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Abstract An approximate analytical model for calculating the pull-in voltage of a
stepped cantilever-type radio frequency (RF) micro electro-mechanical system (MEMS)
switch is developed based on the Euler-Bernoulli beam and a modified couple stress theory,
and is validated by comparison with the finite element results. The sensitivity functions of
the pull-in voltage to the designed parameters are derived based on the proposed model.
The sensitivity investigation shows that the pull-in voltage sensitivities increase/decrease
nonlinearly with the increases in the designed parameters. For the stepped cantilever
beam, there exists a nonzero optimal dimensionless length ratio, where the pull-in voltage
is insensitive. The optimal value of the dimensionless length ratio only depends on the
dimensionless width ratio, and can be obtained by solving a nonlinear equation. The
determination of the designed parameters is discussed, and some recommendations are
made for the RF MEMS switch optimization.
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1 Introduction

The electrostatic actuation is the most popular actuation used in micro/nano electromechan-
ical systems (MEMSs/NEMSs) due to its many inherent advantages. Various electrostatic actu-
ators have been developed and utilized in a wide variety of applications, including micro/nano
motors, micro/nano switches, micro/nano relays, micro/nano resonators, micro mirrors, micro
pumps, micro valves, and micro/nano filters[1]. For electrostatic MEMS/NEMS devices, pull-in
is a basic phenomenon, and its instability is fundamental to the design and optimization of the
MEMS/NEMS devices.
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Although the pull-in instability is amongst the most studied MEMS/NEMS phenomena, the
involved mechanisms are still not fully understood[1–3], especially for variable cross-section mi-
crostructural devices. In the past few years, many pull-in voltage prediction models have been
proposed for the micro-structures widely used in MEMS devices, e.g., cantilever beams[4–8] and
double clamped beams[4,9–10]. Some of these models have also considered the size effects occur-
ring on the micro/nano scale, e.g., models based on the modified couple stress theory[4] and the
nonlocal elasticity theory[11]. However, most of them focus on either the constant cross-section
micro/nano beams[4–6,9–11] or the methods for solving the partial differential equations[4, 6, 10].
In fact, many MEMS devices have to be designed with the variable cross-section micro/nano
beams so as to obtain the intended pull-in voltage[12–13]. For these variable cross-section micro-
structures, a lot of time must be spent in modeling the devices and computing the numerical
solutions of the pull-in voltage with the help of the commercial softwares such as ANSYS and
COVENTOR. Even so, most of the commercial softwares are developed based on the classical
continuous theory, which cannot give the size-dependent solutions, and even cannot display the
relationship between the pull-in voltage and the structural parameters explicitly.

In this paper, an approximate analytical solution of the pull-in voltage prediction for a
stepped cantilever-type radio frequency (RF) MEMS switch is proposed based on the Euler-
Bernoulli beam theory and a modified couple stress theory, and is validated by a comparison
with the finite element solutions. The sensitivities of the pull-in voltage to the designed param-
eters, including the material, structural, and dimensionless parameters, are derived analytically
based on the proposed model. Some new characteristics of the stepped cantilever beam are
observed, and some conclusions are made for the RF MEMS switch optimization.

2 Mathematical modeling

2.1 Pull-in voltage prediction model
A stepped cantilever-type RF MEMS switch is shown in Fig. 1, which consists of a movable

electrode and a fixed electrode. The movable electrode has two cantilever bars with the length
L1, the width b1, and the thickness h. The gap between each cantilever bar is d. The two
cantilever bars are connected by an anchor. The supported cantilever bars are then connected
with a beam of the length L2, the width b2, and the thickness h. The total length of the
cantilever-type RF MEMS switch is L, i.e.,

L = L1 + L2.

The fixed electrode with the width b2 and the length L2 is located at the position L1. The
initial gap height between the movable and the fixed electrodes is g0. Based on the assumption
of the Euler-Bernoulli beam and a modified couple stress theory, the total mechanical bending
strain energy Um can be expressed as the sum of those of the two cantilever bars (L1 × b1 × h)
and the beam (L2 × b2 × h)[4, 6, 14], i.e.,

