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Abstract The optimal bounded control of stochastic-excited systems with Duhem

hysteretic components for maximizing system reliability is investigated. The Duhem

hysteretic force is transformed to energy-depending damping and stiffness by the energy

dissipation balance technique. The controlled system is transformed to the equivalent non-

hysteretic system. Stochastic averaging is then implemented to obtain the Itô stochastic

equation associated with the total energy of the vibrating system, appropriate for eval-

uating system responses. Dynamical programming equations for maximizing system re-

liability are formulated by the dynamical programming principle. The optimal bounded

control is derived from the maximization condition in the dynamical programming equa-

tion. Finally, the conditional reliability function and mean time of first-passage failure of

the optimal Duhem systems are numerically solved from the Kolmogorov equations. The

proposed procedure is illustrated with a representative example.
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1 Introduction

Many structural components, such as passive vibration absorber and piezoelectric ceram-
ics, exhibit hysteresis. Many civil and mechanical engineering structures equipped with these
components show hysteretic behaviors under serious time-varying loading, such as typhoon,
earthquake, and high-intensity noise[1–2]. The hysteretic restoring force is determined by both
the instantaneous and past states of the deformation, and a hysteretic loop can be created
between the hysteretic restoring force and the displacement under periodic movement. Many
kinds of mathematical models have been proposed to characterize the relationship of the hys-
teretic force and the displacement, including the bi-linear model, the Ramberg-Osgood model,
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Iwan’s distributed element model, Ozdemir’s model, and so on[3–7]. In all these hysteretic mod-
els, the Duhem differential model[8–10] is versatile to cover most existing hysteresis models and
can describe the hysteretic behavior more accurately.

Various stochastic optimal control strategies have been proposed[11–13]. However, in me-
chanical and structural engineering fields, only the linear quadratic Gaussian (LQG) control
strategy has been widely applied. In the past decade, an optimal control strategy[14] for nonlin-
ear systems has been developed for the quasi Hamiltonian random system with external and/or
parametric excitations by Zhu et al.[15]. The strategy has been applied to semi-active control,
bounded control, and robust control for uncertain systems[16]. The LQG control strategy is
usually used to reduce the system response or to enhance the system stability, while the opti-
mal control strategy for stochastic systems can also be used to maximize the system reliability,
i.e., minimize the first-passage failure[17]. The reliability is described by the probability of the
structure in the safety domain during a specified time interval. The bigger the probability is,
the better the system reliability is. The design of the optimal control strategy is aimed to
enhancing the reliability and making the system safer, i.e., searching the optimal control to
enlarge the probability in the safety domain. Almost all the works, however, concentrate on the
non-hysteretic systems, and the only work on maximizing the reliability of hysteretic systems
is contributed to the Bouc-Wen system[18].

In the present study, the process of deriving the optimal feedback control in order to max-
imize the reliability of the Duhem system is given. The Duhem hysteretic model is briefly
presented. The controlled hysteretic system is transformed to the controlled nonlinear system
without hysteresis, and then the controlled system energy’s Itô differential equation is deduced
according to the theorem of stochastic averaging. The dynamical programming equations with
the corresponding solution conditions for the control problem of maximizing system reliability
are formulated based on the dynamical programming principle. Finally, the conditional reliabil-
ity functions and the mean time of the first-passage failure are obtained from the Kolmogorov
equation. A tall building, which is simplified as an equivalent single-degree-of freedom system
subjected to non-white noise excitations, is discussed to validate the procedures’ efficacy.

2 Duhem hysteretic model

The Duhem model for hysteresis satisfies the following equations:

ż = g(x, z, sgn(ẋ))ẋ = g1(x, z)ẋ+ − g2(x, z)ẋ− =
{

g1(x, z)ẋ, ẋ > 0,
g2(x, z)ẋ, ẋ < 0, (1a)

ẋ+ =
|ẋ| + ẋ

2
, ẋ− =

|ẋ| − ẋ

2
, (1b)

where z and x denote the hysteretic force and the displacement, respectively, and g1 and g2

are continuous functions. According to the Duhem model (1a) and (1b), the hysteretic force
is determined by g1 for ẋ > 0 and g2 for ẋ < 0. The corresponding hysteresis loop in the
xz-plane consists of two parts, i.e., the ascending line z1(x) for ẋ > 0 and the descending
line z2(x) for ẋ < 0. Both the ascending line and the descending line are independent of the
magnitude of velocity ẋ. The hysteretic force on the ascending line or the descending line is
determined by the instantaneous system state, and the local history due to the last changes in
the velocity direction is independent of the displacement history before the change. Thus, the
Duhem hysteresis model has the characteristics of local memory.

