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Abstract The time periodic electroosmotic flow of an incompressible micropolar fluid
between two infinitely extended microparallel plates is studied. The analytical solutions
of the velocity and microrotation are derived under the Debye-Hückel approximation.
The effects of the related dimensionless parameters, e.g., the micropolar parameter, the
frequency, the electrokinetic width, and the wall zeta potential ratio of the upper plate to
the lower plate, on the electroosmotic velocity and microrotation are investigated. The
results show that the amplitudes of the velocity and the volume flow rate will drop to zero
when the micropolar parameter increases from 0 to 1. The effects of the electrokinetic
width and the frequency on the velocity of the micropolar fluid are similar to those of the
Newtonian fluid. However, the dependence of the microrotation on the related parameters
mentioned above is complex. In order to describe these effects clearly, the dimensionless
microrotation strength and the penetration depth of the microrotation are defined, which
are used to explain the variation of the microrotation. In addition, the effects of various
parameters on the dimensionless stress tensor at the walls are studied.

Key words micropolar fluid, electroosmotic flow, microrotation strength, penetration
depth

Chinese Library Classification O363.2
2010 Mathematics Subject Classification 76A99, 76D45, 76W05

1 Introduction

Microfluidic devices become important due to their applications in biochemical and biomedi-
cal processes, fuel cells, physical particle separation, and heat exchange[1–3]. Microfluidic trans-
port can be actuated by various types of driving mechanisms, e.g., pressure gradients[4–5],
electrical fields[6–7], magnetic fields[8–9], and electromagnetic fields[10–11]. Recently, the time-
dependent electroosmotic flow (EOF) has attracted growing attention as an alternative mech-
anism of the microfluidic transport[12–25]. Under an alternating current (AC) electric field, the
EOF becomes time and frequency dependent[26–27]. Minor et al.[28] proposed a new method for
measuring the electromobility of the colloidal particles placed in an AC electric field. Dutta
and Beskok[12] presented an analytic model for the time periodic EOF, and compared their
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analytic solution with the second Stokes problem. Oddy et al.[29] demonstrated the electroki-
netic instability with the time-dependent electric field in a microchannel to enhance the liquid
mixing.

Although outstanding contributions have been made to the field of time-dependent elec-
troosmosis both theoretically[14,18,23,27] and experimentally[30–31], they were mainly focused
on simple Newtonian fluids. Complex fluids, such as polymer solutions, colloids, and cell
suspensions, are also manipulated in microfluidic devices. These fluids behave obvious non-
Newtonian characteristics. Until now, many non-Newtonian fluid models have been proposed.
Eringen[32–33] proposed a micropolar model, which had been analyzed by many authors be-
cause of its significant applications in many research areas[34]. Micropolar fluids exhibit couple
stresses, and the particles of the fluids have an independent rotation vector in addition to the
velocity vector. Many fluids, such as blood, liquid crystals, and polymeric suspensions, can
be treated as micropolar fluids[34]. Modelling granular flows as micropolar fluids, Hayakawa[35]

showed that the analytical solutions of the certain boundary-value problems were topologically
similar to the relevant experimental results. Papautsky et al.[36] indicated that the micropolar
fluid model might provide better agreement with the experimental data for microfluidic devices
than the Newtonian fluid theory. Magyari et al.[37] investigated the first Stokes problem for a
micropolar fluid. Further reviews of the polar fluid theory and its applications can be found in
Refs. [38]–[41].

The theoretical study of the electroosmotic flows of micropolar fluids is recent and rare,
especially for the time-dependent EOF. Siddiqui and Lakhtakia[42–43] investigated the one-
dimensional steady EOF of a micropolar fluid in a rectangular microchannel and a cylindrical
microcapillary, respectively, under the action of a direct current (DC) electric field. Siddiqui
and Lakhtakia[44] investigated a non-steady case by the numerical method. By developing a
perturbation scheme, Misra et al.[45] studied the EOF of a micropolar fluid in a microchannel
bounded by two parallel porous plates undergoing periodic vibrations.

In the current study, we want to investigate the time-dependent EOF of the micropolar fluids
through a microparallel channel when an AC electric field is applied. The analytical solutions of
the velocity and micro-rotation are obtained by the Debye-Hückel approximation. In addition,
the effects of the relevant parameters on the velocity, the micro-rotation, the volume flow rate,
and the wall shear stress of the micropolar fluids are analyzed.