Um =
∫ L1

0

(EI1 + μA1l
2)w′′2dx +

1
2

∫ L

L1

(EI2 + μA2l
2)w′′2dx, (1)

where E and μ are the effective Young’s modulus and the shear modulus, respectively, and
l represents the material length scale parameter, which is a scale parameter that reflects the
impurities or defects of the material on micro/nano scale. The material length scale parameter
must be experimentally determined for each material, e.g., for the silicon 〈110〉 and polysilicon,
and the parameter l has an order of magnitude of 10−1 µm[4]. I1 and I2 represent the cross-
sectional area moments of the inertia defined by

I1 =
1
12

b1h
3, I2 =

1
12

b2h
3.
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Fig. 1 Top and side view of stepped cantilever-type RF MEMS switch

A1 and A2 represent the cross-sectional areas defined by

A1 = b1h, A2 = b2h.

w′′ is the second-order derivative of the deflection w with respect to the position x.
Introduce the following dimensionless parameters[15]:

α =
L1

L
, β =

b1

b2
, X =

x

L
, W =

w

g0
, (2)

where α is the dimensionless length ratio, 0 � α < 1, and the larger the dimensionless length
ratio is, the smaller the distribution region size is. β is the dimensionless width ratio, 0 < β �
0.5. When β = 0.5, the cantilever beam becomes a constant cross-section cantilever beam. W
is the dimensionless beam deflection function, and 0 � W � 1, reflecting the electrostatic force
distribution region size along the axial direction. Then, substituting Eq. (2) into Eq. (1) yields
the equation in the dimensionless form as follows:

Um =
κEb2h

3g2
0

12L3

(
β

∫ α

0

W ′′2dX +
1
2

∫ 1

α

W ′′2dX
)
, (3)

where κ is the size dependent coefficient defined by

κ = 1 +
6l2

(1 + ν)h2
.

Assuming that W is defined by[4, 15]

W (X) = ηϕ(X), (4)

where η is the associated modal participation factor, ϕ(X) is the first natural mode of the
cantilever beam per unite length defined by

ϕ(X) = (cosh(λX) − cos(λX)) − γ(sinh(λX) − sin(λX)).

In the above equation, ⎧⎪⎨
⎪⎩

0 � X � 1, λ = 1.875 104 07,

γ =
cosλ + coshλ

sin λ + sinh λ
= 0.734 095 5.
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Substituting Eq. (4) into Eq. (3) yields

Um =
κEb2h

3g2
0

12L3
η2

(
β

∫ α

0

ϕ′′2(X)dX +
1
2

∫ 1

α

ϕ′′2(X)dX
)
. (5)

The total electrical potential energy Ue is given by

Ue = −1
2
V 2

∫ L

L1

dC, (6)

where V is the applied bias voltage, and dC is the parallel-plate capacitance per unit length
between the movable electrode and the fixed electrode defined by

dC = ε0εr
b2

g0 − w
,

in which ε0 and εr are the permittivities of the free space and the dielectric constant of the
dielectric medium between the movable and fixed electrodes, respectively.

Substituting Eqs. (2) and (4) into Eq. (6) yields

Ue = −ε0εrb2LV 2

2g0

∫ 1

α

1
1 − ηϕ(X)

dX. (7)

Then, the total potential energy is the sum of the mechanical energy and the electrical potential
energy. Employing the principle of the minimum total potential energy for the static deflection
of the movable electrode, we can obtain that the first-order variation of the total potential
energy is zero at the equilibrium position, i.e.,

δU = δUm + δUe = b2(2ηK − ε0εrV
2P (η, α))δη = 0. (8)

At the transition from a stable to an unstable equilibrium state, the second-order variation
of the total potential energy equals zero[16], i.e.,

δ2U = δ2Um + δ2Ue = b2(2K − ε0εrV
2Q(η, α))δ2η = 0, (9)

where

K =
κEh3g3

0(2βζ1 + ζ2)
12L4

, (10)

P (η, α) =
∫ 1

α

F1(η, X)dX, (11)

Q(η, α) =
∫ 1

α

F2(η, X)dX, (12)

ζ1 =
∫ α

0

ϕ′′2(X)dX, ζ2 =
∫ 1

α

ϕ′′2(X)dX, (13)

F1(η, X) =
ϕ(X)

(1 − ηϕ(X))2
, (14)

F2(η, X) =
2ϕ2(X)

(1 − ηϕ(X))3
. (15)
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From Eqs. (8) and (9), the following two equations can be obtained in order to have the
nontrivial solution:

2ηK − ε0εrV
2P (η, α) = 0, (16)

2K − ε0εrV
2Q(η, α) = 0. (17)

The above two equations lead to

ηQ(η, α) = P (η, α). (18)

