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Abstract Chua’s circuit is a well-known nonlinear electronic model, having complicated
nonsmooth dynamic behaviors. The stability and boundary equilibrium bifurcations for a
modified Chua’s circuit system with the smooth degree of 3 are studied. The parametric
areas of stability are specified in detail. It is found that the bifurcation graphs of the su-
percritical and irregular pitchfork bifurcations are similar to those of the piecewise-smooth
continuous (PWSC) systems caused by piecewise smoothness. However, the bifurcation
graph of the supercritical Hopf bifurcation is similar to those of smooth systems. There-
fore, the boundary equilibrium bifurcations of the non-smooth systems with the smooth
degree of 3 should receive more attention due to their special features.
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1 Introduction

Chua’s circuit is a well-known electronic oscillator model, having complicated nonlinear
dynamic behaviors. It is a typical non-smooth system with an absolute value term. Over years,
some authors mainly pay attention to the dynamics of Chua’s circuit, and have obtained many
achievements[1–5]. Freire et al.[1] found a possible degeneration of the focus-center-limit cycle
bifurcation. Dana et al.[2] reported some experimental results of the Shil’nikov-type homoclinic
chaos in asymmetry-induced Chua’s oscillators. Zhang and Bi[3] observed that the trajectories
of Chua’s circuit passed across both the two switching boundaries, and predicted the occurrence
of discontinuous bifurcations. Chua’s circuit also has several modified mathematical models.
Tang et al.[6] introduced a modified Chua’s circuit with the piecewise-smooth quadratic function
x|x|. Tang and Wang[7] investigated the adaptive active control problem of the modified Chua’s
circuit introduced in Ref. [6].

The bifurcation theory is very important in understanding the qualitative change in the
dynamical behavior. The bifurcations of smooth dynamical systems, usually called the classical
bifurcations, are well developed, and can be treated by analytical or topological approaches[8–11].
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For non-smooth dynamical systems, stresses are laid on non-smooth bifurcations or discontinuity-
induced bifurcations. For piecewise-smooth continuous (PWSC) systems, Leine et al.[12] pointed
that non-smooth bifurcations of an equilibrium point occurred when the eigenvalues were set-
valued. Di Bernardo and Budd[13] claimed that a boundary equilibrium bifurcation occurred
when the left and right Jacobian matrices were unequal at the boundary equilibrium point.

In recent years, much attention in the research on non-smooth dynamical systems has been
directed towards impact systems, Filippov systems (e.g., dry friction systems), and PWSC
systems. Di Bernardo and Budd[13], Di Bernardo and Hogan[14], and Di Bernardo et al.[15]

defined the smooth degree of an equilibrium point for the classification of nonsmooth systems,
and pointed that the smooth degree was equal to zero for impact systems, one for Filippov
systems, and two for PWSC systems. In fact, there still exist the systems with the smooth
degree of 3. The modified Chua’s circuit with the function x|x| has the smooth degree of
3. Tang et al.[6] briefly analyzed the classical bifurcations of this model for some parameters.
However, there is no research on the bifurcations of the boundary equilibrium points locating
on the switching interfaces. Therefore, it is necessary to explore the boundary equilibrium
bifurcations of this modified Chua’s circuit in greater depth and breadth.

The organization of this paper is given as follows. In Section 2, we introduce some concepts
about the boundary equilibrium bifurcation and the smooth degree. In Sections 3 and 4, we
investigate the stability and bifurcations of some boundary equilibrium points of the modified
Chua’s circuit, respectively. Finally, the conclusions are drawn in Section 5.

2 Preliminaries

Consider the following piecewise smooth system with the parameter μ:

Ẋ = f(X, μ) =

{
f1(X, μ), h(X) � 0,

f2(X, μ), h(X) < 0,
(1)

where X ∈ R
n, μ ∈ R

m is the parameter, f1, f2 : R
n × R

m → R
n, and h : R

n → R. Let⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v− = {(x1 · · ·xn)|h(X) < 0},
Σ = {(x1 · · ·xn)|h(X) = 0},
v+ = {(x1 · · ·xn)|h(X) > 0},

where Σ is the switching boundary. It is assumed that f is first-order differentiable at the
boundary point, i.e., if X∗ is a boundary point satisfying h(X∗) = 0, then

f(X∗, μ) = f1|X=X∗ = f2|X=X∗ ,

and the Jacobian matrix J can be defined by

J(X∗, μ) =
∂f1

∂X

∣∣∣
X=X∗

=
∂f2

∂X

∣∣∣
X=X∗

.

