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Abstract The present paper investigates the steady flow of an Oldroyd-B fluid. The
fluid flow is induced by an exponentially stretched surface. Suitable transformations
reduce a system of nonlinear partial differential equations to a system of ordinary dif-
ferential equations. Convergence of series solution is discussed explicitly by a homotopy
analysis method (HAM). Velocity, temperature and heat transfer rates are examined for
different involved parameters through graphs. It is revealed that for a larger retardation
time constant, the velocity is enhanced and the temperature is lowered. It is noted that
relaxation time constant and the Prandtl number enhance the heat transfer rate.
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1 Introduction

There are several materials like food stuffs (ketchup, mayonnaise, alcoholic beverages, choco-
lates in liquefies form, ice creams, yogurt, etc.), biological products (vaccines, blood, syrups,
synovial fluid, etc.), and chemical products (tooth pastes, cosmetics, shampoos, paints, phar-
maceutical chemicals, etc.), which do not obey Newtonian’s law of viscosity. These are charac-
terized as the non-Newtonian fluids. The investigation of such fluids is very significant because
of their relevance to practical applications in industry and engineering. Nowadays, the non-
Newtonian fluids are categorized into three classes, namely, the differential, rate, and integral
types. Previous information shows that much attention has been given to the differential type
fluids. Because constitutive equations in the differential type fluids are much easier, and one
can explicitly express the shear stresses in terms of velocity components. However, this is not
the case in rate type fluids. The existed literature indicates that little attention has been given
to the flows of rate type fluids. The Maxwell fluid is the simplest subclass of rate type fluid.
Only the relaxation time is described by this fluid model. On the other hand, an Oldroyd-B
fluid has a measurable relaxation and retardation times, and under general flow conditions,
it can capture the viscoelastic features of dilute polymeric solutions. For instance, Hayat et
al.[1] presented exact solutions for flow problems of an Oldroyd-B fluid. The flow of generalized
Oldroyd-B fluid due to a constantly accelerating plate has been studied by Vieru et al.[2]. Qi
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and Jin[3] examined unsteady helical flows of a generalized Oldroyd-B fluid with the fractional
derivative. The oscillating motion of an Oldroyd-B fluid between two infinite circular cylinders
is studied by Fetecau et al.[4]. It is concluded that the amplitude of transient oscillations is
smaller in magnitude for the case of Oldroyd-B fluid than that of the Newtonian fluid. Fetecau
et al.[5] also presented energetic balance for the Rayleigh-Stokes problem of an Oldroyd-B fluid.
Jamil et al.[6] investigated unsteady helical flows of an Oldroyd-B fluid. Zheng et al.[7] computed
exact solutions for MHD flows of generalized Oldroyd-B fluids due to an infinite accelerating
plate. Zheng et al.[8] studied magnetohydrodynamic flows of generalized Oldroyd-B fluids with
slip effects. Hayat et al.[9] computed exact solutions in generalized Oldroyd-B fluids. Niu et
al.[10] developed the viscoelastic effects on thermal convection of an Oldroyd-B fluid in open-
top porous media. Hayat et al.[11] examined three-dimensional convective flows of Oldroyd-B
fluids over the stretching surface. Shehzad et al.[12] studied the three-dimensional mixed con-
vective radiative flow of an Oldroyd-B fluid. The flow of Oldroyd-B fluid with nanoparticles
and thermal radiation has been investigated by Hayat et al.[13]. Ramzan et al.[14] computed
three dimensional flows of Oldroyd-B fluids in presence of Newtonian heating. Hayat et al.[15]

examined the flow of an Oldroyd-B fluid subject to homogeneous-heterogeneous reactions and
Cattaneo-Christov heat flux.

