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Abstract The pull-in instability of a cantilever nano-actuator model incorporating the
effects of the surface, the fringing field, and the Casimir attraction force is investigated.
A new quartic polynomial is proposed as the shape function of the beam during the
deflection, satisfying all of the four boundary values. The Gaussian quadrature rule
is used to treat the involved integrations, and the design parameters are preserved in
the evaluated formulas. The analytic expressions are derived for the tip deflection and
pull-in parameters of the cantilever beam. The micro-electromechanical system (MEMS)
cantilever actuators and freestanding nano-actuators are considered as two special cases.
It is proved that the proposed method is convenient for the analyses of the effects of the
surface, the Casimir force, and the fringing field on the pull-in parameters.
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1 Introduction

Beam-type electrostatic actuators are common components for the construction of micro-
electromechanical systems (MEMSs) and nano-electromechanical systems (NEMSs)[1]. A can-
tilever MEMS/NEMS actuator is composed of a cantilever beam of the length L with a uniform
rectangular cross section of the width w and the thickness h, which is suspended over a con-
ductive substrate and separated by a dielectric spacer (see Fig. 1).

A voltage difference between the two electrodes causes the upper movable electrode to de-
flect towards the fixed ground electrode. At a critical voltage, the movable electrode becomes
unstable, and collapses onto the ground electrode. The voltage and deflection of the actuator
at this critical state are used to designate the pull-in parameters[2].
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Fig. 1 Schematic representation of cantilever actuator: I cantilever beam; II dielectric spacer; III
fixed ground electrode

The pull-in behavior and parametric analyses of MEMS/NEMS actuators have been widely
studied by many authors[2–18]. For NEMS actuators, the effects of the intermolecular forces[19–22]

such as the van der Waals force and the Casimir force are always considered.
The distributed parameter model of the deflection of nano-beams constitutes a boundary

value problem for a non-linear fourth-order ordinary differential equation. Lin and Zhao[16] and
Guo and Zhao[23] studied the dynamic behavior of nano-scale electrostatic actuators by consid-
ering the effect of the van der Waals force. Guo and Zhao[24] and Lin and Zhao[25] investigated
the influence of the van der Waals force and the Casimir force on the stability of the electrostatic
torsional NEMS actuators. Abadyan et al.[9], Koochi et al.[5,13], Noghrehabadi et al.[14], and
Duan et al.[26] used the Adomian decomposition method to treat similar models of non-linear
boundary value problems. Ma et al.[17] studied the instability of cantilever NEMS actuators by
the homotopy perturbation method. Ramezani et al.[6,15] and Duan and Rach[18] investigated
the instability of nano-cantilevers with the assumption of a second-degree polynomial as the
shape function of the beam during the deflection.

Surface energy effects are very important in modeling a nano-scale structure due to the
large surface area/volume ratio of the structure. Surface effects play a crucial role in the pull-
in performance of nano-actuators. Gurtin and Murdoch[27] developed a continuum theory to
model both the residual surface stress and the surface elasticity to investigate the surface effects
on the elastic behavior of beam-type nano-structures[28–30], where the Casimir attraction and
fringing field effects were neglected.

In this paper, we consider the distributed parameter model of the NEMS cantilever actuators,
incorporating the effects of the surface energy, the Casimir force, and the fringing field, and
investigate the pull-in parameters. A new shape function is used for the beam during the
deflection. In Section 2, we establish the model as a boundary value problem for a non-
linear fourth-order ordinary differential equation. Our main results are presented in Section
3, where a quartic shape function of the beam during the deflection is proposed, satisfying
all of the four boundary values. The Gaussian quadrature rule is used to treat the involved
integrations, retaining the designed parameters in the evaluated formulas. Section 4 summarizes
our conclusions.

