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Abstract The primary resonances of a quadratic nonlinear system under weak and
strong external excitations are investigated with the emphasis on the comparison of dif-
ferent analytical approximate approaches. The forced vibration of snap-through mecha-
nism is treated as a quadratic nonlinear oscillator. The Lindstedt-Poincaré method, the
multiple-scale method, the averaging method, and the harmonic balance method are used
to determine the amplitude-frequency response relationships of the steady-state responses.
It is demonstrated that the zeroth-order harmonic components should be accounted in
the application of the harmonic balance method. The analytical approximations are com-
pared with the numerical integrations in terms of the frequency response curves and the
phase portraits. Supported by the numerical results, the harmonic balance method pre-
dicts that the quadratic nonlinearity bends the frequency response curves to the left. If
the excitation amplitude is a second-order small quantity of the bookkeeping parameter,
the steady-state responses predicted by the second-order approximation of the Lindstedt-
Poincaré method and the multiple-scale method agree qualitatively with the numerical
results. It is demonstrated that the quadratic nonlinear system implies softening type
nonlinearity for any quadratic nonlinear coefficients.
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1 Introduction

Quadratic nonlinearity arises in different models, e.g., cutting chatter[1], buckled beams[2],
pneumatic systems[3], and elastic foundations[4]. A quadratic nonlinear oscillator is a useful test
model for approximate analytical approaches. Therefore, the analysis on a quadratic nonlinear
oscillator is a fundamental and significant subject.
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There are many important investigations on quadratic nonlinear oscillators. Cheung et al.[5]

developed a modified Lindstedt-Poincaré method to calculate the perturbation solution of the
free vibration oscillators of quadratic nonlinearity, and demonstrated that the results were in
excellent agreement with those obtained by the incremental harmonic balance method. Huseyin
and Lin[6] used an intrinsic multiple-scale harmonic balance technique to study the approximate
solutions of free quadratic and cubic nonlinear oscillators. Xu and Cheung[7] employed the av-
eraging method based on the generalized harmonic functions to seek the approximate solutions
of strongly nonlinear oscillators, and supported the resulting solutions by the numerical integra-
tion. Pakdemirli[8] used the multiple-scale method to investigate the continuous free vibration
systems with quadratic and cubic nonlinearities. Chen et al. proposed the elliptic perturbation
method[9] and the elliptic Lindstedt-Poincaré method[10] to determine the periodic solution of
the free vibration of quadratic nonlinear oscillators, and found that the solution obtained by the
elliptic perturbation method was more accurate than that obtained by the Lindstedt-Poincaré
method. Lakrad and Belhaq[11] employed the multiple-scale method with the Jacobian ellip-
tic functions to calculate the solution of nonlinear quadratic and cubic self-excited systems.
Mickens[12] used the phase space techniques to compare the free vibrations of three types of
quadratic nonlinear oscillators. Cveticanin[13] utilized the Jacobian elliptic function to express
the exact analytical solution of a mass-spring oscillator with strong quadratic nonlinearity. Wu
and Lim[14] combined the harmonic balance method and the linearization to construct the
approximate analytical solutions of a conservative quadratic nonlinear oscillator, and showed
that the obtained solutions were in good agreement with the exact solutions. Hu[15–17] con-
ducted a systematic investigation on the conservative quadratic nonlinear oscillator, expressed
the exact solution of the oscillator in the Jacobian elliptic function[15], proposed a modified
iteration scheme with a higher accuracy than the first-order harmonic balance method[16], and
demonstrated that the harmonic balance method was more accurate than the second approxi-
mate solution of the Lindstedt-Poincaré method[17]. It should be remarked that the harmonic
balance method[17] is without the zeroth-order harmonic component.

All the above-mentioned works on quadratic nonlinear oscillators focus on the free vibration
without external excitations. There are no investigations on the forced vibration of quadratic
nonlinear oscillators, even in the case of weak nonlinearity. To address the lack of research in
the aspect, the present work treats the primary resonance of quadratic nonlinear oscillators.
Interestingly, various approximate analytical approaches yield different quantitatively and qual-
itatively results.

The manuscript is organized as follows. Section 2 introduces a quadratic nonlinear oscillator
as the truncated model of the snap-through mechanism. Section 3 treats the forced quadratic
nonlinear oscillators by use of the Lindstedt-Poincaré method, the multiple-scale method, the
averaging method, and the harmonic balance method. Section 4 compares the analytical out-
comes with the numerical calculations. Section 5 ends the paper with concluding remarks.