Flows over the stretching surface have promising applications in several engineering pro-
cesses. For example, extrusion of molten polymers through a slit die has a vital role in the
production of plastic sheets and wire drawing. Moreover, glass production and paper pro-
duction are some novel applications of the flows over stretched surfaces. Since the pioneering
work of Crane[16] on the flows over the stretching surface, various researchers are engaged in
studying such work under different aspects. It is also noticed that the stretching velocity may
not be linear in all the cases. Hence, few researchers have examined the flows induced by the
exponentially stretching surface. For example, Magyari and Keller[17] studied the heat and
mass transport process over an exponentially stretching surface. The stagnation point flow
and heat transfer due to an exponentially stretching/shrinking sheet have been presented by
Bhattacharyya and Vajravelu[18]. Thermally stratified magnetohydrodynamic flows induced by
an exponentially stretching sheet have been analyzed by Mukhopadhyay[19]. Pramanik[20] pre-
sented radiative flows of Casson fluids past an exponentially stretched surface. Hayat et al.[21]

developed the convective flow of the nanofluid over an exponentially stretching sheet. The im-
pact of the second-order slip on the nanofluid flow past an exponentially shrinking/stretching
sheet using Buongiorno’s model has been presented by Rahman et al.[22]. Nagalakshmi et al.[23]

studied effects of Hall current on the boundary layer flow induced by an exponentially stretching
surface. Khan et al.[24] presented the viscoelastic flow by an exponentially stretching sheet by
considering Cattaneo-Christov heat flux. Mustafa et al.[25] examined radiative flows induced
by a bi-directional exponentially stretching surface.

The present study is modelled in such a way that it investigates the boundary layer flow of
an Oldroyd-B fluid. Considering fluid model can capture the relaxation and retardation effects.
The two-dimensional flow is created by an exponentially stretching surface. The series solution
to the resulting problem is constructed, and convergence is shown using a homotopy analysis
method (HAM)[26–35]. Main attention in the discussion is focused on the analysis of relaxation
and retardation time effects. Key points of the present study are summed up in the concluding
section.

2 Model development

A stretched flow of an incompressible Oldroyd-B fluid with exponential velocity and temper-
ature distributions is presented. The governing equations in the absence of thermal radiation
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and viscous dissipation effects are
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where u and v are the velocity components along the x- and y-directions, respectively, ν is the
kinematic viscosity, Λ1 and Λ2 are the relaxation time and the retardation time, respectively,
T is the temperature, and α is the thermal diffusivity. The boundary conditions are

u = U0e
x
L , v = 0, T = T∞ + T0e

x
2L at y = 0,

u → 0, T → 0 as y → ∞. (4)
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Equation (1) is satisfied automatically, and Eqs. (2) and (3) are reduced as follows:

f ′′′ − 2f
′2 + ff ′′ − β1(4f

′3 − ηf
′2f ′′ + f2f ′′′ − 6ff ′f ′′) + β2(3f
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) = 0, (6)

1
Pr

θ′′ + fθ′ − f ′θ = 0, (7)

f ′(0) = 1, f(0) = 0, θ(0) = 1, f ′(∞) = 0, θ(∞) = 0. (8)

Moreover, the Prandtl number Pr, dimensionless relaxation time constant β1, and retardation
time constant β2 are defined as

Pr =
ν

α
, β1 =

Λ1U0e
x
L

2L
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Λ2U0e
x
L

2L
. (9)

The ratio of the conductive thermal resistance to the convective thermal resistance of the fluid
is referred as the Nusselt number Nux. It gives the heat transfer rate at the surface, which is
defined by

Nux =
xqw

kT0e
x
2L

, (10)

where qw denotes the wall heat flux. In a dimensionless form,
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(
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x
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)− 1
2

= −θ′(0), (11)

where Rex = U0e
x
L x/ν denotes the local Reynolds number.
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3 Homotopic solutions

We choose the linear operators L1 and L2 and the initial guesses f0(η) and θ0(η) in the
forms of

L1(f) = f ′′′ − f ′, L2(θ) = θ′′ − θ, (12)

f0(η) = 1 − e−η, θ0(η) = e−η (13)

together with the properties

⎧
⎨
⎩

L1(c1 + c2eη + c3e−η) = 0,

L2(c4eη + c5e−η) = 0,

(14)

where ci (i = 1, 2, · · · , 5) are the constants. We construct the zeroth- and mth-order problems
as follows:
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where �f and �θ are the nonzero auxiliary parameters. The general solutions are

fm(η) = f∗
m(η) + c1 + c2eη + c3e−η, (26)

θm(η) = θ∗m(η) + c4eη + c5e−η, (27)

in which f∗
m and θ∗m denote the special solutions.

