
Appl. Math. Mech. -Engl. Ed., 36(11), 1449–1458 (2015)
DOI 10.1007/s10483-015-1995-7
c©Shanghai University and Springer-Verlag

Berlin Heidelberg 2015

Applied Mathematics
and Mechanics
(English Edition)

Investigation of third-grade non-Newtonian blood flow in arteries

under periodic body acceleration using multi-step

differential transformation method∗

M. HATAMI1, S. E. GHASEMI2, S. A. R. SAHEBI3, S. MOSAYEBIDORCHEH4,

D. D. GANJI4, J. HATAMI5,†

1. Department of Mechanical Engineering, Esfarayen University of Technology,

North Khorasan 49137, Iran;

2. Young Researchers and Elite Club, Islamic Azad University, Qaemshahr 47649, Iran;

3. Deptartment of Mechanical Engineering, Islamic Azad University,

Sari Mazandaran 47416, Iran;

4. Department of Mechanical Engineering, Babol University

of Technology, Babol 47148, Iran;

5. Garmsar Health & Care Center, Semnan University

of Medical Sciences, Semnan 35131, Iran

Abstract In this paper, a non-Newtonian third-grade blood in coronary and femoral
arteries is simulated analytically and numerically. The blood is considered as the third-
grade non-Newtonian fluid under the periodic body acceleration motion and the pulsatile
pressure gradient. The hybrid multi-step differential transformation method (Hybrid-Ms-
DTM) and the Crank-Nicholson method (CNM) are used to solve the partial differential
equation (PDE), and a good agreement between them is observed in the results. The
effects of the some physical parameters such as the amplitude, the lead angle, and the
body acceleration frequency on the velocity and shear stress profiles are considered. The
results show that increasing the amplitude, Ag, and reducing the lead angle of body ac-
celeration, ϕ, make higher velocity profiles on the center line of both arteries. Also, the
maximum wall shear stress increases when Ag increases.
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1 Introduction

Non-Newtonian fluids have many applications, especially in biomedical science. For exam-
ple, blood can be a non-Newtonian fluid whose physical properties have been presented by
Abdel Baieth[1]. Blood is composed of plasma, red and white blood cells, platelets, etc., and
can be considered as one of the most important multi-component mixtures occurring in nature.
Ogulu and Amos[2] modeled the pulsatile blood flow in the cardiovascular system employing the
Navier-Stokes equation, and found an increase in the wall shear stress when the porosity of the
medium was increased. Praveen-Kumar et al.[3] investigated the effects of gold nanoparticles in
blood from the biomedical viewpoint by experiments. Hatami et al.[4] studied the third-grade

∗ Received Sept. 25, 2014 / Revised Jun. 3, 2015
† Corresponding author, E-mail: javad.hatamy@gmail.com



1450 M. HATAMI et al.

non-Newtonian blood conveying gold nanoparticles in a porous and hollow vessel by two ana-
lytical methods called the least square method (LSM) and the Galerkin method (GM). They
considered temperature dependency on the blood by Vogel’s model and investigated the effect
of Brownian motion and magnetohydrodynamics (MHD) on the nanoparticles in the blood flow.
Moyers-Gonzalez et al.[5] focused on the modeling of the oscillatory blood flow in a tube, and
observed that as the frequency of the pressure gradient oscillations increases, the peak values
of the velocity field and shear stress decrease.

The characteristics of flow and heat transfer of the second-grade viscoelastic electrically
conducting blood in a channel with oscillatory stretching walls in the presence of an externally
applied magnetic field were investigated by Misra et al.[6]. Massoudi and Phuoc[7] modeled
blood as a modified second-grade fluid where the viscosity and the normal stress coefficients
depend on the shear rate. They considered the Fahraeus-Lindqvist effect which assumes that
the blood near the wall behaves as a Newtonian fluid, whereas in the core as a non-Newtonian
fluid. In a pioneering study, Majhi and Nair[8] mathematically modeled the pulsatile blood flow
subjected to the externally-imposed periodic body acceleration by considering the blood as a
third-grade fluid using the numerical Crank-Nicholson method (CNM).