2 Snap-through mechanism as quadratic nonlinear oscillator

The research relevant to the snap-through mechanism can be dated back to Thompson and
Hunt[18]. Recently, the possibility of the application of the device in harvesting vibration energy
was explored[19]. Figure 1 shows the snap-through mechanism under a base excitation. The
dynamic equation can be derived from the Newton law as follows:

mẍ+ cẋ+ 2ks

(

1 − L√
x2 + l2

)

x+mg = −mÿ, (1)

where m is the mass, x is the displacement of the mass, c is the damping coefficient, ks is the
spring stiffness, L is the original length of the spring, l is the distance between the center and
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the edge of the frame, θ is the inclination of the spring with respect to the horizontal, g is the
gravitational acceleration, and y is a harmonic base excitation.

Fig. 1 Device of mass-spring-damper for snap-through mechanism

The static equilibrium positions of the system satisfy the equation as follows:

2ks

(

1 − L√
x2 + l2

)

x+mg = 0. (2)

For the excited small-amplitude motion, the snap-through system undergoes a motion around
an equilibrium point. In this case, the nonlinear term in (1) can be expanded into the Taylor
series at a stable equilibrium (x1, 0) solved by (2). Omitting the higher order terms in the
resulting expanding expression and shifting the origin of the coordinate by introducing the new
variable x↔ x− x1, one can cast (1) into the dimensionless form as follows:

ẍ+ εcẋ+ ω2x+ εαx2 = εf cos(Ωt) (3)

for small base excitation, where x is the dimensionless generalized coordinate, ε is a small
parameter, c is a damping coefficient, ω is the natural frequency, α is the coefficient of the
quadratic nonlinear term, and f and Ω are the amplitude and the frequency of the harmonic
force, respectively.

In the following, the primary resonance is treated. In this case, the excitation frequency is
very close to the natural frequency. Introduce the detuning parameter σ0 satisfying

Ω = ω + εσ0. (4)

3 Analytical approximation of amplitude-frequency relationship

3.1 Lindstedt-Poincaré method

The Lindstedt-Poincaré method assumes an approximate expansion of the solution of (3) in
the form as follows:

x(t, ε) = x0 + εx1 + · · · . (5)

Substituting (4) and (5) into (3) and equating the coefficients of the same order ε yield

x′′0 + x0 = 0, (6)

x′′1 + x1 = −2σ0

ω
x′′0 − c

ω
x′0 −

α

ω2
x2

0 +
f

ω2
cos τ, (7)

where x′ represents the derivative of x with respect to the new time scale τ = Ωt.
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The solution of (6) is

x0 = a cos(τ + ϕ) (8)

with the amplitude a and the initial phase ϕ. Substituting (8) into (7) and eliminating the
secular terms lead to

2σ0

ω
a+

f

ω2
cosϕ = 0,

c

ω
a+

f

ω2
sinϕ = 0. (9)

Eliminating ϕ from (9), we can obtain the amplitude-frequency response relationship as follows:

a =
f

ω
√

4σ2
0 + c2

, (10)

which is actually the amplitude-frequency response relationship of a linear oscillator defined
by (3) where α = 0. Therefore, up to the first-order approximation, the Lindstedt-Poincaré
method cannot account for the quadratic nonlinearity.

Substituting (8) into (7) and omitting the secular terms yield

x1 = −αa
2

2ω2
+
αa2

6ω2
cos(2(τ + ϕ)). (11)

According to (5), we can obtain the second-order approximation as follows:

x(t, ε) = −εαa
2

2ω2
+ a cos (τ + ϕ) +

εαa2

6ω2
cos 2 (τ + ϕ) , (12)

indicating that the amplitude of the second-order approximation comes from the first-order ap-
proximation. However, the amplitude-frequency response relationship of the first-order approx-
imation is linear. Consequently, when the excitation amplitude is a first-order small quantity
of the bookkeeping parameter, the second-order approximation does not have multivaluedness
and bending.
3.2 Multiple-scale method

The multiple-scale method assumes an approximate expansion of the solution of (3) in the
following form:

x(t, ε) = x0(T0, T1) + εx1(T0, T1) + · · · , (13)

where

T0 = t, T1 = εt.

