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1 Introduction

Many theories have been proposed to consider a continuum environment. The classical
models assumed that materials are continuous and the size of the constituted submaterials
has no effect on the mechanical behaviors of the materials. Recently, numerous researchers
have focused on the structures with very small size. They used new continuum mechanical
models accounting size dependency. A non-local model based on Eringen’s theory of non-local
continuum mechanics has been proposed for the effects of the size dependency in very small
structures[1]. The results show that the effects of surface elasticity and residual stress are
very important in the analysis of thin film and nano-scale structures. This condition becomes
important when the thickness of the structure reduces to nano-scale[2–3].

This paper tries to present the wave propagation solution for a functionally graded piezo-
electric nano-rod by use of the non-local model excited by a two-dimensional (2D) electric
potential. A literature review can present the necessity of this research. Hsu[4] studied the
electromechanical behavior of piezoelectric laminated composite beams by use of the differ-
ential quadrature method (DQM). The Chebyshev-Gauss-Lobatto sample point equation was
used to select the sample points, and the electromechanical responses of the piezoelectric lam-
inated composite beams with various boundary conditions were determined. Lu et al.[5] used
a non-local plate model for the Kirchhoff and the Mindlin plate models. The assumed theories
were based on Eringen’s theory of non-local continuum. Wang et al.[6] employed the non-local
elasticity solution for the evaluation of the length-dependent in-plane stiffness of achiral and
chiral single-walled carbon nano-tubes. The length-dependent stiffness was revealed from the
non-local elasticity. Song et al.[7] investigated the wave propagating in one-dimensional (1D)
nano-structures with the initial axial stress. They used a non-local elastic model to incorporate
with the strain gradient theory. The governing equations for the longitudinal and transverse
waves in the bars and beams were derived by use of two scale parameters for introducing the size
effect. The phase and group velocities of the wave propagation were obtained analytically. Ru[8]

presented the linearized Gurtin-Murdoch model of surface elasticity. The proposed derivation
offered a simple explanation for all unique features of the model and its simplified/modified
versions.

Ke et al.[9] studied the non-linear free vibration of the functionally graded nano-composite
beams reinforced by the single-walled carbon nano-tubes (SWCNTs) based on the Timoshenko
beam theory and von Kármán geometric non-linearity. The Ritz method was employed to
derive the governing eigenvalue equation. The effects of different parameters such as the nano-
tube volume fraction, the vibration amplitude, and the slenderness ratio were evaluated on
the non-linear free vibration characteristics of the beams. Şimşek[10] performed a non-linear
dynamic analysis of a Flattened-Gaussian (FG) beam with a power law distribution due to a
moving harmonic load by use of the Timoshenko beam theory. The fundamental equations
were derived by use of the Lagrange equations. The effects of some parameters such as the
material distribution and the speed of load were evaluated. Lu et al.[11] employed the Gurtin-
Murdoch continuum surface elasticity model to study the buckling delamination of the ultra
thin film-substrate system. The effects of the surface deformation and residual stress on the
large deflection of the ultra thin film were considered.

Ke et al.[12] employed the non-local theory for the non-linear vibration of the piezoelec-
tric Timoshenko nano-beam. The beam was subjected to an applied voltage and a uniform
temperature change. The effects of various parameters such as the non-local parameter, the
temperature change, and the external electric voltage were studied on the size-dependent non-
linear vibration characteristics of the piezoelectric nano-beam.

Ghorbanpour Arani et al.[13] analyzed the vibration of the coupled system of double-layered
graphene sheets (CS-DLGSs). They assumed that the structure was embedded in a visco-
Pasternak foundation, and employed the non-local elasticity theory of orthotropic plate. Ghor-



Surface effect and non-local elasticity in wave propagation of piezoelectric nano-rod 291

banpour Arani et al.[14] studied the electro-thermal transverse vibration of fluid-conveying
double-walled boron nitride nano-tubes (DWBNNTs). The elastic medium was described by
spring and van der Waals (vdW) forces between the inner nano-tube and the outer nano-tube.