Solving Eq. (18) by the numerical analysis methods, e.g., the simple iteration method, can
determine the coefficient ηp at the pull-in. Then, substituting ηp back into Eq. (17) yields the
approximate analytical solution to the pull-in voltage as follows:

Vp =

√
2K

ε0εrQ(ηp, α)
. (19)

When the beam thickness h is far more than the material length scale parameter l, the size
dependent coefficient tends to one, which means that the size effect is negligible. Thus, the
pull-in voltage model based on the modified couple stress theory can be reduced to that based
on the classical beam theory by setting κ = 1.
2.2 Sensitivity of pull-in voltage

In order to investigate the effect of various designing parameters on the pull-in voltage, a
sensitivity analysis is conducted. The pull-in voltage sensitivities are measured by the par-
tial differential equations of the pull-in voltage with respect to the studied parameters. The
sensitivities to the material parameters can be obtained by

∂Vp

∂E
=

1
ε0εrQ(ηp, α)Vp

∂K

∂E

=
κh3g3

0(2βζ1 + ζ2)
12ε0εrL4Q(ηp, α)Vp

, (20)

∂Vp

∂l
=

2μhg3
0l(2βζ1 + ζ2)

ε0εrL4Q(ηp, α)Vp
. (21)

The sensitivities to the dimensionless parameters α and β can be obtained by

∂Vp

∂α
=

1
ε0εrQ2(ηp, α)Vp

(
Q(ηp, α)

∂K

∂α
− K

∂Q(ηp, α)
∂α

)
, (22)

∂Vp

∂β
=

1
ε0εrQ(ηp, α)Vp

∂K

∂β
, (23)

where

∂K

∂α
=

κEh3g3
0

12L4

(
2β

∂ζ1

∂α
+

∂ζ2

∂α

)
, (24)

∂K

∂β
=

κEh3g3
0ζ1

6L4
. (25)
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According to Leibnitz’s rules, we can derive the derivatives of the integrals as follows[17]:

∂ζ1

∂α
= ϕ′′2(α),

∂ζ2

∂α
= −ϕ′′2(α), (26)

∂Q(ηp, α)
∂α

= R(ηp, α)
∂ηp

∂α
− F2(ηp, α), (27)

where

R(ηp, α) = 6
∫ 1

α

ϕ3(X)
(1 − ηpϕ(X))4

dX.

Calculating the derivative with respect to α on both sides of Eq. (18) yields

∂ηp

∂α
Q(ηp, α) + ηp

∂Q(ηp, α)
∂α

=
∂P (ηp, α)

∂α
. (28)

The derivative of the integral function P (ηp, α) is[17]

∂P (ηp, α)
∂α

= Q(ηp, α)
∂ηp

∂α
− F1(ηp, α). (29)

From Eqs. (27)–(29), we have

∂ηp

∂α
=

F2(ηp, α)
R(ηp, α)

− F1(ηp, α)
ηpR(ηp, α)

. (30)

Substituting Eq. (30) into Eq. (27) yields

∂Q(ηp, α)
∂α

= −F1(ηp, α)
ηp

. (31)

The sensitivities to the structural parameters can be obtained by

∂Vp

∂L1
=

1
ε0εrQ2(ηp, α)Vp

(
Q(ηp, α)

∂K

∂L1
− K

∂Q(ηp, α)
∂L1

)
, (32)

∂Vp

∂L2
=

1
ε0εrQ2(ηp, α)Vp

(
Q(ηp, α)

∂K

∂L2
− K

∂Q(ηp, α)
∂L2

)
, (33)

∂Vp

∂b1
=

∂Vp

∂β

∂β

∂b1
=

1
b2

∂Vp

∂β
, (34)

∂Vp

∂b2
=

∂Vp

∂β

∂β

∂b2
= −b1

b2
2

∂Vp

∂β
, (35)

∂Vp

∂h
=

1
ε0εrQ(ηp, α)Vp

∂K

∂h
, (36)

∂Vp

∂g0
=

1
ε0εrQ(ηp, α)Vp

∂K

∂g0
. (37)
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From Eq. (10), the partial derivative of K with respect to the structural parameters can be
obtained by

∂K

∂L1
= − 1

12
κEh3g3

0

( 4
L5

(2βζ1 + ζ2) − L2

L6

(
2β

∂ζ1

∂α
+

∂ζ2

∂α

))
, (38)