Definition 1 A point X∗ is an admissible equilibrium point of (1) if f1|X=X∗ = 0, h(X∗) >
0 or f2|X=X∗ = 0, h(X∗) < 0. It is a boundary equilibrium point if f1|X=X∗ = 0, f2|X=X∗ = 0,
and h(X∗) = 0.

Assume that both the vector fields f1 and f2 are defined over the entire local region of the
phase space under consideration, i.e., on both sides of Σ. Thus, the flows ϕi (i = 1, 2) generated
by each of the vector fields can be defined as the quantities satisfying

∂ϕi(X, t)
∂t

= fi(ϕi(X, t)), ϕi(X, 0) = X.
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Here, we assume that such flows can be expanded as a Taylor series about the switching mani-
fold.

Definition 2[14] The smoothness degree of a system at a boundary point X∗ is equal to r
if the Taylor series expansions of ϕ1(X∗, t) and ϕ2(X∗, t) with respect to t, evaluated at t = 0,
agree up to the terms of o(tr−1). That is, the first non-zero partial derivative with respect to t
of the difference (ϕ1(X∗, t) − ϕ2(X∗, t))|t=0 is of the order r.

Taking account of that

f1|X=X∗ = f2|X=X∗ ,
∂f1

∂X

∣∣∣
X=X∗

=
∂f2

∂X

∣∣∣
X=X∗

,

we have

∂2ϕ1(X, t)
∂t2

∣∣∣
X=X∗

=
∂2ϕ2(X, t)

∂t2

∣∣∣
X=X∗

,

and (1) has the smooth degree of 3 at X∗ by the above definition. However, we cannot investi-
gate the boundary equilibrium bifurcation of (1) by the classical bifurcation theory, where the
vector field of the smooth systems is sufficiently differentiable everywhere. Although there is
a distinguishable difference between (1) and the smooth systems, some relations between them
still exist. They have the well-defined Jacobian matrix everywhere. Therefore, it is possible to
define the boundary equilibrium bifurcations of (1) by means of the eigenvalues of the Jacobian
matrix.

Definition 3 The piecewise smooth system (1) may undergo a bifurcation at a boundary
equilibrium point X = X∗ if there exists μ = μ∗ such that

(i) f(X∗, μ∗) = 0,
(ii) h(X∗, μ∗) = 0,
(iii) Re(eig(J(X∗, μ∗))) = 0, i.e., the real parts of the eigenvalues of the Jacobian matrix

J(X∗, μ∗) are zero.
There may exist various boundary equilibrium bifurcations for system (1). This definition

is the necessary condition, and is somewhat similar to the classical equilibrium bifurcation of
smooth systems. Nevertheless, (1) is not higher order differentiable, and the sufficient conditions
for the equilibrium bifurcation of smooth systems are not applicable here. Therefore, we will
see later that there are different features in the boundary equilibrium bifurcation of (1) due to
the smoothness of the function f at the switching boundary.

3 Stability of boundary equilibrium points of modified Chua’s circuit

The modified Chua’s circuit is described by[6–7]

ẋ = α(y − g(x)), ẏ = x − y + z, ż = −βy, (2)

where b and a are parameters, and

g(x) = ax + bx|x|, α > 0, β > 0, b > 0.

At this time, we have

v− = {(x, y, z)|h(x) = x < 0}, Σ = {(x, y, z)|h(x) = x = 0}, v+ = {(x, y, z)|h(x) = x > 0}.

Taking account of the term x|x|, we can see that g(x) is first-order differentiable at x = 0, and
the modified Chua’s circuit has the smooth degree of 3.
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Note that (2) has only one boundary equilibrium point E0 = (0 0 0) for a � 0, while it has
3 equilibrium points for a < 0, including a boundary equilibrium point E0 and two admissible
equilibrium points

E− =
(a

b
0 − a

b

)
, E+ =

(
− a

b
0

a

b

)
.