2 Distributed parameter model

The governing equation for the distributed parameter model based on the Euler-Bernoulli
beam assumptions can be written as follows[5–6]:

(EI)eff
d4U

dX4
= Fs + Felec + Fcas, (1)

where U is the transverse deflection of the beam as measured from its axis towards the surface
of the fixed ground electrode, X is the position along the axis of the beam as measured from
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the clamped end, (EI)eff is the effective bending rigidity of the beam incorporating the surface
elasticity effect, and Fs, Felec, and Fcas are the distributed transverse forces resulting from
the surface effect, the electrostatic force, and the Casimir force per unit length of the beam,
respectively.

Based on the composite beam theory and the assumption that the thickness of the surface
layer is much smaller than the beam thickness h, the effective bending rigidity (EI)eff for a
beam with a rectangular cross section can be derived as follows:

(EI)eff = EI +
1

2
Eswh2,

where E is the corresponding elastic modulus of the material, I is the area moment of the
inertia of the cross section of the beam, i.e., I = wh3/12, and Es is the surface elastic
modulus[28–29,31–32]. The distributed transverse force resulting from the surface effect is[28–29,32]

Fs = 2τ0w
d2U

dX2
, (2)

where τ0 is the residual surface stress along the beam longitudinal direction. The first-order
fringing field correction of the electrostatic force per unit length of the beam is[33–34]

Felec =
ε0wV 2

2(g − U)2

(

1 +
0.65(g − U)

w

)

, (3)

where ε0 is the vacuum permittivity expressed by

ε0 = 8.854 × 10−12 C2 · N−1 · m−2,

V is the applied voltage, and g is the original gap between the two electrodes when there is no
deflection. The Casimir force per unit length of the beam is[5,14,21]

Fcas =
π2

ℏvw

240(g − U)4
, (4)

where ℏ is the reduced Planck’s constant, and v is the speed of light, which are

ℏ = 1.055 × 10−34 J · s, v = 2.998 × 108 m · s−1.

Substituting Eqs. (2), (3), and (4) into Eq. (1) and introducing the dimensionless variables
u = U/g and x = X/L, we can transform the governing equation into the dimensionless form
as follows:

d4u

dx4
= η

d2u

dx2
+

α

(1 − u(x))4
+

β

(1 − u(x))2
+

γβ

1 − u(x)
, 0 < x < 1, (5)

where

η =
2 τ0wL2

(EI)eff
, α =

π2
ℏvwL4

240g5(EI)eff
, β =

ε0wV 2L4

2g3(EI)eff
, γ =

0.65g

w
. (6)

In the above equations, η, α, β, and γ are the surface energy parameter, the intermolecular
Casimir force parameter, the electrostatic force parameter, and the fringing field parameter,
respectively. They can characterize the magnitudes of the responding forces. These parameters
are within their variation ranges[8]. The surface energy parameter η can be negative. η =
0, α = 0, and β = 0 correspond to the cases of free-surface-energy nano-actuators, MEMS
microactuators, and freestanding nano-actuators, respectively.
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For the cantilever NEMS, the boundary conditions are

u(0) = 0, u′(0) = 0, u′′(1) = 0, u′′′(1) = 0. (7)

We denote the maximum cantilever tip deflection as utip = u(1), and investigate the pull-in
parameters uPI

tip and βPI. From the third equality in Eq. (6), the pull-in voltage V PI can be

characterized in terms of the pull-in parameter βPI as follows:

V PI =
√

2 g3(EI)eff βPI/(ε0wL4).

3 Quartic shape function and pull-in parameters

First, we convert Eqs. (5)–(7) into an equivalent non-linear integral equation[35] so as to
determine all of the integration constants in terms of the boundary conditions. Secondly, we
rewrite Eq. (5) in its operator form as follows:

L4u(x) = ηL2u(x) + Nu(x), (8)

where


















L4(·) =
d4

dx4
(·), L2(·) =

d2

dx2
(·),

Nu(x) =
α

(1 − u(x))4
+

β

(1 − u(x))2
+

γβ

1 − u(x)
.