As mentioned before, blood can be assumed as a non-Newtonian fluid, and so many studies
focused on second-grade and third-grade non-Newtonian fluids. The modeling and solution of
the unsteady flow of an incompressible third-grade fluid over a porous plate within a porous
medium were investigated by Aziz and Aziz[9]. They considered that the fluid was electrically
conducting in the presence of a uniform magnetic field applied transversely to the flow. The
MHD flow due to the non-coaxial rotations of a porous disk, moving with a uniform acceler-
ation in its own plane and a second-grade fluid at infinity, was examined by Asghar et al.[10].
Keimanesha et al.[11] solved the problem of a third-grade non-Newtonian fluid flow between two
parallel plates by the multi-step differential transformation method (Ms-DTM). The influence
of the third-grade, partial slip, and other thermophysical parameters on the steady flow, heat
and mass transfer of the viscoelastic third-grade fluid past an infinite vertical insulated plate
subject to suction across the boundary layer has been investigated by Baoku et al.[12]. Hayat et
al.[13–16] discussed the treatment of third-grade non-Newtonian fluids in different applications.
Ellahi et al.[17–18] discussed the third-grade non-Newtonian nanofluid in the porous media be-
tween the same two cylinders as Hatami and Ganji[19] have presented.

The concept of the differential transformation method (DTM) was first introduced by
Zhou[20] in 1986. Ghasemi et al.[21–22] used the DTM for solving the nonlinear temperature
distribution equation in solid and porous longitudinal fins. Ms-DTM, which is a modified form
and the classical DTM, can be a suitable method for this kind of engineering and physical
problems. This method was newly used in some engineering problems[23–26]. The main aim of
this paper is the application of the hybrid Ms-DTM to simulate the problem of the third-grade
non-Newtonian blood flow in arteries under a periodic body acceleration and compare the re-
sults with those obtained by the CNM. Therefore, the novelty of this study is the utilization
of the hybrid-Ms-DTM as a powerful and the efficient technique for the blood flow analysis in
femoral and coronary arteries. Also, the effects of some parameters such as the frequency, the
amplitude, the lead angle of body acceleration motion, and the pulsatile pressure gradient on
the velocity profiles are examined.

2 Description of problem

Consider an unsteady, incompressible, and non-Newtonian blood as a third-grade fluid in an
artery. Table 1 shows the properties of the blood as a kind of non-Newtonian fluids. The flow
is considered to take place axially through the circular tube of radiusR under a periodic body
acceleration and a pulsatile pressure gradient. The Cauchy stress in a third-grade fluid is

τ = −pI + µA1 + α1A2 + α2A
2
1 + β1A3 + β2(A1A2 + A2A1) + β3(trA

2
1)A1, (1)
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Table 1 Some properties of non-Newtonian blood[1,8]

Specification ρ/(kg·m−3) Cp/(J·kg−1·K−1) k/(W·m−1·K−1) µ β

Blood 1 060 3 617 0.52 0.003 0.001

where −pI denotes the spherical stress due to the restraint of incompressibility, and α1, α2,
β1, β2, and β3 are the material modules and are considered to be functions of temperature
generally. In (1), the kinematical tensors A1, A2, and A3 can be defined by[8]

A1 = (∇V ) + (∇V )T, (2)

An =
dAn−1

dt
+ An−1(∇V ) + (∇V )TAn−1, n = 2, 3, (3)

where V = (0, 0, v(r)) denotes the velocity field, the superscript T stands for the matrix trans-
position, and d

dt
is the material time derivative defined by

d(·)

dt
=

∂(·)

∂t
+ (grad(·))V. (4)

The momentum equation for an incompressible, unsteady, axi-symmetric (with the z-axis as
the symmetry axis) and fully developed flow[27] in a cylindrical polar coordinate (r, θ, z) is

ρ
∂ū

∂t
=

∂p

∂z
+ ρG +

1

r̄

∂

∂r̄
(r̄τrz), (5)

where ρ, ū, p, τrz, t, and G denote the density, the axial velocity, the pressure, the shear stress,
the time, and the body acceleration in the axial direction, respectively. The shear stress τrz for
a third-grade fluid in an axi-symmetric and thermodynamically compatible flow situation can
be written as