4 Convergence analysis

The HAM is employed to compute the solution of problems consisting of Eqs. (6)–(8). Aux-
iliary parameters �f and �θ play a key role in adjusting and controlling the convergence and
rate of approximations for the functions f and θ. The �-curves of f ′′(η) and θ′(η) are plotted
to get admissible values of �f and �θ at 9th-order of approximations. The admissible values
of �f and �θ are −0.85 � �f � −0.3 and −1.1 � �θ � −0.3 (see Fig. 1). Further, the series
solutions converge in the whole region of η (0 < η < ∞) when �f = �θ = −0.6 (see Table 1).

Fig. 1 �-curves for f and θ
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Table 1 Convergence of HAM solutions for different orders of approximations when Pr = 1.0, β1 =
0.1, and β2 = 0.1

Order of approximations −f ′′(0) −θ′(0)

1 1.188 750 1.000 000

5 1.204 850 0.969 581

10 1.204 740 0.965 325

15 1.204 730 0.964 790

20 1.204 720 0.964 694

27 1.204 720 0.964 671

30 1.204 720 0.964 671

35 1.204 720 0.964 671

5 Results and discussion

Figures 2 and 3 are plotted to analyze the impact of relaxation time constant β1 and the
retardation time constant β2 on the flow field f ′. The effect of parameter β1 on the function f ′

is illustrated in Fig. 2. For larger β1, the values of f ′ and the boundary layer thickness decrease.
This is because of the fact that a slower recovery process is observed for the higher relaxation
time, which causes the boundary layer thickness to grow at a slower rate. Figure 3 depicts the
effects of retardation time constant β2 on the velocity function f ′. Here, when β2 is increased,
the enhancement in the fluid flow and its boundary layer thickness is obtained.

Fig. 2 Impact of β1 on velocity profile Fig. 3 Impact of β2 on velocity profile

Figures 4–6 are plotted for the effects of Prandtl number Pr, the relaxation time constant
β1, and the retardation time constant β2 on the temperature field θ. Figure 4 shows the effects
of Pr on the temperature. Reduction in the temperature field θ is observed for larger values of
Pr. Influence of β1 on θ can be seen in Fig. 5. There is a decrease in θ when β1 is increased.
Figure 6 represents the effect of β2 on θ. It is observed that an increase in β2 decays the
temperature profile θ.

Table 2 is prepared to show the numerical values of surface heat transfer rate for different
emerging parameters. This table shows that the Nusselt number decreases when there is an
increase in the relaxation time constant β1, and it increases when the retardation time constant
β2 and Prandtl number Pr are increased.
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Fig. 4 Impact of Pr on temperature profile Fig. 5 Impact of β1 on temperature profile

Fig. 6 Impact of β2 on temperature profile

Table 2 Values of Nux(Rex
x
2L

)−
1
2 for some values of β1, β2, and Pr

β1 β2 Pr −Nux(Rex
x
2L

)−
1
2

0.10 0.1 1.0 0.964 68

0.15 0.954 70

0.20 0.945 23

0.25 0.936 21

0.30 0.927 58

0.10 0.2 0.989 89

0.3 1.010 10

0.4 1.026 60

0.5 1.040 50

0.6 1.052 40

0.1 1.1 1.025 60

1.2 1.083 90

1.5 1.245 80

1.8 1.392 40

2.0 1.483 20
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6 Concluding remarks

This study addresses an Oldroyd-B fluid flow generated by a stretched sheet with the ex-
ponential velocity and temperature distribution. Impacts of emerging parameters on the heat
and fluid flow are examined. Following observations are made:

(i) The effects of β2 are quite opposite to those of β1 on the velocity profile f ′.
(ii) The temperature and thermal boundary layer thickness decay for the larger Prandtl

number.
(iii) The variations of β1 and β2 are qualitatively similar on the temperature profile.
(iv) The Nusselt number rises for larger β2 and Pr while it reduces by increasing β1.
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