For anti-symmetric Duhem hysteresis models (as shown in Fig. 1), g2(x, z) = g1(−x,−z),
z1(x) = −z2(−x), a1 = a2, and x10 = x20 = x0. In this case, the hysteretic force can be
replaced by an elastic part and an inelastic part, i.e., z1(x) = ze + zp

1 , and z2(x) = ze + zp
2 , in

which the superscripts e and p denote elastic part and inelastic part, respectively. The potential
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energy can be represented as

U(x) =
∫ x

0

ze(x1)dx1 +
∫ x

−x0

zp
1 (x1)dx1, −a � x � −x0, (2a)

U(x) =
∫ x

0

ze(x1)dx1 +
∫ (zp

2 )−1zp
1 (x)

x0

zp
2 (x1)dx1, −x0 � x � a. (2b)

The area of the hysteresis loop Ar represents the dissipated energy in one cycle by the hysteresis
component, which can be written as

Ar =
∮

zp(x)dx = 2
∫ a

−a

z1(x)dx. (3)

 

Fig. 1 Representative of Duhem hysteresis loop

In the versatile Duhem model, there is a class of hysteresis called the integrable Duhem
hysteresis when the functions g1 and g2 make Eqs. (1a) and (1b) be analytically integrable. The
integrable Duhem model is quite general, and it includes many existing hysteresis models, such
as the Bouc-Wen model and the Yar-Hammond bilinear model[3,6]. Therefore, the integrable
Duhem model is used in the present work.

3 Stochastic averaging of controlled Duhem hysteretic system

Discuss a one-degree-of-freedom Duhem hysteretic system subjected to random excitations
and control. The equation is

Ẍ + 2ζẊ + Z(X, Ẋ) = fj(X, Ẋ)ξj + u, u ∈ U, (4)

where X , ζ, and Z denote the system displacement, the damping coefficient, and the Duhem
hysteretic restoring force, respectively, fj(X, Ẋ) represent the amplitudes of external and/or
parametric random excitations, which are continuous and differentiable functions of the dis-
placement and the velocity, the zero mean processes ξj(t) are stationary excitations with corre-
lation functions Rjk(τ) = E(ξj(t)ξk(t + τ)), u denotes the external control force in the admis-
sible set of U , and the subscript “j” is a dummy index indicating a summation with the index
running through its domain.

By adopting the energy dissipation balance technique[19], the hysteretic damping effect can
be approximated by a damping term provided that the energy dissipations in one period are
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equal[10]. Then, the Duhem hysteretic system (4) with Eqs. (1a) and (1b) can be substituted
by the non-hysteretic nonlinear random system,

Ẍ + (2ζ + 2ζ1(H))Ẋ +
∂U

∂X
= fj(X, Ẋ)ξj + u, (5)

in which

H =
ẋ2

2
+ U(x) (6)

represents the system energy, and 2ζ1 is the equivalent quasi-linear damping coefficient, which
can be evaluated by the following formula:

2ζ1(H) =
Ar

2
∫ a

−a

√
2H − 2Udx

. (7)

Introduce transformations to the equivalent non-hysteretic nonlinear system[20],

sgn(X)
√

U(X) =
√

H cosϕ, Ẋ = −
√

2H sinϕ, 0 � ϕ < 2π. (8)

Equation (5) can be substituted by the first-order differential equation for the system energy
and phase,

Ḣ = −2H sin2 ϕ(2ζ + 2ζ1(H)) − u
√

2H sin ϕ −
√

2H sin ϕfj(X, Ẋ)ξj , (9a)

ϕ̇ =
1√
2H

(
−
√

2H sin ϕ cosϕ(2ζ + 2ζ1(H)) +
∂U
∂X

cosϕ
− u cosϕ

)
− cosϕ√

2H
fj(X, Ẋ)ξj . (9b)

For the case that the damping and excitations are weak, the system energy can be approximated
as a Markov diffusion process[21–22]. Performing time averaging in Eq. (9a) yields the associated
Itô equation,

dH =
(
m(H) +

〈∂H

∂Ẋ
u
〉)

dt + σ(H)dB(t), (10)

where B(t) is a unit Wiener process. The drift coefficient m(H) and the diffusion coefficient
σ2(H) are as follows:

m(H) =
〈
−2H sin2 ϕ(2ζ + 2ζ1(H))

+
∫ 0

−∞

(
(
√

2H sin ϕfj(H, ϕ))t+τ
∂

∂H
(
√

2H sinϕfk(H, ϕ))t

+
( cosϕ√

2H
fj(H, ϕ)

)
t+τ

∂

∂ϕ
(
√

2H sin ϕfk(H, ϕ))t

)
Rjk(τ)dτ

〉
t
, (11)

σ2(H) =
〈∫ ∞

−∞
(
√

2H sin ϕfj(H, ϕ))t+τ (
√

2H sin ϕfk(H, ϕ))tRjk(τ)dτ
〉

t
, (12)

in which 〈·〉t represents time averaging.