τrz =
(

µ + β
(∂ū

∂r̄

)2)∂ū

∂r̄
. (6)

In human beings, the pressure gradient ∂p
∂z

produced by the pumping action of the heart takes

the approximate form[28]

−
∂p

∂z
= A0 + A1 cos(ωpt), (7)

where the circular frequency ωp = 2πfp, and A0, A1, and fp are the constant component of the
pressure gradient, the amplitude of the fluctuating component (giving rise to the systolic and
diastolic pressures), and the pulse frequency, respectively. The body acceleration G is assumed
to be

G = Ag cos(ωbt + φ), (8)

where Ag is the amplitude, ωb = 2πfb, fb is the frequency, and φ is the lead angle of G with
respect to the heart action. By using (6)–(8), (5) can be written as

ρ
∂ū

∂t
= A0 + A1 cos(ωpt) + ρAg cos(ωbt + φ) +

1

r̄

∂

∂r̄

(

r̄
(

µ + β
(∂ū

∂r̄

)2)∂ū

∂r̄

)

(9)

with the corresponding initial and boundary conditions

r̄ = R, ū = 0; r̄ = 0,
∂ū

∂r̄
= 0; t = 0, ū = 0. (10)
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The initial condition is essential for the numerical scheme adapted to estimate the time at which
the pulsatile steady state sets in. The non-dimensional forms of (9)–(10) are, respectively,

α2

2π

∂u

∂T
= B1(1 + e cos(2πT )) + B2 cos(2πωrT + φ) +

1

r

∂

∂r

(

r
∂u

∂r

(

1 + B
(∂u

∂r

)2))

, (11)

r = 1, u = 0; r = 0,
∂u

∂r
= 0; T = 0, u = 0, (12)

where


















α2 =
ρωpR2

µ
, B1 =

A0R
2

µu0
, B2 =

ρAgR
2

µu0
, B =

βu2
0

µR2
,

ωr =
ωb

ωp
, u =

ū

u0
, r =

r̄

R
, T =

ωpt

2π
, e =

A1

A0
, u0 =

A0R
2

8µ
.

(13)

Here, u0 is the cross-sectional average velocity of the flow under the steady state pressure
gradient A0. The second order non-linear partial differential (11) with the boundary conditions
(12) should be solved by efficient analytical or numerical methods.

3 Applied methods

3.1 Ms-DTM

Consider a general equation of the nth-order ordinary differential equation,

f(t, y, y′, · · · , y(n)) = 0 (14)

subject to the initial conditions

y(k)(0) = dk, k = 0, 1, · · · , n − 1. (15)

To illustrate the DTM to solve the differential equations, the basic definitions of the differential
transformation are introduced as follows. Let y(t) be analytic in a domain D, and let t = t0
represent any point in D. The function y(t) is then represented by one power series whose
centre is located at t0. The differential transformation of the kth derivative of a function y(t)
is defined by

Y (k) =
1

k!

(dky(t)

dtk

)

t=t0

, ∀t ∈ D. (16)

In (16), y(t) is the original function, and Y (k) is the transformed function. As in Ref. [20], the
differential inverse transformation of Y (k) is defined by

y(t) =

∞
∑

k=0

Y (k)(t − t0)
k, ∀t ∈ D. (17)

In fact, from (16) and (17), we obtain

y(t) =

∞
∑

k=0

(t − t0)
k

k!

(dky(t)

dtk

)

t=t0

, ∀t ∈ D. (18)

(18) implies that the concept of the differential transformation is derived from the Taylor series
expansion. From the definitions of (16) and (17), it is easy to prove that the transformed
functions comply with the following basic mathematics operations (see Table 2).
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Table 2 Some fundamental operations of DTM and Ms-DTM

Original function DTM Ms-DTM

f(t) = g(t) ± s(t) F (k) = G(k) ± S(k) F (k) = G(k) ± S(k)
f(t) = cg(t) F (k) = cG(k) F (k) = cG(k)

f(t) =
dng(t)

dtn
F (k) =

(k + n)!

k!
G(k + n) F (k) =

(k + n)!