(9)

Introducing the definite integral operators L−2
0 (·) and L

−2
1 (·) as follows:

L
−2
0 f(x) =

∫ x

0

∫ x

0

f(τ)dτdx =

∫ x

0

(x − τ)f(τ)dτ, (10)

L
−2
1 f(x) =

∫ x

1

∫ x

1

f(τ)dτdx =

∫ 1

x

(τ − x)f(τ)dτ, (11)

where the iterated integrals can be rewritten as the respective simple integrals by exchanging
the integration order, we have

L
−2
0 L

−2
1 L4u(x) = u(x) − Φ(x)

= u(x) − u(0) − xu′(0) −
x2

2
u′′(1) −

(x3

6
−

x2

2

)

u′′′(1).

Substituting the boundary conditions in Eq. (7), we have Φ(x) = 0. Hence, applying the operator
L
−2
0 L

−2
1 (·) on both sides of Eq. (8) yields the equivalent non-linear Volterra integral equation

as follows:

u(x) = ηL−2
0 L

−2
1 L2u(x) + L

−2
0 L

−2
1 Nu(x), (12)

in which all of the boundary conditions have been incorporated. Setting x = 1 and denoting
u(1) = utip, we obtain

utip = η(L−2
0 L

−2
1 L2u(x))x=1 + (L−2

0 L
−2
1 Nu(x))x=1. (13)

To analyze the deflection and pull-in parameters of the cantilever beam, some authors pro-
posed the following second-degree function to approximate the beam deflection[6,15,18,36–37]:

u(x) = utipx
2, (14)
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which satisfies the boundary conditions

u(0) = 0, u′(0) = 0, u′′′(1) = 0,

but does not satisfy the remaining boundary condition u′′(1) = 0. This means that the curvature
at the free end should be zero.

Here, we present a new approximation of the beam by the quartic function

u(x) = utip

(

2x2 −
4x3

3
+

x4

3

)

. (15)

We observe that this new approximation satisfies all of the four boundary values in Eq. (7) by
examining the first- and second-order derivatives, respectively, i.e.,

u′(x) =
4

3
utipx(3 − 3x + x2) > 0, u′′(x) = 4utip(x − 1)2 > 0,

where 0 < x < 1. The quartic shape function in Eq. (12) is a strictly increasing monotone and
convex function over the interval [0, 1] just as the quadratic shape function in Eq. (14).

Substituting u(x) = 0 into the right-hand side of Eq. (12), we can obtain the approximation
of the beam as follows:

u(x) =
α + β + γβ

8

(

2x2 −
4x3

3
+

x4

3

)

.

It is in the form of Eq. (15). We use the new quartic shape function (15) to analyze the
deflection and pull-in parameters of the beam-type cantilever actuators. Substituting Eq. (15)
into Eq. (13) yields

utip = η
utip

18
+

∫ 1

0

(1 − s)

∫ 1

s

(τ − s)N
(

utip

(

2τ2 −
4τ3

3
+

τ4

3

))

dτds. (16)

By exchanging the integration order in Eq. (16) and calculating the integration with respect to
the variable s, we obtain

utip = η
utip

18
+

1

6

∫ 1

0

(3τ2 − τ3)N
(

utip

(

2τ2 −
4τ3

3
+

τ4

3

))

dτ. (17)

The integral on the right-hand side of Eq. (17) cannot be analytically calculated by the
available computer algebra systems that utilize the Risch algorithm such as MATHEMATICA.
We mention that this integral can be exactly and analytically calculated if the second-degree
shape function (14) is used. Here, we rely on a numeric integral method. To acquire the
superior accuracy of a numeric integral by use of the minor integral nodes, we use the Gaussian
quadrature rule. For the relevant details of the Gaussian quadrature rule, see Appendix A[38].

To perform the integration in Eq. (17) by the Gaussian quadrature rule, we use the trans-
formation τ = (z + 1)/2 to obtain the canonical form as follows:

16

3
(18 − η)utip =

∫ 1

−1

(5 − z)(1 + z)2N
(utip

48
(1 + z)2(17 − 6z + z2)

)

dz. (18)

Applying the Gaussian quadrature rule, we have

16

3
(18 − η)utip =

n
∑

i=1

ωi(5 − zi)(1 + zi)
2N

(utip

48
(1 + zi)

2(17 − 6zi + z2
i )

)

, (19)
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where n is the number of the integral nodes, zi are the integral nodes, and ωi are the weights,
which can be readily computed for a specified positive integer n (see Appendix A).