2 Formulation of problem

To begin with, we consider an electro-osmotically driven microfluidic transport through a
microparallel channel with a time-varying electric field of the strength Eapp. The geometry of
the problem and the selection of the coordinate system are sketched in Fig. 1, where a Cartesian
coordinate system with the unit base vectors eX , eY , and eZ is adopted with the origin fixed
at the middle of the microchannel. The X-axis and the Z-axis are tangent to the surface of
the plate, and the Y -axis is perpendicular to the plates. The height of the microchannel is
2H . The applied electric field Eapp is parallel to the X-axis, and is spatially uniform within
the microchannel. We ignore the variations along the X-axis and the Z-axis. Then, all field
quantities will be taken to depend on the coordinate Y and the time t.
2.1 Electric potential of electric double layer (EDL)

The fluid considered in this study is supposed to be ionized. In contact with the polar sol-
vent, the tube walls may attain a net positive or negative charge due to the ion adsorption from
the liquid molecules adjacent to the solid surface. This leads to the presence of the electrical
potential at the walls, which is well-known as the wall zeta potential. Due to the electro-
static interactions, the migration of the ions naturally arises between the dielectric walls and
the polar fluid. Here, the charged walls of the microchannel attract the counter-ions forming
the layers of the charged fluid near the walls, and repel the co-ions. Very thin layers of immobile
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Fig. 1 Sketch of physical problem

counter-ions cover the walls, known as the stern layers, followed by the thicker diffuse layers of
mobile counter-ions. The two layers near the wall form the EDL. If a potential is used along the
microchannel, the ions in the diffuse EDL tend to move due to the electrostatic interactions,
whereas the neutral core is dragged and moves along the microchannel, resulting in the so-called
EOF.

If the two plates are made of different materials, the surface zeta potentials at the upper and
lower plate walls may be different, and sometimes they may be completely oppositely charged.
We assume

{
Ψ = Ψu at Y = H,

Ψ = Ψl at Y = −H,
(1)

where Ψu and Ψl are the zeta potentials of the upper and lower plate walls, respectively.
Under the interaction of the EDL electric potential and the molecule thermal motion, the

charge distribution in the EDL layer reaches its steady state without any imposed electric field.
The number density of the ions of each type can be described by the Boltzmann distribution[46].
In the presence of the applied electric field along the microchannel, the Boltzmann distribution
of the ionic charges remains valid under the following conditions[16]:

(i) The system is in the local equilibrium without the macroscopic advection/diffusion of
the ions.

(ii) The solid surface is microscopically homogeneous.
(iii) The charged surface is in contact with an infinitely large liquid medium.
(iv) The strength (intensity) of the EDL field significantly overweighs the strength of any

imposed electric field close to the interface.
(v) The far-stream boundary condition is applicable.
The final restriction, however, loses its validity when an overlap of EDLs happens. In our

situations, the EDL is assumed to be sufficiently thin in comparison with the channel half-height,
and the time scale related to the electromigration in the EDL is at least two orders smaller than
the characteristic time associated with the evolution of the EOF[14]. Therefore, the transient
effect of the EDL relaxation can be neglected, and the above conditions are satisfied.

Therefore, for a symmetric binary electrolyte solution, the electrical potential Ψ of the EDL
and the net volume charge density ρ∗e can be described by

∇2Ψ = −ρ
∗
e

ε
, (2a)

ρ∗e = −2n0zνe sinh
(zνeΨ
kbT

)
, (2b)

where ε is the dielectric constant of the electrolyte liquid, n0 is the ion density of the bulk
liquid, zν is the valence, e is the electron charge, kb is the Boltzmann constant, and T is the
absolute temperature. From the above presentation, the electrical potential Ψ is not affected
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by the time fluctuations of the external electric field. In our coordinate system, Eqs. (2a) and
(2b) can be expressed as follows:

d2Ψ

dy2
=

2n0zνe

ε
sinh

zνeΨ

kbT
. (3)

Define the following non-dimensional quantities:






ψ =
Ψ

Ψl
, y =

Y

H
, m = κH,

κ =
(2n0z

2
νe

2

εkbT

) 1

2

, β =
Ψu

Ψl
,

(4)

where m is the non-dimensional electrokinetic width, κ is the Debye-Hückel parameter, and 1
κ

denotes the characteristic thickness of the EDL. Assume that the wall zeta potentials Ψu and Ψl

are so small that the Debye-Hückel linearization approximation can be used in Eq. (3). Then,
the nondimensional forms of Eq. (3) and the boundary conditions can be written as follows:

d2ψ

dy2
= m2ψ, (5a)