Denote

Dk =
∂

∂Tk

, k = 0, 1.

Then,
d

dt
= D0 + εD1 + · · · , d2

dt2
= D2

0 + 2εD0D1 + · · · . (14)

Substituting (13) and (14) into (3) and equating the coefficients of ε0 and ε1 yield

D2
0x0 + ω2x0 = 0, (15)

D2
0x1 + ω2x1 = −2D0D1x0 − cD0x0 − αx2

0 + f cos(ΩT0). (16)
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The solution of (15) can be expressed as follows:

x0 = A(T1) exp(iωT0) + c.c., (17)

where A(T1) is an unknown complex function of T1, and c.c. stands for the complex conjugate
of the preceding terms. Substituting (17) into (16) and eliminating the secular terms yield

−2iωD1A− iωAc+
f

2
exp(iσ0T1) = 0. (18)

Express the unknown function A in the polar form as follows:

A(T1) =
1

2
a(T1) exp(iθ(T1)). (19)

Substituting (19) into (18) and separating the resulting equation into real and imaginary parts,
one has

da

dT1
= −ca

2
+

f

2ω
sin γ, a

dγ

dT1
= aσ0 +

f

2ω
cos γ, (20)

where
γ = σ0T1 − θ.

For a steady-state response, both a and γ should be constants. Therefore, from (20), we get

−ca
2

+
f

2ω
sinγ = 0, aσ0 +

f

2ω
cos γ = 0. (21)

Eliminating γ from (21) yields (10). Thus, the amplitude-frequency response relationship de-
rived from the multiple-scale method is the same as that derived from the Lindstedt-Poincaré
method.

Substituting (19) into (17) and omitting the secular terms yield

x1 = −2αAĀ

ω2
+
αA2

3ω2
exp(i2ωT0). (22)

Substituting (17) and (22) into (13) yields the second approximate as follows:

x(t, ε) = −εαa
2

2ω2
+
a

2
exp(i (θ(T1) + ωT0)) +

εαa2

12ω2
exp(2i(θ(T1) + ωT0)). (23)

Thus, the second approximate derived from the multiple-scale method is the same as that
derived from the Lindstedt-Poincaré method.
3.3 Averaging method

The averaging method is employed to seek the solution to (3) in the form as follows:

ẍ+ Ω2x = εF (x, ẋ,Ωt), (24)

where
F (x, ẋ,Ωt) = 2σ0ωx− αx2 − cẋ+ f cos (Ωt) . (25)

The averaging method assumes the solution of (24) in the following form:

x = a (εt) cos (Ωt− ϕ (εt)) , ẋ = −Ωa (εt) sin (Ωt− ϕ (εt)) . (26)

Let ψ = Ωt− ϕ. Then, (24) and (26) yield







ȧ = − ε

Ω
F (a cosψ,−Ωa sinψ, ψ + ϕ) sinψ,

aϕ̇ = F (a cosψ,−Ωa sinψ, ψ + ϕ) cosψ.

(27)
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Averaging the right-hand sides of (27) over ψ from 0 to 2π yields






















ȧ = − ε

Ω

1

2π

∫ 2π

0

F (a cosψ,−Ωa sinψ, ψ + ϕ) sinψdψ,

aϕ̇ =
ε

Ω

1

2π

∫ 2π

0

F (a cosψ,−Ωa sinψ, ψ + ϕ) cosψdψ.

(28)

Substituting (25) into (28) yields










ȧ = − ε

2Ω
(caΩ − f sinϕ) ,

aϕ̇ =
ε

2Ω
(2σ0aω + f cosϕ) .

(29)

For a steady-state response, both a and ϕ should be constants. Therefore,

− ε

2Ω
(caΩ − f sinϕ) = 0,

ε

2Ω
(2σ0aω + f cosϕ) = 0. (30)

Eliminating ϕ from (30) yields the amplitude-frequency response relationship as follows:

a =
f

ω

√

4σ2
0 + c2 Ω2

ω2

. (31)

(10) and (31) indicate that the amplitude-frequency response relationship derived from the
averaging method is not identical to that obtained by the Lindstedt-Poincaré method or the
multiple-scale method.
3.4 Harmonic balance method

The harmonic balance method assumes that the solution of (3) is

x = a0 + a1 cos(Ωt) + b1 sin(Ωt), (32)

where a0, a1, and b1 are the coefficients to be determined.
Substituting (32) into (3) and equalizing the coefficients of the constant terms and the first

harmonic components yield






















ω2a0 + εαa2
0 +

εα

2
a2
1 +

εα

2
b21 = 0,

(

ω2 − Ω2
)

b1 − εcΩa1 + 2εαa0b1 = 0,

(

ω2 − Ω2
)

a1 + εcΩb1 + 2εαa0a1 = εf.