In what follows, we will analyze the stability of the equilibrium points first. Let⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1 =
1 − α +

√
(1 + α)2 − 4β

2α
, a2 =

1 − α − √
(1 + α)2 − 4β

2α
,

a3 =
α − 1 +

√
(1 + α)2 − 4β

2α
, a4 =

α − 1 − √
(1 + α)2 − 4β

2α
.

Two cases of the stability of equilibrium points of the modified Chua’s circuit (2) are con-
sidered for negative a and non-negative a, respectively.

Theorem 1 Assume that a < 0. The boundary equilibrium point E0 is unstable. The other
two equilibrium points E∓ are asymptotically stable if one of the following conditions holds:

(C1) α > 1, β >
(1 + α)2

4
, (3)

(C2) 1 < α < β � (1 + α)2

4
, a < a2, (4)

(C3) 1 < α < β � (1 + α)2

4
, a > a1, (5)

(C4) α > 1, 0 < β � α, a < a2, (6)

(C5) 0 < α � 1, β � α, (7)

(C6) 0 < α � 1, 0 < β < α, a �= a2, (8)

while E∓ are unstable if one of the following conditions holds :

(C7) 1 < α < β � (1 + α)2

4
, a2 < a < a1, (9)

(C8) α > 1, 0 < β � α, a > a2, (10)

(C9) α � 1, 0 < β < α, a > a2. (11)

Proof First, we consider the stability of the boundary equilibrium point E0. The Jacobian
matrix at E0 is

J0 =

⎛
⎜⎜⎝

− aα α 0

1 − 1 1

0 − β 0

⎞
⎟⎟⎠ ,

which results in the characteristic polynomial

p0(λ) = λ3 + (1 + aα)λ2 + (β − α + aα)λ + αβa = 0.

Its roots have non-negative real parts by the Routh-Hurwitz criterion. Assume that αβa < 0 for
α > 0, β > 0, and a < 0. Then, all roots should be nonzero. Moreover, the polynomial P0(λ)
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is of the degree 3, and has at least one real root. Therefore, P0(λ) has at least one positive real
root, and E0 is unstable.

Next, we consider the asymptotic stability of the boundary equilibrium points E±. The
Jacobian matrix at E± can be written as follows:

J± =

⎛
⎜⎜⎜⎝

aα α 0

1 − 1 1

0 − β 0

⎞
⎟⎟⎟⎠ ,

which leads to the characteristic polynomial

p±(λ) = λ3 + (1 − aα)λ2 + (β − α − aα)λ − αβa = 0.

Therefore, from the Hurwitz criterion, we can obtain that E± are asymptotically stable if

−αβa > 0, 1 − αa > 0, α2a2 + (α2 − α)a − α + β > 0.

For α > 0, β > 0, and a < 0, we certainly have

−αβa > 0, 1 − αa > 0.

Therefore, we only need to prove

α2a2 + (α2 − α)a − α + β > 0

for Conditions (C1)–(C6). Define two functions as follows:

y = α2a2 + (α2 − α)a − α, (12)

y = −β. (13)

In the following, we will obtain that (12) is greater than (13), where (12) is a quadratic function
of a, and (13) is a constant function when α and β are constant. Moreover, we will give the
conclusions in two cases, i.e., α > 1 and α � 1.

For α > 1, we present the curves of the functions (12) and (13) in Fig. 1 for different α and
β. The peak of the quadratic function (12) is

1 − α

2α
− (1 + α)2

4
,

and the curves of the functions (12) and (13) intersect at

a1,2 =
1 − α ± √

(1 + α)2 − 4β

2α
,

which are the roots of
α2a2 + (α2 − α)a − α + β = 0.