From Eq. (19) and substituting the operator N into Eq. (9), we can obtain

β = f1(utip, α, γ, η) =

16

3
(18 − η)utip − α g3(utip)

g1(utip) + γ g2(utip)
, (20)

where






























































g1(utip) =

n
∑

i=1

ωi(5 − zi)(1 + zi)
2

(

1 −
utip

48 (1 + zi)2(17 − 6zi + z2
i )

)2 ,

g2(utip) =

n
∑

i=1

ωi(5 − zi)(1 + zi)
2

1 −
utip

48 (1 + zi)2(17 − 6zi + z2
i )

,

g3(utip) =

n
∑

i=1

ωi(5 − zi)(1 + zi)
2

(

1 −
utip

48 (1 + zi)2(17 − 6zi + z2
i )

)4 .

For example, we take n = 5 and solve for β from Eq. (19). Then, we have

β =
(

5.333 33(18− η)utip −
3.524 28α

(1 − 0.937 455utip)4
−

5.054 29α

(1 − 0.693 258utip)4

−
2.844 44α

(1 − 0.354 167utip)4
−

0.564 663α

(1 − 0.091 065 4utip)4
−

0.012 317 2α

(1 − 0.004 265 09utip)4

)

/( 3.524 28

(1 − 0.937 455utip)2
+

3.524 28γ

1 − 0.937 455utip
+

5.054 29

(1 − 0.693 258utip)2

+
5.054 29γ

1 − 0.693 258utip
+

2.844 44

(1 − 0.354 167utip)2
+

2.844 44γ

1 − 0.354 167utip

+
0.564 663

(1 − 0.091 065 4utip)2
+

0.564 663γ

1 − 0.091 065 4utip
+

0.012 317 2

(1 − 0.004 265 09utip)2

+
0.012 317 2γ

1 − 0.004 265 09utip

)

, (21)

which retains all of the designed parameters.
We take α = 0.4, γ = 0.6, and η = 0 and 2, respectively, and plot the curves of β versus utip

in Fig. 2.
The pull-in parameters uPI

tip and βPI are determined by

dβ

dutip
= 0, (22)

i.e., when the slope is zero. We note that, although we have the applied numeric integration
with respect to x, all of the designed parameters are preserved, e.g., the designed parameters in
Eq. (21). The result is an analytic expression of parameters, and is applicable to the parametric
analyses.

Equation (22) determines the pull-in parameter uPI
tip. We next replace utip by uPI

tip and
rewrite Eq. (22) as follows:

f2(u
PI
tip, α, γ, η) = 0. (23)
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Fig. 2 Curves of β versus utip for α = 0.4, γ = 0.6, and η = 0, 2

From Eq. (20), we have

(16

3
(18 − η) − αg′3(u

PI
tip)

)

(g1(u
PI
tip) + γg2(u

PI
tip))

−

(16

3
(18 − η)uPI

tip − αg3(u
PI
tip)

)

(g′1(u
PI
tip) + γg′2(u

PI
tip)) = 0, (24)

from which we can solve for any of the designed parameters, including the Casimir force param-
eter α, the fringing field parameter γ, and the surface energy parameter η. Using the pull-in
parameter uPI

tip, we can calculate the pull-in parameter βPI by virtue of Eq. (20) as follows:

βPI = f1(u
PI
tip, α, γ, η). (25)

Fig. 3 Curves of uPI
tip and βPI versus η for γ = 0.65 and various α

From Eq. (23), we can analyze the effects of α, γ, and η on uPI
tip. From Eq. (25), we can

consider the relation between βPI and α, γ, or η.
To achieve higher accuracy, we take ten integral nodes, i.e., n = 10, to apply the Gaussian

quadrature rule on Eq. (19) in the sequel. We remark that increasing the number of the integral
nodes does not cause any technical difficulty, but only adds some additional calculation work.