Hnk!
G(k + n)

f(t) = g(t)s(t) F (k) =
k

P

r=0
G(r)S(k − r) F (k) =

k
P

r=0
G(r)S(k − r)

In real applications, the function y(t) is expressed by a finite series, and (18) can be written as

y(t) =

N
∑

k=0

Y (k)(t − t0)
k, ∀t ∈ D. (19)

(19) implies that
∞
∑

k=N+1

Y (k)(t − t0)
k is negligibly small.

Let [0, T ] be the interval over which we want to find the solution of the initial value problem
(11). In actual applications of the DTM, the approximate solutions of the initial and boundary
value problems (11)–(12) can be expressed by the finite series

y(t) =

N
∑

k=0

bktk, t ∈ [0, T ]. (20)

Assume that the interval [0, T ] is divided into N subintervals [ti−1, ti], i = 1, 2, · · · , M , using
the nodes ti = ih, where h = T

M
. The main ideas of the Ms-DTM are as follows[24]. We apply

the DTM to (14) over the interval [0, t1], leading to the following approximate solution:

y1(t) =

N
∑

k=0

b1ktk, t ∈ [0, t1], (21)

using the initial conditions y
(k)
1 (0) = dk. For i >2, at each subinterval [ti−1, ti], we will use the

initial conditions y
(k)
i (ti−1) = y

(k)
i−1(ti−1) and apply the DTM to (14) over the interval [ti−1, ti],

where t0 in (16) is replaced by ti−1. For the solution y(t), the process is repeated and generates
a sequence of approximate solutions yi(t), i = 1, 2, · · · , M ,

yi(t) =
N

∑

k=0

bik(t − ti−1)
k, t ∈ [ti−1, ti]. (22)

In fact, from the Ms-DTM, we get the following solution:

y(t) =



















y0(t), t ∈ [0, t1],
y1(t), t ∈ [t1, t2],

...
yM (t), t ∈ [tM , tM+1].

(23)

3.2 CNM

It is obvious that the type of the current problem is the partial differential equation (PDE)
with boundary and initial conditions, and the appropriate method needs to be selected. One
of the available numerical sub-methods in the MAPLE 15.0[29] is the CNM. The CNM or the
centered time centered space method is an implicit single stage method that can be used to
find the solutions to PDEs that are first-order in time and arbitrary order in space with mixed
partial derivatives. This method is an implicit scheme, and is unconditionally stable for many
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problems which have the O(h2, k2) accuracy, where h is used as the space step, and k is used
as the time step. In the MAPLE software, the scheme used to compute the value at the mesh
point [1, i] is the result of applying central differencing to the PDE about the point t + 1

2k, xi

using 1 + 2ceil
(

1
2x or d

)

points (that is, the mesh uses ceil
(

1
2x or d

)

points on either side of

the center). As mentioned before, Majhi and Nair[8] modeled the blood flow under the body
acceleration by the current method.

4 Results and discussion

In this study, the analytical hybrid-DTM is used for the non-dimensional time (T ) and the
r direction to obtain the solution of (11) with the boundary condition (12). The hybrid-DTM,
which is the combination of the finite difference method (FDM) and the Ms-DTM, can solve
the PDEs easily. In order to proceed with its computations, the FDM is applied to the uniform
points in the T , and the Ms-DTM is based on the r (non-dimensional radius) direction, and
the solutions are performed. The obtained results by the hybrid-DTM are compared with
the CNM[8] in Fig. 1 which shows an excellent agreement between the analytical and numerical
methods. In this paper, two different arteries are considered, i.e., femoral and coronary arteries.
Femoral and coronary arteries have the diameters 1 cm and 0.3 cm, respectively. Also, the
constant components of the pressure gradient, A0, for coronary and femoral arteries are taken
as 698.65×10−3 N·m−1 and 32×10−3 N·m−1, respectively, as presented by Mcdonald[30]. In the
whole solution, the physical properties of blood are considered to be constant as listed in Table
1, and g is the acceleration due to gravity which is considered to be 10 m/s2. The comparison
between the hybrid-DTM and the CNM[8] is depicted in Fig. 1 for both femoral and coronary
arteries when ϕ = 0, e = ωr = 1, Ag = g, and fb = 1.2 Hz at various time. As seen in Fig. 1,
the hybrid-DTM excellently agrees with the previous method. This is necessary to inform that
increasing the time makes negative values for the velocity due to the fluctuation of the flow.
Then, continue to increase the time, and the velocity will increase and reach positive values.
This process occurs continuously.