(33)

Decoupling a0 from a1 and b1 in (33) yields

8ε3α3a4
0 + 8ε2α2(2ω2 − Ω2)a3

0 + 2εα
(

(ω2 − Ω2)(5ω2 − Ω2) + ε2c2Ω2
)

a2
0

+2ω2
(

(ω2 − Ω2)2 + (εcΩ)2
)

a0 + ε3αf2 = 0.
(34)

Once a0 has been determined, a1 and b1 can be solved as follows:






















a1 =

(

−Ω2 + ω2 + 2εαa0

)

εf

(−Ω2 + ω2 + 2εαa0)
2 + (εcΩ)2

,

b1 =
ε2cΩf

(−Ω2 + ω2 + 2εαa0)
2 + (εcΩ)2

.

(35)

Then, the amplitude-frequency response relationship can be calculated by

a = |a0| +
√

a2
1 + b21. (36)
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3.5 Three-time scale method

We seek a solution of (3) in the three time scales form

x(t, ε) = x0(T0, T1, T2) + εx1(T0, T1, T2) + ε2x2(T0, T1, T2) + · · · , (37)

where
Tk = εkt, k = 0, 1, 2.

Denote

Dk =
∂

∂Tk

, k = 0, 1, 2.

Then,

d

dt
= D0 + εD1 + ε2D2 + · · · , d2

dt2
= D2

0 + 2εD0D1 + ε2(D2
1 + 2D0D2) + · · · . (38)

Use the three-time scale method to rescale the damping coefficient, the amplitude of excitation,
and the detuning parameter, respectively, i.e.,

c↔ εc, f ↔ εf, Ω = ω + ε2σ0. (39)

Then, we can rewrite the equation of the system as follows:

ẍ+ ε2cẋ+ ω2x+ εαx2 = ε2f cos(Ωt). (40)

Substituting (37), (38), and (39) into (40) and equating the coefficients of the same power ε
yield

D2
0x0 + ω2x0 = 0, (41)

D2
0x1 + ω2x1 = −2D0D1x0 − αx2

0, (42)

D2
0x2 + ω2x2 = −2D0D1x1 − cD0x0 − (D2

1 + 2D0D2)x0 − 2αx0x1 + f cos(ΩT0). (43)

The solution of (41) can be expressed as follows:

x0(T0, T1, T2) = A(T1, T2) exp(iωT0) + c.c. (44)

Substituting (44) into (42) and eliminating the secular terms yield

D1A = 0 ⇒ A = A(T2). (45)

With this result, the solution of (42) can be written as follows:

x1 (T0, T2) =
α

3ω2
A2 (T2) exp(2iωT0) −

2α

ω2
A (T2) Ā (T2) + c.c. (46)

Substituting (44) and (46) into (43) and eliminating the secular terms yield

−icωA− 2iωD2A+
10α2

3ω2
A2Ā+

1

2
feiσ0T2 = 0. (47)

Express the unknown function A in the polar form as follows:

A(T2) =
1

2
a(T2) exp(iθ(T2)). (48)
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Substituting (48) into (47) and separating the resulting equation into real and imaginary parts
yield

da

dT2
= −ca

2
+

f

2ω
sin γ, a

dγ

dT2
= aσ0 +

5α2

12ω2
a3 +

f

2ω
cos γ, (49)

where
γ = σ0T2 − θ.

For a steady-state response, both a and γ should be constants. Therefore, (49) leads to

−ca
2

+
f

2ω
sin γ = 0, aσ0 +

5α2

12ω2
a3 +

f

2ω
cos γ = 0. (50)

Eliminating γ from (50) yields the amplitude-frequency response relationship derived from the
three-time scale method as follows:

σ0 = − 5α2

12ω3
a2 ± 1

2ωa

√

f2 − c2ω2a2, (51)

where the characteristic of nonlinearity exists.
The amplitude of (50) satisfies the following condition:

a 6
f

cω
. (52)

When the amplitude of the steady-state response is the maximum, the detuning parameter is

σ∗ = − 5α2f2

12c2ω5
. (53)

It should be noticed that the detuning is negative for any quadratic nonlinear coefficients.
Therefore, the quadratic nonlinear system results in the softening type nonlinear characteristic.