For the specified values of α = 0.2 and γ = 0.65, α = 0.45 and γ = 0.65, and α = 0.7 and
γ = 0.65, we plot the curves of uPI

tip and βPI versus η by use of Eqs. (23) and (25) (see Fig. 3).
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It is shown that uPI
tip decreases monotonically and βPI decreases when η increases. Moreover,

uPI
tip and βPI decrease when α increases, which is consistent with the results in Refs. [5] and [6].

Through Eqs. (23) and (25), we can obtain the numeric values of uPI
tip and βPI for different

η. The obtained results are listed in Tables 1–3. From the tables, we can see that βPI decreases
non-linearly as η increases, which means that the curves in Fig. 3(b) are not straight, but are
slightly concave.

Table 1 Pull-in parameters for different η when α = 0.2 and γ = 0.65

η 0 1 2 3 4 5 6 7

uPI
tip 0.403 135 0.399 691 0.395 923 0.391 779 0.387 195 0.382 091 0.376 367 0.369 889

βPI 0.851 532 0.788 599 0.725 834 0.663 263 0.600 914 0.538 824 0.477 039 0.415 616

η 8 9 10 11 12 13 14

uPI
tip 0.362 483 0.353 913 0.343 844 0.331 792 0.317 016 0.298 312 0.273 547

βPI 0.354 630 0.294 178 0.234 394 0.175 464 0.117 655 0.061 383 0.007 326

Table 2 Pull-in parameters for different η when α = 0.45 and γ = 0.65

η 0 1 2 3 4 5 6 7 8 9

uPI
tip 0.343 844 0.338 769 0.333 249 0.327 216 0.320 587 0.313 255 0.305 088 0.295 913 0.285 502 0.273 547

βPI 0.527 387 0.468 189 0.409 414 0.351 119 0.293 369 0.236 248 0.179 854 0.124 314 0.069 788 0.016 483

Table 3 Pull-in parameters for different η when α = 0.7 and γ = 0.65

η 0.0 0.5 1 1.5 2 2.5 3 3.5 4.0

uPI
tip 0.301 291 0.298312 0.295 213 0.291 985 0.288 619 0.285 104 0.281 429 0.277 581 0.273 547

βPI 0.242 571 0.214 840 0.187 264 0.159 852 0.132 615 0.105 563 0.078 708 0.052 062 0.025 640

Next, we consider two typical special cases.
Case 1 Electrostatic microactuators
Neglecting the intermolecular forces, i.e., setting α = 0, leads to the cantilever actuator

model in the MEMS. In this case, from Eqs. (20) and (24), we can obtain the equations as
follows:

βPI =
16
3 (18 − η)uPI

tip

g1(uPI
tip) + γ g2(uPI

tip)
, (26)

g1(u
PI
tip) + γ g2(u

PI
tip) − uPI

tip

(

g′1(u
PI
tip) + γ g′2(u

PI
tip)

)

= 0, (27)

from which we can obtain uPI
tip and βPI. From Eqs. (26) and (27), we can conveniently consider

the effects of γ on uPI
tip and γ and η on βPI.

Especially, if we neglect the influence of the fringing field and the surface effect, i.e., setting
γ = 0 and η = 0, we can obtain the pull-in parameters as follows:

uPI
tip = 0.442 459, βPI = 1.670 160.
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Case 2 Freestanding nano-actuators

When the nano-actuator becomes freestanding, the voltage difference V between the can-
tilever beam and the substrate shown in Fig. 1 vanishes. Therefore, the electrostatic force
parameter satisfies β = 0. In this case, from Eq. (20), we have

α =
16

3
(18 − η)

utip

g3(utip)
. (28)

In Fig. 4, we plot the curve of α versus utip for η = 0. The critical values of α and utip are
determined by

dα

dutip
=

16

3
(18 − η)

g3(utip) − utipg
′
3(utip)

g2
3(utip)

= 0. (29)

From Eq. (29), we can calculate the critical value u∗
tip. Substituting u∗

tip into Eq. (28), we can
obtain the critical value α∗ for η = 0 as follows:

u∗
tip = 0.269 401, α∗ = 0.932 616.