Rahimi et al.[15] presented an electroelastic analysis of a cylindrical shell by use of the
energy method and the first-order shear deformation theory. Wu and Hui[16] evaluated the
analytical and numerical solutions of a non-local elastic bar in the tension. Yan and Jiang[17]

studied the effect of the surface elasticity on the vibration and buckling behavior of a simply
supported piezoelectric nano-plate (PNP) by use of a modified Kirchhoff plate model. Two
kinds of in-plane constraints were defined for the PNP, and the surface effects were accounted
in the modified plate theory through the surface piezoelectricity model and the generalized
Young-Laplace equations. Hadi et al.[18] studied the stresses and strains of a functionally
graded Timoshenko beam subjected to an arbitrary transverse loading by the energy method.
Nami and Janghorban[19] developed a new higher order shear deformation theory based on
the trigonometric shear deformation theory for considering the size effects with the non-local
elasticity theory. Hosseini-Hashemi et al.[20] considered the surface effects on the free vibration
analysis of the Euler-Bernoulli and Timoshenko nano-beams by use of the non-local elasticity
theory. The problem was solved for different types of boundary conditions. Güven[21] presented
the one-dimensional propagation wave in a nano-bar. The local and non-local solutions were
evaluated for the wave velocity. Some electromechanical analyses of the functionally graded
piezoelectric materials were performed[22–29]. Ghorbanpour Arani and Jafari[30] employed the
DGM to derive the equations of non-local and non-linear vibrations of the embedded laminated
microplates resting on an orthotropic Pasternak medium. Non-linearity was considered by
use of the von Karman relation. The effects of different parameters such as the non-local
parameters, the elastic media, the aspect ratios, and the boundary conditions were considered
on the non-linear vibration of the micro-plate.

Zenkour and Abouelregal[31] investigated a vibration analysis of a nano-beam made of the
functionally graded material with the exponential distribution law by use of the non-local gen-
eralized thermoelasticity theory. Zare et al.[32] studied the natural frequencies of a functionally
graded nano-plate for different combinations of boundary conditions. The material properties
were considered to be variable along the thickness direction based on the power function. The
effects of different boundary conditions were considered on the natural frequencies of the system.

The purpose of this study is to derive the fundamental governing differential equations of
wave propagation in a functionally graded piezoelectric nano-rod excited by 2D electric potential
and applied voltage at the top of the rod. For constituting the governing differential equations
of the system, the unified non-local elasticity model and theory for the surface elasticity are
used. The effects of some important parameters such as the material gradation and the applied
voltage are considered on the characteristics of the wave propagation.

2 Formulation

Based on the Love rod model, the displacement field is presented as follows[21]:































u(x1, t) = u,

v(x1, x2, t) = −νx2
∂u

∂x1
,

w(x1, x3, t) = −νx3
∂u

∂x1
,

(1)

where u, v, and w are the displacement components along the x1-, x2-, and x3-axes of the
Cartesian coordinate system, and ν is the Poisson ratio. The motion equations along the three
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dimensions of the problem are defined by

∂Tij

∂xj

+ ρBi = ρai, i = 1, 2, 3. (2)

The extension of the motion equations in the three dimensions and the substitution of the
acceleration components without the body force effect are


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


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

∂T11

∂x1
+

∂T12

∂x2
+

∂T13

∂x3
= ρ

∂2u

∂t2
,

∂T21

∂x1
+

∂T22

∂x2
+

∂T23

∂x3
= ρ

∂2v

∂t2
,

∂T31

∂x1
+

∂T32

∂x2
+

∂T33

∂x3
= ρ

∂2w

∂t2
,

(3)

where Tij (i, j = 1, 2, 3) are the components of the stress tensor.
Referring to the assumed displacement field in Eq. (1), we can derive the strain components

as follows:
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ε11 =
∂u

∂x1
,

ε22 =
∂v

∂x2
= −ν

∂u

∂x1
,

ε33 =
∂w

∂x3
= −ν

∂u

∂x1
,

ε12 = ε21 =
1

2

( ∂u

∂x2
+

∂v

∂x1

)

= −
1

2
νx2

∂2u

∂x2
1

,

ε13 = ε31 =
1

2

( ∂u

∂x3
+

∂w

∂x1

)

= −
1

2
νx3

∂2u

∂x2
1

,

ε23 = ε32 =
1

2

( ∂v

∂x3
+

∂w

∂x2

)

= 0,

(4)

where εij are the components of the strain tensor. Then, Tij (i, j = 1, 2, 3) can be expressed
by[22–23]
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
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

T11 = E
∂u

∂x1
− e111E1 − e113E3,

T12 = −µνx2
∂2u

∂x2
1

,

T13 = −µνx3
∂2u

∂x2
1

,

T22 = T33 = T23 = 0,

(5)

or

Tij = 2µεij + λεkkδij − eijkEk,
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in which µ and λ are the Lame’s constants, eijk is the piezoelectric constants, Ek is the electric
field, and E is the modulus of elasticity.