Fig. 1 Comparison between hybrid-DTM (present study) with CNM[8] when ϕ = 0, e = ωr = 1,
Ag = g, and fb = 1.2 Hz

For better perception, Fig. 2 is depicted for coronary and femoral arteries, which shows the
velocity versus time in different radii. As it can be seen, the maximum velocities occur at
the center of tube (r = 0), and in the whole domain, it has a fluctuating nature. Also, it is
obvious that when the velocity becomes negative, the maximum value is seen in the region
beyond the center and near the tube wall, and the maximum values take place in lower time
duration compared with positive values. Figure 3 is depicted for femoral and coronary arteries,
and demonstrates the Ag effects on the velocity profiles. It can be concluded that increasing
the amplitude, Ag, makes higher velocity profiles in both negative and positive values. These
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effects on the velocity and wall shear stress during the time view point are presented in Fig. 4 for
femoral artery when ϕ = π/6, e = 20, ωr = 1, and fb = 1.2 Hz. As Ag increases, the maximum
magnitude of the velocity along the axis increases and assumes both positive and negative values
during a cycle. Also, the maximum wall shear stress increases when Ag increases. These effects
are also observed for coronary artery (see Fig. 5). The curves are much nearer to a parabolic
or convex/concave profile shape.

Fig. 2 Velocity profiles versus time in different radii for femoral and coronary arteries when ϕ = 0,
e = ωr = 1, Ag = g, and fb = 1.2

Fig. 3 Velocity profiles versus radius in different times for showing effect of Ag when ϕ = 0, e = ωr =
1, and fb = 1.2 Hz for femoral and coronary arteries

Fig. 4 Effect of Ag for femoral artery on center velocity profile and wall shear stress values when
ϕ = π/6, e = 20, and fb = 1.2 Hz
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Fig. 5 Effect of Ag for coronary artery on center velocity profile and wall shear stress values when
ϕ = π/6, e = 1, and fb = 1.2 Hz

Finally, the effects of ωr on the center velocity profile and the wall shear stress for femoral
and coronary arteries are depicted in Figs. 6 and 7, respectively. It is seen that the changes
of ωr make a mutation in the velocity profiles, and completely change the amplitude, shape,
maximum values, etc. Reducing ωr from 1.0 to 0.5 makes a shift to the right-hand side in the
maximum points in both the velocity and shear stress profiles. Also, it makes a reduction for
the velocity positive maximum values and increases its negative values. Its treatment for the
shear stress is completely vice versa, i.e., the increase in its positive maximum values and the
decrease in its negative values. Furthermore, when ωr = 0.5, all the graphs have a relative
maximum/minimum point and an absolute optimum point.

Fig. 6 Effect of ωr for femoral artery on center velocity profile and wall shear stress values when
ϕ = π/3, e = 20, and fb = 1.2 Hz

Fig. 7 Effect of ωr for coronary artery on center velocity profile and wall shear stress values when
ϕ = π/3, e = 1, and fb = 1.2 Hz
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5 Conclusions

In this paper, an analytical approach called the hybrid-DTM, which is the combination of the
Ms-DTM and the FDM methods, has been successfully used to find the most accurate solution
for the blood flow analysis in femoral and coronary arteries. The blood is considered as a third-
grade non-Newtonian fluid under a periodic body acceleration and a pulsatile pressure gradient.
The obtained results are compared with those of the CNM, and an excellent agreement between
these two methods is observed. Thus, the hybrid-DTM due to its high accuracy and simplicity
can be used in PDEs, especially in engineering and biomedicine problems. As a main outcome
from the present study, it can be concluded that increasing the amplitude Ag and reducing the
lead angle of body acceleration ϕ make larger velocity values. Also, the maximum wall shear
stress increases when Ag increases.
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