Fig. 4 Curve of α versus utip for η = 0

No solution exists when α is greater than the critical value α∗, since the cantilever beam
collapses onto the substrate. Therefore, the critical value α∗ is considered to be crucial in the
cantilever design.

From the second formula in Eq. (6), we can write α ∝ L4/g5, where L is the length of the
cantilever beam, and g is the gap between the two electrodes. The maximum length of the
cantilever beam, which does not collapse onto the substrate due to the intermolecular forces, is
called the detachment length[16]. It is a basic design parameter for NEMSs. If the length of the
beam is fixed, one can calculate the minimum gap gmin between the beam and the substrate
to ensure that the beam does not adhere to the substrate due to the intermolecular forces.
The detachment length and the minimum gap of the cantilever beam can be obtained from the
critical value α∗ and the second formula in Eq. (6).

Finally, we indicate that the calculation is readily amenable to the increase in the number of
the integral nodes in the Gaussian quadrature rule, although the present results for 10 integral
nodes are sufficiently accurate. We have checked that the results for 20 integral nodes are almost
identical with the present results for 10 integral nodes. When α = 0.7, γ = 0.65, and η = 3, the
difference between the obtained uPI

tip for 10 nodes and 20 nodes is less than 1.117 77× 10−12.
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4 Conclusions

We have considered the distributed parameter model of the NEMS cantilever actuators
incorporating the effects of the surface energy, the Casimir force, and the fringing field. A
quartic polynomial is proposed as the shape function for the cantilever beam, and the analytic
expressions for the tip deflection and pull-in parameters of the beam are derived by using the
Gaussian quadrature rule. The new quartic shape function satisfies all of the four boundary
values, but the quadratic shape function used in the previous investigations satisfies only three
of the four boundary values. Although we have applied a numeric integral method, we derive
the analytic expressions preserving the model parameters for the tip deflection and pull-in
parameters of the beam. The MEMS cantilever actuators and the freestanding nano-actuators
are included as two special cases in our parametric analyses. The results show that our analyses
for the influence of the surface energy, the Casimir force, and the fringing field on the pull-in
instability are convenient.
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Appendix A Synopsis of Gaussian quadrature rule

An n-node Gaussian quadrature rule is

Z 1

−1

f(z)dz ≈

n
X

i=1

wif(zi),

where zi are the Gaussian nodes, and ωi are the weights. The Gaussian quadrature rule has the highest
algebraic accuracy 2n− 1, i.e., the integral rule exactly holds for polynomial functions of the degree no
more than 2n − 1.

The nodes and the weights can be readily calculated as follows.
The ith Gaussian node zi is the ith zero of the Legendre polynomials Ln(z). Its weight can be

given by[38]

wi =
2

(1 − z2
i
)(L′

n(zi))2
.

The Legendre polynomials Ln(z) satisfy the recursion relations as follows:

8

>

<

>

:

L0(z) = 1, L1(z) = z,

Ln+1(z) =
(2n + 1)z

n + 1
Ln(z) −

n

n + 1
Ln−1(z), n > 1.

We note that the built-in command “Legendre P [n, z]” in MATHEMATICA can conveniently
generate the Legendre polynomials Ln(z).

In Table 4, we list the nodes and the weights for the n-node Gaussian quadrature rule for n = 2
through n = 5 and n = 10.

Table 4 Nodes and weights for Gaussian quadrature rule

Number of nodes, n Node, zi Weight, ωi

2 ±0.577 350 26 1.000 000 00

3 0.000 000 00 0.888 888 89

±0.774 596 66 0.555 555 56

4 ±0.339 981 04 0.652 145 15

±0.861 136 31 0.347 854 85

5 0.000 000 00 0.568 888 89

±0.538 469 31 0.478 628 67

±0.906 179 85 0.236 926 89

10 ±0.148 874 34 0.295 524 22

±0.433 395 39 0.269 266 72

±0.679 409 57 0.219 086 36

±0.865 063 37 0.149 451 35

±0.973 906 53 0.066 671 34