Substituting the non-zero components of the stress into the motion equations yields




















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
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

∂T11

∂x1
+

∂T12

∂x2
+

∂T13

∂x3
= ρ

∂2u

∂t2
,

∂T21

∂x1
= ρ

∂2v

∂t2
,

∂T31

∂x1
= ρ

∂2w

∂t2
.

(6)

The unified non-local elasticity model is[1,13,21]

(1 − l2m∇
2)Tij = (1 − l2s∇

2)(2µεij + λεkkδij), (7)

where ∇2 is the Laplacian operator. Substituting the obtained stress and strain from the related
equations yields
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
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










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

T11 − l2m
∂2T11

∂x2
1

= E
(

ε11 − l2s
∂2ε11

∂x2
1

)

− e111E1 − e113E3,

T12 − l2m
∂2T12

∂x2
1

= 2µ
(

ε12 − l2s
∂2ε12

∂x2
1

)

,

T13 − l2m
∂2T13

∂x2
1

= 2µ
(

ε13 − l2s
∂2ε13

∂x2
1

)

.

(8)

The second derivative of the stress can be obtained by the differentiation of Eq. (6) as follows:
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






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∂2T11

∂x2
1

+
∂2T12

∂x2∂x1
+

∂2T13

∂x3∂x1
= ρ

∂3u

∂x1∂t2
,

∂2T21

∂x2∂x1
= ρ

∂3v

∂x2∂t2
,

∂2T31

∂x3∂x1
= ρ

∂3w

∂x3∂t2
.

(9)

Substitute the shear stress in the first line of Eq. (9) from Eq. (6) in terms of the displacement
components. Then, Eq. (9) can be rewritten as follows:
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

∂2T11

∂x2
1

= ρ
∂3u

∂x1∂t2
−

∂2T12

∂x2∂x1
−

∂2T13

∂x3∂x1
→

∂2T11

∂x2
1

= ρ(1+ν)
∂3u

∂x1∂t2
+

∂(ρνx3)

∂x3

∂3u

∂x1∂t2
,

∂2T21

∂x2∂x1
=

∂

∂x2

(

ρ
∂2v

∂t2

)

=
∂

∂x2

(

ρ
∂2v

∂t2

)

= −ρν
∂3u

∂x1∂t2
,

∂2T31

∂x3∂x1
=

∂

∂x3

(

ρ
∂2w

∂t2

)

= −
∂

∂x3

(

ρνx3
∂3u

∂x1∂t2

)

(10)
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or

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
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

∂2T11

∂x2
1

=
(

ρ(1 + 2ν) + νx3
∂ρ

∂x3

) ∂3u

∂x1∂t2
,

∂2T21

∂x2∂x1
= −ρν

∂3u

∂x1∂t2
,

∂2T31

∂x3∂x1
= −

∂

∂x3

(

ρνx3
∂3u

∂x1∂t2

)

.

(11)

By considering the electric potential, we can complete the required equations. A 2D electric
potential ϕ is introduced as follows:

ϕ(x1, x3) = f(x1)f(x3), f(x3) =
(1

2
+

x3

h

)e

V0, e > 1, (12)

where V0 is the applied voltage at the top of the plate, and (1
2 + x3

h
)e is the assumed distribution

for the electric potential along the transverse direction. For example, e = 1 corresponds to a
linear distribution electric potential, and e > 1 presents a higher order distribution electric
potential. For the above electric potential defined by Eq. (12), we have the electric field as
follows[22–23]:



















































ϕ(x1, x3) =
(1

2
+

x3

h

)e

V0f(x1),

E1 = −
∂ϕ

∂x1
= −

(1

2
+

x3

h

)e

V0
∂f

∂x1
,

E2 = 0,

E3 = −
∂ϕ

∂x3
= −

e

h

(1

2
+

x3

h

)e−1

V0f.

(13)

For more simplification in the derivation of equations, f(x1) is replaced with f . By consid-
ering the electric field components derived in Eq. (13), we can derive the three components of
the stress as follows:
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

T11 = l2m

(

ρ(1 + 2ν) + νx3
∂ρ

∂x3

) ∂3u

∂x1∂t2
+ E

( ∂u

∂x1
− l2s

∂3u

∂x3
1

)

+ e111

(1

2
+

x3

h

)e

V0
∂f

∂x1
+ e113

e

h

(1

2
+

x3

h

)e−1

V0f,

T12 = −l2mρνx2
∂4u

∂x2
1∂t2

+
E

2(1 + ν)
νx2

(

−
∂2u

∂x2
1

+ l2s
∂4u

∂x4
1

)

,

T13 = −l2mρνx3
∂4u

∂x2
1∂t2

+
E

2(1 + ν)
νx3

(

−
∂2u

∂x2
1

+ l2s
∂4u

∂x4
1

)

.