If

β >
(1 + α)2

4
, −β < − (1 + α)2

4
,
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then the curve of (12) locates above that of (13) (see Fig. 1(a)). Therefore, (12) is greater than
(13) when

α > 1, β >
(1 + α)2

4
,

i.e., Condition (C1) is satisfied. If

α < β � (1 + α)2

4
, a1 =

1 − α +
√

(1 + α)2 − 4β

2α

when

−((α − 1)2 − (1 + α)2 + 4β) = −(β − α) < 0

and

a2 =
1 − α − √

(1 + α)2 − 4β

2α
< 0

when α > 1, then the relative position of (12) and (13) is shown in Fig. 1(b). Obviously, (12)
is greater than (13) when

α > 1, α < β � (1 + α)2

4
, a < a2 or a > a1,

i.e., Conditions (C2) and (C3) are satisfied. If

β � α, a1 =
1 − α +

√
(1 + α)2 − 4β

2α
> 0

when ⎧⎪⎨
⎪⎩

(1 + α)2 − 4β � (1 + β)2 − 4β = (1 − β)2 � 0,

a2 =
1 − α − √

(1 + α)2 − 4β

2α
< 0,

then the relative position of (12) and (13) is given in Fig. 1(c). It is evident that the curve
of (12) is above that of (13) when a < a2 or a > a1. However, we only take care of a < 0.
Therefore, the cases when a > a1 > 0 are rejected here. Therefore, when Condition (C4) holds,
(12) is greater than (13), and E∓ are stable. It is similar to prove that E± are stable when
Condition (C5) or (C6) holds.

Finally, we consider the instability of the equilibrium points E±. If Condition (C7) or (C8)
holds, we conclude that (12) is equal to or less than (13), i.e.,

α2a2 + (α2 − α)a − α + β � 0.

Then, we can obtain that the characteristic polynomial P±(λ) have non-negative real parts by
the Routh-Hurwitz criterion. Furthermore, it is shown that P+(λ) or P−(λ) has at least one
positive real root eigenvalue due to αβa < 0 when α > 0, β > 0, and a < 0. Therefore, both
E± are unstable. It is similar to prove the corresponding result if Condition (C9) holds. The
proof is completed.
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Fig. 1 Plots of functions (12) and (13) when a < 0 and α > 1

Theorem 2 Assume that a � 0. The only boundary equilibrium point E0 is asymptotically
stable if one of the following conditions holds:

(D1) α > 1, β >
(1 + α)2

4
, (14)

(D2) 1 < α < β � (1 + α)2

4
, a < a4, (15)

(D3) 1 < α < β � (1 + α)2

4
, a > a3, (16)

(D4) α > 1, 0 < β � α, a > a3, (17)

(D5) 0 < α � 1, β � α, (18)

(D6) 0 < α � 1, β < α, a > a3, (19)

while is unstable if one of the following conditions holds:

(D7) 1 < α < β � (1 + α)2

4
, a4 < a < a3, (20)

(D8) α > 1, 0 < β � α, a < a3, (21)

(D9) 0 < β < α � 1, a < a3. (22)

The proof can be referred to that of Theorem 1.
To facilitate the research, we divide the planar (a, β) into some parts when α > 1 and α � 1

according to Theorems 1 and 2. The division is shown in Fig. 2, where

D1 =
{

(a, β)|a > 0, β >
(1 + α)2

4

}
,

D
′
1 =

{
(a, β)|a < 0, β >

(1 + α)2

4

}
,

D2 =
{

(a, β)|0 < a < a4, α < β � (1 + α)2

4

}
,

D
′
2 =

{
(a, β)|a1 < a < 0, α < β � (1 + α)2

4

}
,

D3 =
{

(a, β)|a3 < a, α < β � (1 + α)2

4

}
,
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D
′
3 =

{
(a, β)|a < a2, α < β � (1 + α)2

4

}
,

D4 = {(a, β)|a3 < a, 0 < β � α},

D
′
4 = {(a, β)|a < a2, 0 < β � α},

D5 =
{
(a, β)|a4 < a < a3, α < β � (1 + α)2

4

}
,

D
′
5 =

{
(a, β)|a2 < a < a1, α < β � (1 + α)2

4

}
,

D6 = {(a, β)|0 < a < a3, 0 < β � α},

D
′
6 = {(a, β)|a2 < a < 0, 0 < β � α},

D7 = {(a, β)|0 < a, α � β},

D
′
7 = {(a, β)|a < 0, α � β},

D8 = {(a, β)|a > a3, β < α},

D
′
8 = {(a, β)|a2 > a, β < α},

D9 = {(a, β)|0 < a < a3, β < α},

D
′
9 = {(a, β)|a1 < a < 0, β < α}.