ψ = β, y = 1, (5b)

ψ = 1, y = −1 . (5c)

The solution satisfying Eq. (5) is

ψ(y) =
β − 1

2

sinh(my)

sinhm
+
β + 1

2

cosh(my)

coshm
. (6)

In particular, when β = 1, the solution of Eq. (5) can be reduced to

ψ(y) =
cosh(my)

coshm
, (7)

which is the conventional electrical potential of the EDL[46]. Moreover, the net volume charge
density ρ∗e can be derived by linearizing Eq. (2b), i.e.,

ρ∗e = −εκ2Ψ = −εΨl

H2
m2ψ. (8)

2.2 Governing equations of motion
Micropolar fluids are fluids with microstructures. They belong to a class of fluids with

nonsymmetric stress tensors, i.e., microfluids, and include, as a special case, the well-established
Navier-Stokes model for classical fluids. In the microfluid model proposed by Eringen[40], the
fluid points contained in a small volume element, in addition to its usual rigid motion, can
rotate about the centroid of the volume element in an average sense described by the gyration
tensor νij . The microfluid theory is very general. It allows for a wide variety of microstructures
through the gyration tensor. The simplest subclass of microfluids is micropolar fluids[32–33].
They exhibit only micro-rotational effects, and can support surface and body couples.

In view of the skew-symmetry condition, the independent number of νij are three. Therefore,
it is natural to introduce a new vector νk defined by

νk =
1

2
εkijνij ,
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where εijk is the alternating tensor. The axial vector νk will be called the microrotation vector.
For an incompressible micropolar fluid, the continuity, momentum, and angular momentum

balance equations can be expressed as follows[41]:

∇ · V = 0, (9a)

ρ
DV

Dt
= f + ∇T, (9b)

ρj
Dν

Dt
= l + ∇C + T ∗, (9c)

where ρ is the density, V is the fluid velocity vector, ν is the microrotation vector, f represents
the body force per unit volume, T is the stress tensor, j is the microinertia coefficient, l

represents the couple body force per unit volume, C is the couple stress tensor, and T ∗
k is the

vector form of the stress tensor defined by

T ∗
k = εkijTij .

The constitutive equations for a linear and isotropic micropolar fluid are[41]

T = (−p+ λ∇V )I + µ(∇V + ∇V T) + χ(∇V −∇V T) − 2χσ∗, (10)

C = αv(∇ · ν)I + βv(∇ν + ∇νT) + γ(∇ν −∇νT), (11)

where σ∗
ij = νij is the gyration tensor, µ and χ are the Newtonian shear viscosity coefficient

and the vortex viscosity coefficient, respectively, λ is the second viscosity coefficient, and αv,
βv, and γ are three spin-gradient viscosity coefficients.

Substituting the constitutive equations (10) and (11) into the momentum equation (9b) and
the angular momentum equation (9c) yields

ρ
(∂V
∂t

+ (V · ∇)V
)

= −∇p+ (µ+ χ)∆V + χ∇× ν + f , (12)

ρj
(∂ν
∂t

+ (V · ∇)ν
)

= (αν + βν)∇(∇ · ν) + γ∆ν + χ∇× V − 2χν, (13)

where f = ρ∗eEapp is the electric field force per unit volume, the couple body force is ignored
as in Ref. [36], and j is the microinertia coefficient defined by[47]

j =
2γ

2µ+ χ
.

The no-slip boundary conditions at the walls are

V |Y =±H = 0.

In the literature, the boundary conditions imposed on the microrotation are

ν + s∇× V = 0 at Y = ±H, (14)

where s ∈ [−1, 0] is some constant. The limiting case of s = −1 accounts for the turbulence
near the wall[48]. For simplicity, we choose s = 0 in the present context.
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Since the flow has been assumed to be one-dimensional laminar along the x-axis, the velocity
of the fluid and the microrotation vector can be expressed as follows:

V = (U(Y, t), 0, 0), ν = (0, 0,Φ(Y, t)).