∂K

∂L2
= − 1

12
κEh3g3

0

( 4
L5

(2βζ1 + ζ2) +
L1

L6

(
2β

∂ζ1

∂α
+

∂ζ2

∂α

))
, (39)

∂K

∂h
=

1
L4

g3
0

(1
4
Eh2 + μl2

)
(2βζ1 + ζ2), (40)

∂K

∂g0
=

1
4L4

κEh3g2
0(2βζ1 + ζ2). (41)

The partial derivative of Q(ηp, α) with respect to the structural parameters can be obtained by

∂Q(ηp, α)
∂L1

=
∂Q(ηp, α)

∂α

∂α

∂L1
=

L2

L2

∂Q(ηp, α)
∂α

, (42)

∂Q(ηp, α)
∂L2

=
∂Q(ηp, α)

∂α

∂α

∂L2
= −L1

L2

∂Q(ηp, α)
∂α

. (43)

It is pointed out that the coefficient ηp in Eqs. (22), (32), and (33) must be recalculated
for each new value of α, L1, and L2, respectively, due to its dependence on these parameters.
From Eqs. (20)–(23) and (32)–(37), we can see that the sensitivities of the pull-in voltage to the
material, dimensionless, and geometrical parameters depend on these parameters themselves.

3 Numerical simulation

3.1 Solution validation
The validity of the present model is verified through the comparison between the approxi-

mate analytical results and the numerical solutions based on the commercial ANSYS software.
Consider the RF MEMS switch made of Au subjected to a bias V (see Fig. 2).

Fig. 2 Focused ion beam (FIB) image of RF MEMS switch: mag, magnification; HFW, horizontal
field width; HV, high voltage; WD, work distance
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The structural and material parameters are as follows:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E = 78.5 GPa, ν = 0.22, l = 0,

b1 = 34 µm, b2 = 164 µm, L1 = 46 µm,

L2 = 94 µm, h = 7 µm, g0 = 2 µm,

ε0 = 8.854 × 10−12 F · m−1, εr = 1,

where E is the Young modulus, ν is the Possion ratio, l is the material length scale parameter,
b1 is the cantilever bar width, b2 is the beam width, L1 is the cantilever bar length, L2 is the
beam length, h is the beam thickness, g0 is the initial gap height, ε0 is the permittivity of the
free space, and εr is the dielectric constant.

For a constant bias input, the deflections at the tip of the cantilever beam are calculated
based on Eqs. (4) and (16).

Figure 3 shows the gap height at the cantilever tip calculated from the present model and
the commercial ANSYS software. It can be seen that the analytical solutions obtained by the
present model are apparently very close to the finite element solutions since the applied voltages
are less than the pull-in voltage. The predicted pull-in voltage based on the present model is
97.6V, and is close to the result of 91.2V obtained from the ANSYS. The error percentage is
only 7%. Therefore, the validity and accuracy of the present model is verified.

Fig. 3 Gap height between cantilever tip and substrate against applied voltage

3.2 Sensitivity analysis of pull-in voltage
In this section, the sensitivities of the pull-in voltage to the material, dimensionless, and

structural parameters are investigated. It is noted that the high sensitivity of the pull-in
voltage implying parameter perturbation can induce large changes in the pull-in voltage, which
can affect the reliability of the MEMS devices. Therefore, for a perfect or optimal design, the
pull-in voltage sensitivities to the designing parameters must be as low as possible.

Figure 4 plots the sensitivity functions of the pull-in voltage to the material parameters,
where “design point” corresponds to the sensitivity value in the case study. The positive
sensitivity values indicate that the pull-in voltage increases when the parameters increase. It
can be seen from Fig. 4(a) that the higher the material modulus is, the smaller the pull-in
voltage sensitivity is, and the higher the pull-in voltage is. Compared with the material Au
used in the case study, polysilicon, which is chosen as the switch material, leads to a lower
sensitivity of the pull-in voltage due to its larger material modulus. However, this may induce
a higher pull-in voltage. Therefore, the material must be chosen as carefully as possible. Figure
4(b) shows that the sensitivity of the pull-in voltage increases with the increase in the ratio of
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the material length scale parameter to the beam thickness. When the beam thickness comes
close to the material length scale parameter, the sensitivity value exceeds 28, which means that
the size effect becomes non-negligible.