4 Optimal bounded control strategy for maximizing system reliability

The system energy H(t) slowly varies in the interval [0,∞). The initial state of the system
is set as H(0) = H0 in the prescribed safe interval [0, Hc). Once the system energy H(t) is not
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in [0, Hc), the system fails. The reliability describes the probability of system in [0, Hc) within
the specified time interval, which is the crucial concept. In the following part of the paper, the
procedures of establishing control strategy to enhance the system reliability of Duhem hysteretic
systems are illustrated.

Select the reliability function as the performance index of the controlled system (10),

J(u) = P {H(t, u) ∈ [0, Hc), 0 � t � tf} . (13)

Give the function V (H, t), a value function, as follows:

V (H, t) = sup
u∈U

P{H(s, u) ∈ [0, Hc), t < s � tf |H(t, u) ∈ [0, Hc)}. (14)

Based on Bellman’ programming principle[11], the dynamical programming equation with re-
spect to V (H, t) derived from the system (10) can be written as

sup
u∈U

( ∂

∂t
+

(
m(H)+u

∂H

∂Ẋ

) ∂

∂H
+

1
2
σ2(H)

∂2

∂H2

)
V (t, H) = 0, 0 � t � T, H ∈ (0, Hc). (15)

The solution conditions of Eq. (15) are

V (Hc, t) = 0, (16)

V (0, t) = finite, (17)

V (H, T ) = 1, H < Hc. (18)

Equations (15) and (18) constitute the definite problem to determine the control strategy for
maximizing system reliability.

The control constraint is of the following form:

|u| � b, b > 0. (19)

Clearly, the term u(∂H
∂Ẋ

)( ∂V
∂H ) in Eq. (15) is maximal when |u| = b, and each term u(∂H

∂Ẋ
)( ∂V

∂H )
is positive. Thus, the optimal control forces can be written as

u∗ = b sgn
(∂H

∂Ẋ

∂V

∂H

)
, (20)

where sgn(·) is the sign function. It can be seen that the reliability function increases as the
system energy H decreases[17], i.e., ∂V

∂H < 0. Thus, Eq. (20) can be rewritten as

u∗ = −b sgn
(∂H

∂Ẋ

)
= −b sgn(Ẋ). (21)

5 Backward Kolmogorov equation

By inserting Eq. (21) into Eq. (10) for replacing u and averaging the term u∂H
∂Ẋ

, the following
stochastic equation is derived:

dH = (m(H))dt + σ(H)dB(t), (22)
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where

m(H) =
〈
−2H sin2 ϕ(2ζ + 2ζ1(H)) −

√
2H b sgn(sin ϕ) sin ϕ

+
∫ 0

−∞

(
(
√

2H sin ϕfj(H, ϕ))t+τ
∂

∂H
(
√

2H sin ϕfk(H, ϕ))t

+
( cosϕ√

2H
fj(H, ϕ)

)
t+τ

∂

∂ϕ
(
√

2H sin ϕfk(H, ϕ))t

)
Rjk(τ)dτ

〉
t
, (23a)

σ2(H) =
〈∫ +∞

−∞
(
√

2H sin ϕfj(H, ϕ))t+τ (
√

2H sin ϕfk(H, ϕ))tRjk(τ)dτ
〉

t
. (23b)

The conditional reliability function for the controlled system (22) R(t|H0) = P{H(τ, u∗) ∈
[0, Hc), τ ∈ (0, t]|H0 ∈ [0, Hc)} satisfies the following Kolmogorov deferential equation[17]:

∂R(t|H0)
∂t

= m(H0)
∂R(t|H0)

∂H0
+

σ2(H0)
2

∂2R(t|H0)
∂H2

0

, (24)

where m(H0) and σ2(H0) are obtained from Eqs. (23a) and (23b) with H replaced by H0. The
initial condition of Eq. (24) is

R(0|H0) = 1, H0 ∈ (0, Hc), (25)

and the associated boundary conditions are

R(t|Hc) = 0, (26a)

R(t|0) = finite. (26b)

The one-dimensional initial-boundary value problem, Eqs. (24)–(26), can be calculated numer-
ically.