Then, the continuity equation (9a) is satisfied automatically, and the momentum equations (12)
and (13) can be rewritten as follows:

ρ
∂U

∂t
= (µ+ χ)

∂2U

∂Y 2
+ χ

∂Φ

∂Y
+ ρ∗eEx, (15)

ρj
∂Φ

∂t
= γ

∂2Φ

∂Y 2
− χ

∂U

∂Y
− 2χΦ, (16)

where
Ex = Eappex.

In this paper, we consider the sinusoidally driven time periodic “pure electroosmotic flows” in
the absence of pressure gradients. Let the pressure gradient in Eq. (12) vanish and the applied
electric field, velocity, and microrotation of the periodical electroosmosis be written as follows:

Ex = Re(E0e
iωt), U = Re(U∗

0 eiωt), Φ = Re(Φ∗
0e

iωt), (17)

where i is the imaginary number unit, Re denotes the real part of a complex number, E0

is the amplitude of the applied electric field, U∗
0 and Φ∗

0 are the complex amplitudes of the
electroosmotic velocity U and the microrotation Φ, respectively, and ω is the angle frequency
of the applied electric field defined by ω = 2πf .

Then, we introduce the following dimensionless variables:





y =
Y

H
, u =

U

V
, u0 =

U∗
0

V
, ϕ =

H

V
Φ,

ϕ0 =
H

V
Φ∗

0, ρe =
H2

εΨl
ρ∗e , Ω =

ωρH2

µ
,

(18)

where V is the characteristic EOF velocity of the Newtonian fluid defined by

V = −εΨlE0

µ
, (19)

Ω is the dimensionless frequency representing the ratio of the frequency of the applied electric
field ω to the characteristic frequency ω∗ = µ/(ρH2) of the fluid system[25], and (Ω)

1

2 can be
interpreted as the ratio of the characteristic length H to a diffusion length scale[18]. Combining
the expression of ρ∗e in Eq. (8), we can rewrite Eqs. (15) and (16) in the dimensionless forms as
follows:

d2u0

dy2
+ k1

dϕ0

dy
− iReu0 +m2(1 − k1)ψ = 0, (20)

d2ϕ0

dy2
− k2

du0

dy
− (2k2 + iR)ϕ0 = 0, (21)

where




k1 =
χ

µ+ χ
, k2 =

χH2

γ
,

Re =
ωρH2

µ+ χ
, R =

ωρjH2

γ
=

2ωρH2

2µ+ χ
.

(22)
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In the above equations, k1 denotes the viscosity ratio (0 6 k1 < 1), k2 and R are normalized
micropolar parameters, and Re is the electric oscillating Reynolds number of the micropo-
lar fluids[18]. For convenience, Re and R are redefined in the functions of the dimensionless
frequency Ω and the micropolar parameter k1 as follows:

Re = Ω(1 − k1), R = Ω
2(1 − k1)

2 − k1
. (23)

The normalized boundary conditions are

u0 = 0, ϕ0 = 0 at y = ±1. (24)

3 Analytic solutions

Now, we will derive the analytic solutions of Eqs. (20) and (21) under Eq. (24). First,
eliminate u0 from Eqs. (20) and (21). Then, we have

d4ϕ0

dy4
+A

d2ϕ0

dy2
+Bϕ0 =

D1 cosh(my)

sinhm
+
D2 sinh(my)

coshm
, (25)

where

{
A = (k1 − 2)k2 − i(R +Re),

B = 2Rek2i −RRe,
(26)





D1 = −k2m
3(1 − k1)

β − 1

2
,

D2 = −k2m
3(1 − k1)

β + 1

2
.

(27)

Since Eq. (25) is a fourth-order linear non-homogeneous ordinary differential equation, its
general solution can be expressed as follows:

ϕ0(y) = C1 sinh(My) + C2 cosh(My) + C3 sinh(Ly) + C4 cosh(Ly) + ϕ̃0(y), (28)

where Ci (i = 1, 2, · · · , 4) are constants needed to be determined later,






M =

√
−A+

√
A2 − 4B

2
,

L =

√
−A−

√
A2 − 4B

2
,

(29)

and ϕ̃0(y) is a special solution expressed as follows:

ϕ̃0(y) = P1
cosh(my)

sinhm
+ P2

sinh(my)

coshm
, (30)

in which

Pi =
Di

m4 +Am2 +B
, i = 1, 2.
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From Eq. (21), we have

u′0 =
1

k2
(ϕ′′

0 − (2k2 + iR)ϕ0).