Fig. 4 Sensitivity functions of pull-in voltage to material parameters

Figure 5 is the sensitivity functions of the pull-in voltage to the dimensionless length ratio,
where “design point” corresponds to the sensitivity value in the case study. It can be seen
that, with the increase in the dimensionless parameter α, the sensitivity increases nonlinearly
from negative to positive, which means that there exists a critical value where the corresponding
pull-in sensitivity value is zero, e.g., the critical value is 0.494 4 in the case study, and the pull-in
voltage is insensitive to the dimensionless length ratio α. It should be noted that the negative
sensitivity values indicate the decreases in the pull-in voltage when the parameter increases.
When the dimensionless length ratio α is less than the critical value, the pull-in voltage and its
sensitivity to α decrease with the increase in the parameter α. When the dimensionless length
ratio α is greater than the critical value, the pull-in voltage and its sensitivity to α increase
with the increase in the parameter α. Therefore, the preferred dimensionless length ratio α
must be close to but smaller than the critical value as soon as possible in order to obtain the
lower pull-in voltage.

Fig. 5 Sensitivity function of pull-in voltage to dimensionless length ratio

In order to get a more general conclusion, let

∂Vp

∂α
= 0.
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Then, substituting Eqs. (24) and (31) into Eq. (22) leads to

(
2β

∂ζ1

∂α
+

∂ζ2

∂α

)
P (ηp, α) + (2βζ1 + ζ2)F1(ηp, α) = 0. (44)

From Eqs. (18) and (44), it can be seen that the dimensionless parameter α is a function
of the dimensionless width ratio β only. For a given β, the critical value of the dimensionless
length ratio α has a unique solution. When β = 0.5, corresponding to a constant cross-section
beam, by substituting Eq. (26) into Eq. (44), we can simplify the equation as follows:

(ζ1 + ζ2)F1(ηp, α) = 0. (45)

The natural mode satisfies the following equation[18]:

∫ 1

0

ϕ′′2(X)dX = λ4. (46)

Substituting Eqs. (13), (14), and (46) into Eq. (45) yields

λ4 ϕ(α)
(1 − ηpϕ(α))2

= 0. (47)

The equivalent form of Eq. (47) is

ϕ(α) = 0. (48)

Since the natural mode satisfies the boundary condition of the cantilever beam, Eq. (48)
has a unique solution, i.e., α = 0�which means that the derivative to α, called the sensitivity
function, is always larger than or equal to zero for the constant cross-section beam, and the
pull-in voltage increases with the increase in the parameter α.

In order to investigate the relationship among

∂Vp

∂L1
,

∂Vp

∂L2
,

∂Vp

∂α
,

substituting Eqs. (22), (38), (39), (42), and (43) into Eqs. (32) and (33) and subtracting Eq. (32)
from Eq. (33) yield

∂Vp

∂L1
− ∂Vp

∂L2
=

1
L

∂Vp

∂α
. (49)

Therefore, when
∂Vp

∂α
= 0,

the pull-in voltage sensitivities to the beam length L1 and the fixed electrode length L2 are
equal to each other. In order to explain the effect on the reduction of the pull-in voltage, the
objective function is defined by

f(α) =
(∂Vp

∂L1

)2

+
(∂Vp

∂L2

)2

. (50)

As we all know, when ∣∣∣∂Vp

∂L1

∣∣∣ =
∣∣∣∂Vp

∂L2

∣∣∣,
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the objective function f(α) can be minimized, and the minimum value is

2
∣∣∣∂Vp

∂L1

∣∣∣ × ∣∣∣∂Vp

∂L2

∣∣∣.
Therefore, the equation ∂Vp

∂α = 0 is a necessary condition for minimizing ∂Vp
∂L1

and ∂Vp
∂L2

simulta-
neously.

Figure 6 plots the critical values of the dimensionless length ratio α against the dimensionless
width ratio β, where “design point” corresponds to the sensitivity value in the studied case.
From the figure, we can see that when β increases, the critical value of α decreases accordingly.
For a given β, the optimal design point should fall on the curve of the figure.

Figure 7 shows the sensitivity function of the pull-in voltage to the dimensionless width ratio
β, where “design point” corresponds to the sensitivity value in the case study. It can be seen
that, when the dimensionless parameter β increases, the corresponding sensitivity decreases
monotonically. When the parameter is 0.5, which denotes a constant cross-section beam, the
pull-in voltage sensitivity can be minimized, while the pull-in voltage increases due to the
positive sensitivity values.