It is noted that one equilibrium point E0 = (0 0 0) exists in the first quadrant of Figs. 2(a)
and 2(b) when α > 1 and α � 1, respectively. It is shown that E0 is stable in the regions D1,
D2, D3, D4, D7, and D8 (dashed regions), while is unstable in the regions D5, D6, and D9.
Three equilibrium points E0 = (0 0 0) and E∓ = (±a

b 0 ∓ a
b ) exist in the second quadrant of

Fig. 2, where E0 is unstable, while E∓ are stable in the regions D
′
1, D

′
2, D

′
3, D

′
4, D

′
7, and D

′
8

(dashed regions) and unstable in the regions D
′
5, D

′
6, and D

′
9.

Fig. 2 Partition of (a, β)-plane

4 Boundary equilibrium bifurcations of modified Chua’s circuit

Now, we consider several typical cases of the boundary equilibrium bifurcations of (2) as
examples. We take a as the bifurcation parameter, and fix the values of other parameters.
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Case I Supercritical pitchfork bifurcation at the boundary equilibrium point (α = 2 > 1,

β = 3 � (1+α)2

4 , and b = 1 > 0)
When a = 0, the Jacobian matrix of E0 has the following eigenvalues:

λ1 = 0, λ2 =
−1 +

√
1 − 4(β − α)

2
, λ3 =

−1 − √
1 − 4(β − α)

2
.

Therefore, a boundary equilibrium bifurcation occurs when a = 0. Moreover, according to
Theorems 1 and 2 or Fig. 2, there is one stable boundary equilibrium point E0 when a > 0,
while E0 becomes unstable and two stable equilibrium points E∓ appear when a < 0. The
bifurcation diagram is shown in Fig. 3. From the graphic structure in the neighborhood of the
bifurcation point, it is similar to the supercritical pitchfork bifurcation in the PWSC systems
due to the existence of the piecewise smooth function x|x|.

Fig. 3 Supercritical pitchfork bifurcation of boundary equilibrium point when α = 2, β = 3, b = 1,
and a ∈ [−1, 1]

Case II Irregular pitchfork bifurcation at the boundary equilibrium point (α = 2 > 1,
β = 1.5 < α, and b = 1 > 0)

Similarly, a boundary equilibrium bifurcation occurs when a = 0. At this time, we have

a2 =
1 − α − √

(1 + α)2 − 4β

2α
≈ −0.683, a3 =

α − 1 +
√

(1 + α)2 − 4β

2α
≈ 0.683.

According to Theorems 1 and 2 or Fig. 2, the boundary equilibrium point E0 is always
unstable, and there are also two unstable equilibrium points E∓ when a < 0. The bifurcation
diagram is shown in Fig. 4. As shown in the figure, all bifurcating branches are unstable.
Therefore, it is called an irregular pitchfork bifurcation. This can be observed in the PWSC
systems sometimes, but cannot be observed in smooth systems.

Remark 1 As we know, there is only one boundary equilibrium point when a > 0, but
there are three equilibrium points E0 and E± when a < 0. Therefore, a = 0 must be a pitchfork
bifurcation point. There are several types of pitchfork bifurcations, which are determined by
the stability of the equilibrium branches and depend on the values of the parameters α, β,
and b.

Case III Hopf bifurcation at the boundary equilibrium point
The classical Hopf bifurcation occurs when a pair of complex eigenvalues of the Jacobian

matrix cross the imaginary axis and a periodic orbit are generically created[16–17]. A similar
result can be observed in the boundary equilibrium bifurcations of the modified Chua’s circuit
(2). However, the criterion for the classical Hopf bifurcation of smooth systems cannot be used
since (2) is not a third-order differentiable system. Even so, we are still able to show the Hopf
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Fig. 4 Irregular pitchfork bifurcation of boundary equilibrium point when α = 2, β = 1.5, b = 1, and
a ∈ [−0.5, 0.5]

bifurcation of the boundary equilibrium points accompanied by the occurrence of the periodic
solutions.