Substituting ϕ0 from Eq. (28) and integrating the obtained results, we can obtain

u0(y) =T1C1 cosh(My) + T1C2 sinh(My) + T2C3 cosh(Ly) + T2C4 sinh(Ly)

+ T3P1
sinh(my)

sinhm
+ T3P2

cosh(my)

coshm
, (31)

where





T1 =
M2 − (2k2 + iR)

k2M
,

T2 =
L2 − (2k2 + iR)

k2L
,

T3 =
m2 − (2k2 + iR)

k2m
.

(32)

From Eq. (24), we have

C1 =
−P2T2 tanhm coshL+ P2T3 sinhL

T2 sinhM coshL− T1 coshM sinhL
, (33a)

C2 =
−P1T2 cothm sinhL+ P1T3 coshL

T2 coshM sinhL− T1 sinhM coshL
, (33b)

C3 =
−P2T3 sinhM + P2T1 tanhm coshM

T2 sinhM coshL− T1 coshM sinhL
, (33c)

C4 =
−P1T3 coshm+ P1T1 sinhM cothm

T2 coshM sinhL− T1 sinhM coshL
. (33d)

Therefore, the total velocity and the micro-rotation can be written as follows:

u = Re(u0e
iωt), ϕ = Re(ϕ0e

iωt), (34)

where the amplitudes u0 and ϕ0 can be determined by Eqs. (31) and (28), respectively. Using
the above expression of u, we can find the dimensionless volume flow rate per unit width of the
channel, i.e.,

Q =

∫ 1

−1

u(y, t)dy = Re(Q0e
iωt), (35)

where

Q0 =

∫ 1

−1

u0(y)dy

=
2T1C1 sinhM

M
+

2T2C3 sinhL

L
+

2T3P2 tanhm

m
. (36)
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The dimensionless mean velocity um = Q/2. In addition, the dimensionless wall shear stress
for an incompressible micropolar fluid can be written as follows:

σ12 =
∂u

∂y

∣∣∣
y=±1

, σ21 =
1

1 − k1

∂u

∂y

∣∣∣
y=±1

, (37)

where σ12 and σ21 are the non-dimensionalized quantities of σ∗
12 and σ∗

21, i.e.,

σ12 =
H

µV
σ∗

12, σ21 =
H

µV
σ∗

21. (38)

Now, let β = 1. We consider the following limiting cases:
(i) Steady case
In this case, ω = 0. Then, we have

Re = 0, R = 0, A = (k1 − 2)k2 < 0, B = 0,

M =
√
−A, L = 0, D1 = P1 = C2 = C4 = 0.

The velocity and the micro-rotation become

u(y) = T3P2

(cosh(my)

coshm
− 1

)
+ T1P2 tanhm

coshM − cosh(My)

sinhM
, (39)

ϕ(y) = −P2 tanhm
sinh(My)

sinhM
+ P2

sinh(my)

coshm
, (40)

agreeing well with the results of Siddiqui et al.[42].
(ii) Ignoring the effect of the microrotation on the flow velocity
In this case, χ = 0. Then, we have

k1 = k2 = 0, Re = R, A = −2iRe, B = −Re2,

M = L =
√

iRe, D1 = D2 = P1 = P1 = C2 = C4 = 0.

Therefore, the micro-rotation ϕ is 0, as expected, and the amplitude of the velocity reduces to

u0(y) =
m2

M2 −m2

(cosh(my)

coshm
− cosh(My)

coshM

)
. (41)

(iii) Ignoring the Newtonian shear viscosity
In this case, χ≫ µ. Therefore,

k1 → 1, D1 = D2 = P1 = P2 = 0, C1 = C2 = C3 = C4 = 0.

Then, we have ϕ = 0, and u = 0.

4 Parametric studies and discussion

In the previous section, the velocity and the micro-rotation of the micropolar fluid are derived
under an alternating electric field. Four important dimensionless parameters are involved, i.e.,
the micropolar parameter k1, the dimensionless frequency Ω, the dimensionless electrokinetic
width m, and the wall zeta potential ratio β of the upper plate to the lower plate. Their effects
on the velocity and micro-rotation profiles will be discussed in detail.
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In this article, all calculations are made with the following fixed material properties[48]:






ρ = 1.2 × 103 kg · m−3,

µ = 3 × 10−2 kg · m−1 · s−1,

γ = 4.8 × 10−10 kg · m · s−1.