Substituting (48) into (44) and (46), according to (37), we can obtain the second-order
approximate as follows:

x (t, ε) = x0 (T0, T1, T2) + εx1 (T0, T1, T2) + · · ·

= a cos (ωt+ θ) − εαa2

2ω2
+
εαa2

6ω2
cos (2ωt+ 2θ) +O

(

ε2a2
)

. (54)

Using the same scale, the second-order approximation derived from the Lindstedt-Poincaré
method is the same as that derived from the three-time scale method.

Although the form of (54) is the same as (12) and (23), the amplitude of (54) comes from the
amplitude-frequency response relationship (51) which is nonlinear. Consequently, the second-
order approximation of the three-time scale method has multivaluedness and bending. There-
fore, the three-time scale method can predict the steady-state response of the quadratic non-
linear system.
3.6 Primary resonance under strong harmonic excitation

Now, consider a quadratic nonlinearity oscillator subject to a strong external harmonic
excitation, i.e.,

ẍ+ εcẋ+ ω2x+ εαx2 = f cos(Ωt). (55)

In the primary resonance, it is difficult to directly apply the Lindstedt-Poincaré method
and the multiple-scale method, because the secular term occurs in the zeroth-order approxima-
tion. The averaging method still works. The similar procedure in Subsection 3.4 leads to the
amplitude-frequency response relationship for (55) as follows:

a =
f

ε
√

4σ2
0ω

2 + c2Ω2
. (56)
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The harmonic balance method is also valid. The similar procedure in Subsection 3.4 leads to
the amplitude-frequency response relationship (36). Therefore, we can obtain a0 by

8ε3α3a4
0 + 8ε2α2(2ω2 − Ω2)a3

0 + 2εα
(

(ω2 − Ω2)(5ω2 − Ω2) + ε2c2Ω2
)

a2
0

+ 2ω2
(

(ω2 − Ω2)2 + (εcΩ)2
)

a0 + εαf2 = 0 (57)

and a1 and b1 by























a1 =

(

−Ω2 + ω2 + 2εαa0

)

f

(−Ω2 + ω2 + 2εαa0)
2

+ (εcΩ)
2 ,

b1 =
εcΩf

(−Ω2 + ω2 + 2εαa0)
2

+ (εcΩ)
2 .

(58)

4 Comparisons of numerical results

To examine the analytical results in the preceding section, the fourth-order Runge-Kutta
algorithm is employed to integrate (3) and (55). The parameters are chosen as follows: ε = 0.01,
ω = 1, c = 2, and α = 5.

4.1 Primary resonance under weak harmonic excitation

Figure 2 shows the amplitude-frequency response curves of (3) with (4) for two excitation
amplitudes. In Fig. 2, the hollow dot lines, the solid (stable) lines, and the solid lines with
solid dots stand for the outcomes of the numerical integration, the harmonic balance method,
and the multiple-scale method, respectively. The outcome of the Lindstedt-Poincaré method
is identical to that of the multiple-scale method, and the outcome of the averaging method
is so close that there are no differences among the results in the figure. For rather small
excitation amplitude shown in Fig. 2(a), all curves are qualitatively the same in the sense
that the amplitude-frequency response relationships are all single-valued, while the response
curve obtained by the harmonic balance method is quantitatively more close to the numerical
result than to that obtained by the multiple-scale method. For relatively large excitation
amplitude shown in Fig. 2(b), the outcome of the numerical integration agrees qualitatively
with that of the harmonic balance method. Both the curves bend to the left, while the cubic
nonlinearity with the positive coefficient bends the curve to the right. In each of the curve,
there is multi-valuedness, resulting in jumping. In spite of the qualitative agreement, there are
certain quantitative differences.

Fig. 2 Amplitude-frequency response curves for weak excitations
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To highlight the quantitative differences among different approaches, the phase portraits of
the steady-state responses are illustrated in Fig. 3 for a few sets of parameters. In Fig. 3, the
solid dot lines, the solid lines, the dash lines, and the dash dot lines represent the results of
the numerical integrations, the harmonic balance method, the multiple-scale method (also the
Lindstedt-Poincaré method), and the averaging method, respectively. In all cases, the results
of the method of harmonic balance are the best approximations supported by the numerical
results.