(14)

For an electromechanical system, the electric displacement is defined by[22–23]































Di =eijkεjk + ηikEk,

D1 =e111ε11+η11E1+η13E3 =e111
∂u

∂x1
−η11

(1

2
+

x3

h

)e

V0
∂f

∂x1
−η13

e

h

(1

2
+

x3

h

)e−1

V0f,

D3 =e311ε11+η31E1+η33E3 =e311
∂u

∂x1
−η31

(1

2
+

x3

h

)e

V0
∂f

∂x1
−η33

e

h

(1

2
+

x3

h

)e−1

V0f,

(15)
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where ρ(x3), E(x3), eijk(x3), and ηik(x3) are the non-homogeneous density, the modulus of
elasticity, the piezoelectric material property, and the dielectric material property, respectively.

For a symbolic material property Ξ(x3), we have

Ξ(x3) = (Ξt − Ξb)
(1

2
+

x3

h

)n

+ Ξb, (16)

where Ξt and Ξb are the material properties at the top and the bottom, respectively, n is the
non-homogenous index, and 2h is the thickness of the bar.

As we know, in sub-structures, the surface properties differ from the bulk properties. Due
to this difference, the surface elasticity is used by introducing the surface stress as follows[11]:

ταβ = τ0δαβ + 2(µ0 − τ0)εαβ + (λ0 + τ0)εvvδαβ + τ0uα,β, τα3 = τ0u3,α, (17)

where ταβ is the surface stress, τ0 is the residual surface tension, µ0 and λ0 are the surface
Lame’s constants, and u is the displacement field.

Then, we can evaluate the energy corresponding to the surface stress, i.e.,

U s = U s+ + U s− =
1

2

∫

S+

τ s
αβεs

αβdS+ +
1

2

∫

S−

τ s
αβεs

αβdS−. (18)

The obtained surface energy can be presented as follows:

U s+ =

∫

S+

(

Ss+

1

∂u

∂x1
+ Ss+

2

∂u

∂x1

∂u

∂x1
+ Ss+

3

∂2u

∂x2
1

∂2u

∂x2
1

)

dx1, (19)

where Ss+

1 , Ss+

2 , and Ss+

3 are presented in Appendix A. Similar to the above relations, for the
bottom surface, we have

U s− =

∫

S−

(

Ss−

1

∂u

∂x1
+ Ss−

2

∂u

∂x1

∂u

∂x1
+ Ss−

3

∂2u

∂x2
1

∂2u

∂x2
1

)

dx1. (20)

After the evaluation of the mechanical and electrical components, i.e., the stress, the strain,
the electric field, and the electric displacement, the Hamilton principle can be used for the
derivation of the total energy of the system, consequently governing the differential equations
of the system.

The kinetic energy of the system is evaluated as follows:

Eek =

∫∫∫

1

2
ρ(u̇2 + v̇2 + ẇ2)dx1dx2dx3

=

∫∫∫

1

2
ρ
((∂u

∂t

)2

+
(

νx2
∂2u

∂t∂x1

)2

+
(

νx3
∂2u

∂t∂x1

)2)

dx1dx2dx3. (21)

The strain energy of the system including the mechanical and electrical energies is introduced
as follows[15]:

U =

∫∫∫

1

2
(T11ε11 + 2T12ε12 + 2T13ε13 − D1E1 − D3E3)dx1dx2dx3 + U s. (22)

Substituting the corresponding equations for the stress, the strain, the electric displacement,
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and the electric field from Eqs. (1), (13), (14), and (15) yields the potential energy as follows:

U =

∫∫∫

1

2

((

l2m

(

ρ(1 + 2ν) + νx3
∂ρ

∂x3

) ∂3u
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In order to evaluate the final differential equation of the system, the Hamilton principle is
used. This principle implies that

∫ t2

t1

(δEek − δU)dt = 0. (24)

Considering both the kinetic energy and the potential energy in the Hamilton principle and
performing the integration by part operations yield two final differential equations as follows:
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(25)

where all the integration constants A, B, · · ·, O are expressed in Appendix A. Considering the
harmonic longitudinal wave propagation equation and the electric potential with the equations
u = Ueik(x1−ct) and f = F eik(x1−ct) and substituting the governing differential equation yield

(

χ11 χ12

χ21 χ22

) (

U

F

)

=

(

0
0

)

, (26)

where χij are functions of the integration constants in Appendix A, k is the wave number, and
c is the phase velocity. To obtain the velocity of the wave propagation, the determinant of the
above matrix must be considered to be zero, i.e.,

χ11χ22 − χ12χ21 = 0. (27)
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3 Numerical results and discussion

This section presents the numerical results of the problem in terms of different parameters
of the electromechanical system. The obtained results contain the real and imaginary parts of
the phase velocity c.