For a typical microfluidic analysis, the half height of the channel is H = 100 µm[18]. To extend
the analysis, calculations are performed over 0 6 k1 < 1 and 5 6 m 6 100. Note that k1 → 1 as
χ → ∞. The dimensionless parameter Ω will only depend on the value of ω for the prescribed
values of ρ, µ, and H . The frequency ω applied on the microfluidic devices changes from the
relatively low value used by Oddy et al.[29] (5–20Hz) to the high value used by Green et al.[49]

(as high as 1MHz). Therefore, the order of the dimensionless frequency Ω varies from 0.05 to
2.51×103. In the following, all graphical results are achieved by using the MATLAB programs
based on Eqs. (28)–(34).
4.1 Distribution of velocity

The real part of the dimensionless complex velocity amplitude u0 as a function of y for
differentm and Ω is shown in Fig. 2, where k1 = 0.5, and β = 1. From the figure, we can see that,
when the electric oscillating frequency Ω is low, the electroosmotic velocity distribution tends
to become the plug type with the increase in the electrokinetic width m; while when the electric
oscillating frequency Ω is high, the velocity distribution is mainly concentrated in the EDL,
and appreciable reductions in the velocity are observed to occur outside the EDL. Especially,
the fluids in the channel center almost do not move. In the case of simple Newtonian fluids,
similar observations have also been reported[16,18]. These results can be explained through an
order of the magnitude analysis of Eq. (31). Since

β = 1, D1 = P1 = C2 = C4 = 0,

the expression of u0 can be rewritten as follows:

u0(y) = T1C1 cosh(My) + T2C3 cosh(Ly) + T3P2
cosh(my)

coshm
. (42)

Fig. 2 Dimensionless velocity distributions for different m and Ω, where k1 = 0.5, and β = 1

Within the above range of the typical values of the parameters, i.e.,

ρ = 1.2 × 103, µ = 3 × 10−2, γ = 4.8 × 10−10, 5 6 m 6 100,
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we can obtain the orders of these coefficients for large Ω (e.g., Ω = 251). The order of |T1C1|
is from 6.8×10−5 to 3.5×10−4. The order of |T2C3| is from 5.0×10−7 to 2.8×10−6. The order
of |T3P2| is from 9.7×10−2 to 0.5. M ∼ O(1), and L ∼ O(1). Especially, |T3P2| increases
monotonously when m increases, and approaches 0.5. Therefore,

T2C3 ≪ T1C1 ≪ T3P2,

and the second term in Eq. (42) can be ignored. In order to compare the magnitude between
the first term and the third term in Eq. (42), we divide the region in the channel into two parts,
i.e., the EDL layer near the channel walls and the region outside the EDL.

Outside the EDL, the coordinate satisfies

0 6 Y < H − 1/κ,

and the dimensionless coordinate satisfies

0 6 y < 1 − 1/m,

where 1
κ

denotes the characteristic thickness of the EDL (see Eq. (5)). Generally, m ≫ 1.
Therefore,

cosh(my)

coshm
≪ 1

when y is far away from the walls. This makes the first term in Eq. (42) become dominant.
Therefore, the velocity u0 can be further simplified as follows:

u0(y) ≈ T1C1 cosh(My).

Write T1C1 and M in the complex forms as follows:

T1C1 = reiθ, M = a+ bi,

where r = |T1C1|, θ is the argument of T1C1, and a and b are the real part and the imaginary
part of M , respectively. Finally, we derive

u0(y) ≈ r cosh(θby) cos(θay) (43)

in our situation. It is a sinusoidal wave, and its amplitude r cosh(θby) drops exponentially when
|y| decreases to zero. This explains the damping of the amplitude of the shear velocity outside
the EDL.

In the EDL layer, y ≈ 1. Therefore,

cosh(my)

coshm
≈ 1.

This means that the third term in Eq. (42) will become dominant. It is also a sinusoidal wave
in the form, and its amplitude |T3P2| increases monotonously when the parameter m increases.
This explains the result of Fig. 2(b).