Fig. 3 Phase portraits of steady-state responses to weak excitations for different parameters

Figure 4 depicts the amplitude-frequency response curves of the second-order approximation
derived from the two-time scale method. The outcome of the Lindstedt-Poincaré method under
the same scale is identical to those of the two-time scale method. In Fig. 4, the solid triangles
are the numerical results based on the original (1), the hollow dot lines are the numerical
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results based on the truncated (3), and the solid and dashed lines stand for the results of the
second approximate and the first approximate of the two-time scale method, respectively. The
numerical solutions of (1) and (3) are demonstrated to be in good agreement. It is evident that
the second-order approximation derived from the two-time scale method cannot predict any
bending in the response curves.

Fig. 4 Amplitude-frequency response curves under weak excitations

Figure 5 shows the amplitude-frequency response curves of the second-order approximation
derived from the three-time scale method, the two-time scale method, the harmonic balance
method, and the numerical results, respectively. The results indicate that the second-order
approximation of the three-time scale method bends to the left, agreeing qualitatively with
the numerical observations. The simulations and theoretical analyses reveal that the harmonic
balance method can outperform the averaging method, the Lindstedt-Poincaré method, and
the multiple-scale method for the quadratic nonlinear system under weak external excitations.

Fig. 5 Amplitude-frequency response curves under weak excitations

4.2 Primary resonance under a strong harmonic excitation

Figure 6 depicts the amplitude-frequency response curves of (55) with (4) determined by the
numerical integration (hollow dot lines), the harmonic balance method (solid lines for stable
portions and dashed lines for unstable portions), and the averaging method (solid lines with
solid dots). The averaging method cannot reveal the effect of quadratic nonlinearity, since
the resulting response curves are without bending. The harmonic balance method predicts
bending of the response curves to the left, and the prediction is supported by the numerical
results. For the quadratic nonlinear term with negative coefficients, the only change made
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by the transform x ↔ −x is the sign of the forcing term in the resulting governing equation.
According to (36), (57), and (58), the forcing term sign change does alter the amplitude-
frequency response relationship. Contrast to the cubic nonlinearity, the quadratic nonlinearity,
regardless its coefficient sign, bends the response curves to the left instead of the right.

Fig. 6 Frequency response curve under different excitations

For a few sets of parameters, Fig. 7 plots the phase portraits of the steady-state responses
determined by the numerical integration (solid dot lines), the harmonic balance method (solid
lines), and the averaging method (dashed lines). The quantitative differences between the
results of the numerical integration and the harmonic balance method are rather small.

5 Conclusions

The present work analyzes the steady-state response in the primary resonance of a quadrat-
icly nonlinear oscillator subject to weak external excitations and strong external excitations.
The analytical approximations of the amplitude-frequency response relationships are derived
from the Lindstedt-Poincaré method, the multiple-scale method , the averaging method, and
the harmonic balance method. The analytical results are compared with the numerical integra-
tions. The investigation yields the following conclusions:

(i) The harmonic balance method reveals that the quadratic nonlinearity bends the amplitude-
frequency response curves to the left.

(ii) The left-bending predicted by the harmonic balance method is supported by the numer-
ical integrations.

(iii) Up to the first-order approximation, the Lindstedt-Poincaré method, the multiple-scale
method, and the averaging method cannot account for the quadratic nonlinearity, and thus
cannot predict any bending in the amplitude-frequency response curves.

(iv) It is demonstrated that there exists a zeroth-order harmonic component in the applica-
tion of the harmonic balance method to the forced quadratic nonlinearity oscillator.

(v) Up to the second-order approximation, the two-time scale method cannot predict any
bending in the response curves, while the three-time scale method can predict any bending.

(vi) Simulations and theoretical analyses reveal that the harmonic balance method can out-
perform the averaging method, the Lindstedt-Poincaré method, and the multiple-scale method
for the quadratic nonlinear system under weak external excitations.

(vii) It is also demonstrated that the quadraticly nonlinear system indicates a softening type
nonlinearity for any quadratic nonlinear coefficients.
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Fig. 7 Phase portraits of steady-state responses under strong excitations with different parameters
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