Figure 1 shows the distribution of the real part of the phase velocity c in terms of the
wave number for different values of the non-homogeneous index when V0 = 10. When the
wave number increases, the real part decreases considerably. Furthermore, it can be observed
that when the non-homogeneous index increases, the real part of the phase velocity decreases
considerably. This is due to the decrease in the stiffness of the structure along the axial direction.

Figure 2 shows the distribution of the imaginary part of the phase velocity c in terms of the
wave number for different values of the non-homogeneous index when V0 = 10.

The investigation on the effects of the used parameters indicates that when the wave num-
ber increases, the imaginary part tends to an asymptotic value. Furthermore, when the non-
homogeneous index increases, the imaginary part of the phase velocity increases. It can be
concluded that for large values of the wave number, the values of the non-homogeneous index
have no considerable effect on the imaginary part of the phase velocity.

Fig. 1 Real part of c in terms of wave
number for different values of non-
homogeneous index when V0 = 10

Fig. 2 Imaginary part of c in terms of wave
number for different values of non-
homogeneous index when V0 = 10

3.1 Comparison between cases with and without surface effect

This section presents the numerical results considering the surface effect. For this consid-
eration, the phase velocity is valuated in terms of different values of the wave number for two
cases, i.e., with and without the surface effect. Figure 3 shows the distribution of the real part
of the phase velocity c in terms of the wave number when V0 = 100. It can be concluded that
when the wave number increases, the difference between the results increases considerably.

Figure 4 shows the distribution of the real part of the phase velocity c in terms of the
wave number when V0 = 10. The same conclusion presented for Fig. 3 can be found. It can
be concluded from Figs. 3 and 4 that the surface elasticity in the derivation of the relations
decreases the phase velocity of the nano-rod, especially for large values of the wave number.
3.2 Effect of applied voltage

In order to study the effect of the applied voltage on the phase velocity, the obtained results
are evaluated for different values of the applied voltage. Figures 5 and 6 show the distributions
of the imaginary and real parts of the phase velocity in terms of different values of the wave
number for different values of the applied voltage, respectively.

The obtained results indicate that when the applied voltage increases, the imaginary part
decreases considerably. The investigation on the obtained results in Fig. 6 indicates that the
applied voltage has no considerable effect on the real part of the phase velocity.
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Fig. 3 Comparison between real part of c in
terms of wave number with and with-
out surface effect when V0 = 100

Fig. 4 Comparison between real part of c in
terms of wave number with and without
surface effect when V0 = 10

Fig. 5 Imaginary part of c in terms of wave
number for different applied voltages

Fig. 6 Real part of c in terms of wave number
for different non-homogeneous indexes

3.3 Effect of non-local parameters

In this section, the effects of the non-local parameter are considered on the results of the
problem. Figures 7 and 8 show the real and imaginary parts of the phase velocity in terms of
the non-local parameter ls or lm, where ls = lm.

The obtained results in Figs. 7 and 8 indicate that when the non-local parameter increases,
both the real and imaginary parts of c decrease. This behavior agrees with the obtained results
in Ref. [14].

4 Conclusions

In this study, the non-local elasticity solution and the surface elasticity effect are developed
for the analysis of the wave propagation in a functionally graded piezoelectric nano-rod excited
by a 2D electric potential and an applied voltage at the top of the rod. The effects of different
important parameters such as the surface effect, the applied voltage, the non-local parameter,
and the non-homogeneous index are investigated on the real and imaginary parts of the phase
velocity. Some important results are expressed as follows:

(i) The wave number plays an important role in the real and imaginary parts of the phase
velocity. The real part decreases considerably while the imaginary part tends to an asymptotic
value when the wave number increases.

(ii) The obtained results with and without the surface effect show that the difference between
the two considered cases increases considerably when the wave number increases, and the phase
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Fig. 7 Real part of c in terms of non-local
parameter ls (lm)

Fig. 8 Imaginary part of c in terms of non-local
parameter ls (lm)

velocity with the surface effect is smaller than that without the surface effect.
(iii) When the applied voltage increases, the imaginary part decreases considerably while

the real part changes little.
(iv) The non-local parameter used in the non-local elasticity solution has a decreasing trend

on the phase velocity of the nano-rod when the non-local parameter increases.
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