effects of ε on θ

Figure 6 shows the behavior of the Biot number γ on the temperature field. It is perceived
that there is an increase of temperature for large Biot numbers γ.

It is due to fact that as we increase the Biot number, the heat transfer coefficient also
increases, which is responsible in enhancement of temperature profile. Moreover, an increase of
the Biot number also causes a thermal slip at the wall. The behavior of Pr on the temperature
is sketched in Fig. 7. It is obvious that the temperature of fluid decreases with Pr. Moreover,
the thermal boundary layer is thicker for smaller Pr. The Prandtl number is the ratio of
momentum and thermal diffusivities. Therefore, large Prandtl numbers result in the reduction
of thermal diffusivity. Therefore, the temperature profile decreases.

Numerical behaviors of the skin friction coefficient and the local Nusselt number for impor-
tant parameters are deliberated in Tables 3 and 4. It is obvious from Table 3 that the skin
friction coefficient enhances by increasing ε, while it decreases when increase δ. Thus, higher
values of δ can be used for the reduction of the skin friction coefficient in different industrial
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Fig. 6 Effects of γ on θ Fig. 7 Effects of Pr on θ

processes in order to increase the efficiency of various machines. Table 4 shows that the value
of the local Nusselt number increases for increasing values of Pr, γ, and ε, and it decreases by
increasing δ. It is analyzed that higher values of Pr, γ, and ε can be used as cooling agent
in various industrial and technological processes in order to avoid over heating of machines.
Table 5 shows the comparison of Nusselt number with the previous published material. It is
concluded that both the results are in reasonable relation.

Table 3 Tabular form of skin friction coefficients

ε δ −Re
1
2
r Cf

0.1 1.0 1.215 42
0.2 1.0 1.257 42
0.3 1.0 1.299 57
0.3 2.0 1.198 16
0.3 3.0 1.178 51

Table 4 Tabular form of Nusselt number

δ ε γ Pr −θ′(0)

0.1 1.0 1.0 1.0 0.483 7
0.2 1.0 1.0 1.0 0.483 4
0.3 1.0 1.0 1.0 0.483 1
1.0 0.2 1.0 1.0 0.468 8
1.0 0.3 1.0 1.0 0.470 2
1.0 0.4 1.0 1.0 0.470 7
1.0 1.0 0.3 1.0 0.226 6
1.0 1.0 0.5 1.0 0.324 6
1.0 1.0 0.7 1.0 0.398 6
1.0 1.0 1.0 1.0 0.480 8
1.0 1.0 1.0 1.3 0.519 8
1.0 1.0 1.0 1.5 0.541 4

Table 5 Comparison of Nusselt number when γ → ∞ and ε = δ = 0

Pr

−θ′(0)

Ref. [26] Present result

0.2 0.251 65 0.251 67
0.7 0.667 26 0.667 29
2.0 1.323 91 1.323 94
7.0 2.722 97 2.722 99
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6 Main points

The axisymmetric flow induced by a radially stretching sheet with convective boundary
conditions is discussed. The major findings are given below.

(i) The magnitude of velocity is greater for the Powell-Eyring fluid as compared with that
of the viscous fluid.

(ii) Larger values of ε enhance the velocity profile.
(iii) The temperature profile decreases due to an increase of ε.
(iv) The Biot number enhances the wall temperature and produces the thermal slip.
(v) The thermal boundary layer is thicker for larger values of γ.
We hope that the present investigation serves as a stimulus for stretching flows especially in

polymeric sheets, annealing, and thinning of copper wires and food processes. The performed
study may be extended for the subclass of non-Newtonian fluids describing relaxation and
retardation time characteristics. The presented analysis can also be modeled for the flows of
nanofluid with various physical aspects.
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