The EOF is the result of the interaction between the applied electric field and the EDL.
Therefore, the wall zeta potential ratio β of the upper plate wall to the lower one has a significant
effect on the velocity (see Fig. 3). When the two plate walls are oppositely charged, i.e., β < 0,
it is not surprising that the direction and amplitude of the velocity u near the wall are directly
correlated with the polarity of the charged channel wall.
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Fig. 3 Dimensionless velocity distributions for different m and Ω, where k1 = 0.5, and β = 0.5

4.2 Volume flow rate
The variations of the amplitude of the normalized volume flow rate Q with m and k1 are

presented in Fig. 4. From Fig. 4(a), it is observed that, when m increases, the amplitude of the
volume flow rate Q increases and approaches a constant value for the given frequency Ω and the
micropolar parameter k1. In order to verify the validity of Fig. 4(a), let us consider the limit
situation where ω = χ = 0. In other words, we first consider the steady electroosmotic flow
of the Newtonian fluid between two micro-parallel plates. Then, the nondimensional electrical
potential and the velocity distribution can be reduced to

ψ(y) =
cosh(my)

coshm
, u(y) = 1 − cosh(my)

coshm
, y ∈ [−1, 1].

Therefore, the dimensionless volume flow rate becomes

Q =

∫ 1

−1

u(y)dy = 2
(
1 − tanhm

m

)
.

Fig. 4 Dependence of amplitude of normalized volume flow rate on m and k1 for different m and Ω

Since tanhm ≈ 1 when m ≫ 1, the volume flow rate Q will approach a constant (here
Q → 2) when m is large (see Fig. 4(a)). If the working fluid is a micropolar fluid instead of a
Newtonian fluid, the micropolar parameter k1 will affect the constant value that the volume
flow rate Q approaches, but it will not change this trend.

Figure 4(b) shows that, when k1 increases from 0 to 1, the volume flow rate Q will finally
decrease to zero for different values of the frequency Ω. This agrees well with the limiting case
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(iii) in Section 3. Figure 4(b) also clearly shows that, the amplitude of Q decreases when the
frequency Ω increases. This is attributed to the effect of the parameter Ω on the amplitude of
the velocity in Fig. 2.

4.3 Distribution of microrotation
Figure 5 illustrates the variations of the dimensionless complex amplitude of the microro-

tation ϕ for different values of m and Ω. The amplitude of ϕ decreases when the frequency Ω
increases. When Ω is low, smaller the value of m is, larger the amplitude of ϕ is. However, when
Ω is large, a converse trend can be found. In addition, the oscillating characteristic becomes
distinct when Ω increases. The reason is attributed to the fact that, when the frequency Ω
is low, the velocity has almost no change in the bulk fluid region for larger m (see Fig. 2(a)),
leading to the microrotation being mainly concentrated within the EDL region for larger m
(see Fig. 5(a)). When the frequency is moderate (e.g., Ω = 2.51), the fluctuation of the velocity
gradually intensifies across the microchannel, and the microrotation strengths gradually from
two solid walls to the channel center for larger m (see Fig. 5(b)).

Fig. 5 Dimensionless microrotation distributions for different m and Ω, where k1 = 0.5, and β = 1

However, with the increase in the frequency Ω, the velocity becomes flat in the channel center
(see Fig. 2(d)). Therefore, the amplitudes of the microrotation become smaller and smaller, and
finally approach zero away from the two EDLs of the walls for larger Ω (see Figs. 5(c) and 5(d)).
The effects of the parameters m and Ω on the microrotation will be further discussed in the
following content by introducing the concept of the microrotation strength. The effects of the
parameter β on the microrotation are similar to the case of the velocity, and here we omit the
discussion. For the sake of simplicity, the value of the parameter β will be fixed to be 1 in the
following discussion.
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4.4 Microrotation strength
In order to study the effects of the relevant dimensionless parameters on the microrotation

of the micropolar fluids, we introduce the concept of the dimensionless microrotation strength
per unit area. Specifically, define

W =

∫ 1

0

ϕ(y, t)dy = Re(W0e
iωt), (44)

where

W0 =

∫ 1

0

ϕ0(y)dy

=
C1(coshM − 1)

M
+
C3(coshL− 1)

L
+
P2(coshm− 1)

m coshm
, (45)

and the parameter β is fixed to be 1.
In Fig. 6, the amplitude of the microrotation strength W , defined above, is plotted for

different k1 and Ω. There is obviously nonmonotonic dependence of W on k1 and Ω. When
k1 → 0 or k1 → 1, the amplitude of W tends to zero (see Fig. 6(a)). This is attributed to
the effect of the parameter k1 on the microrotation being shown in the limiting cases (ii) and
(iii) in Section 3. This phenomenon can be explained further by introducing a characteristic
penetration depth of the microrotation. Similar to the characteristic penetration depth of the
velocity[28], we define the characteristic penetration depth δm of the microrotation as follows:

δm ≈ O
(√ χ

ρω

)
. (46)

Fig. 6 Amplitude of dimensionless microrotation strength W on k1 and Ω for different m

When χ = 0, i.e., k1 = 0, we have δm = 0. This means that the microrotation strength W
is zero. When χ increases from zero, the penetration depth δm increases. Since the micropolar
parameter k1 is a monotonically increasing function of χ for a fixed value of the dynamic
viscosity µ, the amplitude of the microrotation strength will increase with the increase in k1

at the beginning. However, in addition to the penetration depth, the microrotation strength
also depends on the amplitude of the microrotation by definition. Therefore, when χ≫ µ, i.e.,
k1 → 1, δm is greater than the characteristic length H . At this time, the energy dissipation
caused by the viscosity coefficient χ will be dominated. Therefore, the amplitudes of the velocity
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and the microrotation turn out to be small. This finally leads to a decrease in the microrotation
strength when k1 is near 1 (see Fig. 6(a)).

From Fig. 6(b), we can find that, when the value of Ω is low, e.g., Ω < 1, the amplitude
of W is almost a constant for the fixed parameters m and k1, and a smaller value of m gives
a larger value of the amplitude of W . There are peaks for the amplitudes of W at moderate
Ω for large m. From Fig. 6(b), we may also observe that for the case of very high frequencies,
the diffusion time scale is much greater than the oscillation time period. Therefore, there is
no sufficient time for the flow angular momentum to diffuse far into the bulk region from the
EDLs of the walls, and the penetration depth δm is small. Thus, the amplitude of W decreases
to zero finally.
4.5 Stress tensor

The components σ21 and σ12 of the dimensionless stress tensor at the walls are odd functions
of y by virtue of Eqs. (31), (34), and (37) and β = 1.

The amplitudes of σ21 at the wall y = −1 are presented in Fig. 7 for different values of
m, k1, and Ω. It can be seen that when the frequency Ω is small, e.g., Ω < 1, the value of
the micropolar parameter k1 does not affect the amplitude of the wall shear stress σ21, and
|σ21| ≈ m. When Ω increases, there is a critical value Ω0 of the dimensionless frequency, which
depends on the micropolar parameter k1 (see Fig. 7(b)). When Ω > Ω0, the amplitude of the
wall shear stress σ21 decreases when Ω increases.

Fig. 7 Variations of amplitude of dimensionless stress tensor σ21 at walls for different m, k1, and Ω

Unlike the wall shear stress σ21, the amplitude of σ12 depends on the micropolar parameter
k1 at the low frequency Ω (see Fig. 8). When k1 → 1, the amplitude of σ12 tends to zero linearly
for different m.

Fig. 8 Variations of amplitude of σ12 at walls for different m and k1
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5 Conclusions

The behavior of the time periodic EOF of an incompressible micropolar fluid between two
infinitely extended parallel-plates is investigated. The analytical solutions of the velocity and
microrotation are derived under the Debye-Hückel linear approximation. The computational
results show that the effects of the dimensionless electrokinetic width m and the frequency Ω
on the velocity are similar to the case of the Newtonian fluid for a fixed micropolar parameter
k1. The values of k1 show a significant monotonic effect on the velocity and the volume flow
rate, i.e., the amplitudes of the velocity and the volume flow rate will drop to zero when k1

increases from 0 to 1.
However, the factors affecting the microrotation are complex. The dependence of the mi-

crorotation on the micropolar parameter k1 and the frequency Ω is normally non-monotonic.
When the value of k1 is small, the amplitude of the microrotation strength W increases with
the increase in k1. However, the microrotation strength W begins to decrease when k1 is near
1. In the same way, there are peaks for the amplitudes of W at moderate values of Ω for large
m.

In addition, there is a critical value Ω0 of the dimensionless frequency. When Ω < Ω0, the
value of the micropolar parameter k1 does not affect the amplitude of the wall shear stress σ21,
and |σ21| ≈ m. However, when Ω > Ω0, the amplitude of the wall shear stress σ21 will drop
when Ω increases. For different values of the parameter m, the amplitude of σ12 tends to zero
linearly when k1 → 1.
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