Fig. 6 Dimensionless length ratio against
dimensionless width ratio

Fig. 7 Sensitivity function of pull-in voltage to
dimensionless width ratio

Figure 8 plots the sensitivity functions of the pull-in voltage to the structural parameters.
It can be seen that the pull-in voltage sensitivities are nonlinear functions of these structural
parameters, respectively, increasing with the increases in the beam thickness h and the gap
height g0 while decreasing with the increases in the beam widths b1 and b2 and the beam
lengths L1 and L2. However, the pull-in voltage increases with the increases in the beam width
b1, the beam thickness h, and the gap height g0, while decreases with the increases in the
beam width b2 and the beam lengths L1 and L2. Since all the structural parameters have the
same dimension, the modified parameters can be chosen directly in order to obtain the lower
pull-in voltage efficiently by comparing the sensitivity values. The beam thickness h and the
gap height g0 can be chosen as the preferred modified parameters in the case study due to the
higher sensitivity values.

Table 2 lists the relationship among the pull-in voltage, the sensitivity, and the parameters,
where the upward arrow “↑” and the downward arrow “↓” denote increase and decrease, re-
spectively. It can be seen that the pull-in voltage and the corresponding sensitivity decrease
simultaneously with the increases in the beam width b2 and the beam lengths L1 and L2, while
increase with the increases in the beam thickness h and the gap height g0. Moreover, the in-
crease in the beam width b1 leads to the increase in the pull-in voltage and the decrease in the
corresponding sensitivity.
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Fig. 8 Sensitivity functions of pull-in voltage to structural parameters

Table 1 List of relationship among pull-in voltage, sensitivity, and parameters

Parameters (X) Pull-in voltage (Vp) Corresponding sensitivity (dVp/dX)

Young’s modulus (E) ↑ ↓
Material length scale parameter (l) ↑ ↑
Dimensionless length ratio (α) First ↓ and then ↑ First ↓ and then ↑
Dimensionless width ratio (β) ↑ ↓
Cantilever bar width (b1) ↑ ↓
Beam width (b2) ↓ ↓
Cantilever bar length (L1) ↓ ↓
Beam length (L2) ↓ ↓
Beam thickness (h) ↑ ↑
Initial gap height (g0) ↑ ↑

4 Summary

In this paper, an approximate analytical solution for the pull-in voltage of a stepped cantilever-
type RF MEMS switch is presented based on the Euler-Bernoulli beam theory and a modified



Sensitivity analysis of pull-in voltage for RF MEMS switch 1567

couple stress theory to investigate the sensitivities of the pull-in voltage to various parameters,
e.g., the material parameters, the dimensionless parameters, and the structural parameters.
The correctness and high accuracy of the present model are verified by comparison with the
finite element solutions. Moreover, the sensitivity functions of the pull-in voltage to various pa-
rameters are derived explicitly. Some new merits of the stepped cantilever beam are observed.
The main contributions of this study are listed as follows:

(i) The modeling method for the stepped cantilever-type structure is correct and effective.
The prediction model includes the size effect, and can be used to predict the pull-in voltage of
the similar structure in the micro/nano scale.

(ii) The sensitivities of the pull-in voltage to the material parameters vary nonlinearly with
the material parameters. Large material modulus can reduce the sensitivity of the pull-in
voltage and increase the pull-in voltage. When the beam thickness comes close to the material
length scale parameter, the sensitivity to the material length scale parameter becomes larger,
and the size effect becomes non-negligible.

(iii) There exists a unique optimal dimensionless length ratio, where the pull-in voltage is
insensitive. The critical value only depends on the dimensionless width ratio. For a constant
cross-section cantilever beam, the critical value is zero, the sensitivity to the dimensionless
length ratio is always greater than or equal to zero, and the dimensionless length ratio cor-
responding to the minimum pull-in voltage is zero. In order to obtain lower pull-in voltages,
the optimal dimensionless length ratio α must be close to but less than the critical value. The
decrease in the pull-in voltage results in the decrease in the corresponding sensitivity to the
dimensionless width ratio β inevitably.

(iv) The pull-in voltage and the corresponding sensitivity decrease simultaneously with the
increases in the beam width b2 and the beam lengths L1 and L2, and increase simultaneously
with the increases in the beam thickness h and the gap height g0. In order to reduce the
pull-in voltage, these parameters must be chosen as the modified parameters first, while other
parameters need to be designed as carefully as possible.
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