We fix α, β, and b, and take a as the bifurcation parameter. From the characteristic
polynomial of the boundary point E0, we have

p0(λ) = λ3 + (1 + aα)λ2 + (β − α + aα)λ + αβa = 0.

If the parameter value a∗ satisfies{
β − α + αa∗ > 0, αβa∗ > 0, (1 + αa∗)(β − α + αa∗) − αβa∗ = 0,

α(2αa∗ − α + 1) �= 0,
(23)

then the Hopf bifurcation at the boundary point E0 may occur when a = a∗[18]. The first
expression in (23) leads to at least one negative eigenvalue. The second and third conditions
are the existence conditions for a pair of pure imaginary eigenvalues, while the final expression
ensures that this pair of complex eigenvalues passes transversally across the imaginary axis.

Based on the above analysis and some numerical simulations, we can study the necessary
condition for the Hopf bifurcation of the boundary equilibrium point E0. If

α > 1, α < β <
(1 + α)2

4
,

then the Hopf bifurcation of the boundary equilibrium point E0 may occur when a∗ = a3 or a4.
If 0 < β < α, then the Hopf bifurcation may only occur when a∗ = a3. The proof is presented
in what follows.

If

α > 1, α < β <
(1 + α)2

4
,

we have

a3 > 0, a4 > 0.

Therefore,

αβa3 > 0, αβa4 > 0.
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Furthermore, we have

β − α + αa3,4 > 0, α(2αa3,4 − α + 1) = ±α
√

(1 + α)2 − 4β �= 0.

Obviously, we have

(1 + αa∗)(β − α + αa∗) − αβa∗ = α2a∗2 + (α − α2)a∗ − α + β = 0

with the roots a3 and a4. Therefore, (23) holds. This indicates that the Hopf bifurcations of the
boundary equilibrium point E0 may occur when a∗ = a3 or a4. If 0 < β < α, we have a3 > 0
and a4 < 0. Therefore, (23) is satisfied only when a∗ = a3. Therefore, the Hopf bifurcation of
E0 may occur only when a∗ = a3.

It is noted that the above condition is only the necessary condition, under which the Hopf
bifurcation at E0 may occur. At this time, we still need to consider the existence of the periodic
solution by means of other methods (such as numerical simulation) to ensure the occurrence of
the Hopf bifurcation. Furthermore, we will investigate the structure of the Hopf bifurcation of
E0. We take

α = 2 > 1, b = 2.1, α < β = 2.1 <
(1 + α)2

4
,

where

a3 ≈ 0.443 6, a4 ≈ 0.056 4.

Now, we let a vary from 0.01 to 0.1 or from 0.6 to 0.3. If a3 < a < 0.6, the system has only
one stable boundary equilibrium point E0 by Theorem 2 or Fig. 2. When a decreases from a3

to 0.3, E0 becomes unstable, and a limit cycle can be found (see Fig. 5).
Similarly, we can obtain the same bifurcation structure at a4 when a varies from 0.01 to 0.1.

Because the boundary equilibrium point E0 changes the stability, the bifurcation is supercritical
Hopf, which is similar to that of the smooth system.

Fig. 5 Limit cycle in modified Chua’s circuit when α = 2, β = 2.1, b = 2.1, and a = 0.4

5 Conclusions

In the studies of stability and bifurcations of dynamical systems, smooth and PWSC systems
are mostly concerned. The modified Chua’s circuit with the function x|x| differs from usual
PWSC and smooth systems in some aspects. The vector field is piecewise smooth but up
to first-order differentiable at the boundary point on the switching interface. Besides, the
system has the smooth degree of 3 at the boundary equilibrium point. Therefore, some new
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phenomena in the boundary equilibrium bifurcations occur due to the smoothness property
at the switching boundary. In this paper, we mainly investigate the stability and boundary
equilibrium bifurcations of the modified Chua’s circuit. It is found that the bifurcation graphs
of the supercritical and irregular pitchfork bifurcations caused by piecewise smoothness are
similar to those of the PWSC systems. However, the bifurcation graph of the supercritical Hopf
bifurcation is similar to those of the smooth systems. More complicated dynamic phenomena
in this system, including periodic and global dynamic behaviors, remain to be studied in the
future.
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