The conditional probability density of the first-passage time is the gradient of the conditional
reliability function,

p(T |H0) = −∂R

∂t

∣∣∣∣
t=T

. (27)

Then, the mean of first-passage time (tMFP) can be obtained from p(T |H0) through Eq. (27),

tMFP(T |H0) =
∫ T

0

tp(t|H0)dt. (28)

The relative increase of tMFP, which reflects the capacity and effects of the optimal bounded
controller to enlarge tMFP, is used to evaluate the control effectiveness and defined as

K =
|(tMFP(T |H0))u − (tMFP(T |H0))c|

(tMFP(T |H0))u
, (29)

where the subscripts “u” and “c” are the uncontrolled and controlled situation, respectively,
and |·| represents the absolute value of “·”. tMFP of the controlled system is obtained from
Eq. (28), and that of the uncontrolled system is obtained from Eqs. (22)–(28) by omitting the
control term, i.e., replacing m(H0) in Eq. (23a) by m(H0) in Eq. (11). Obviously, a higher K
indicates a better control strategy.
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6 Example

Consider a tall building under random excitations. The hysteretic behavior plays an impor-
tant role in the structural response and cannot be ignored. It is reasonable that the building is
idealized as a hysteresis column supporting[23] (as shown in Fig. 2). The transverse motion of the
column is the following partial differential equation: EI ∂4W

∂y4 + F1(t)∂2W
∂y2 + mẄ + cẆ = F2(t),

where m denotes the mass of column per unit length, and c is the damping coefficient. As-
sume that W is dominated by the first vibration mode, W (y, t) = X(t) sin(πy

l ). Then, the
non-dimensional equation of the controlled column-mass model is

Ẍ + 2ζẊ + Z(X, Ẋ) = ξ1(t) + Xξ2(t) + u, (30)

where ξi(t) (i = 1, 2) are the independent non-white noise excitations, and the intensities are
2Di. The ascending function of the anti-symmetric integrable Duhem hysteresis model with
nonlinear elasticity is taken as[10]

g1(x, z) = k1 + 3k3x
2 +

γ

β
(1 − β(z − k1x − k3x

3)), (31)

where k1 and k3 are linear and nonlinear stiffnesses, and α, β, and γ are hysteresis constants.
The hysteretic force z is obtained from Eqs. (1a) and (1b),

z1(x) = k1x + k3x
3 +

1
β

(1 − e−γ(x+x0)), ẋ > 0, (32a)

z2(x) = k1x + k3x
3 − 1

β
(1 − eγ(x−x0)), ẋ < 0. (32b)

Fig. 2 Tall building subjected to random excitations and control

The potential energy and the dissipated energy of hysteresis component in one cycle are,
respectively,

U(x) =
1
2
k1x

2 +
1
4
k3x

4 +
1
β

(x + x0) +
1

βγ
(e−γ(x+x0) − 1), −a � x < −x0, (33a)

U(x) =
1
2
k1x

2 +
1
4
k3x

4 − 1
βγ

ln(2 − e−γ(x+x0)) +
1

βγ
(1 − e−γ(x+x0)), −x0 � x � a, (33b)
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Ar =
4

βγ
(1 + aγ) − 4

βγ
eγ(a−x0), (34)

in which the residual hysteresis displacement x0 and the displacement amplitude a for certain
H are determined by

x0 = −a +
1
γ

ln
1 + e2aγ

2
, (35a)

H =
1
2
k1a

2 +
1
4
k3a

4 − 1
β

(a − x0) +
1

βγ
(eγ(a−x0) − 1). (35b)

The system energy H is the averaged Itô equation for the controlled system in the form of
Eq. (22), and the associated drift and associated diffusion coefficients of the system (30) are,
respectively[24],

m(H)=
1

T (H)

(
−4ζ

∫ a

−a

√
2H − 2U(x)dx−Ar+2D2

∫ a

−a

x2√
2H−2U(x)

dx
)
+D1− ab

T (H)
, (36a)

σ2(H) =
2

T (H)

∫ a

−a

(2D1 + 2D2x
2)

√
2H − 2U(x)dx. (36b)

The conditional reliability function R(t|H0) for the system (30) is determined by Eq. (24).
The corresponding initial and boundary conditions are given in Eqs. (25) and (26), in which
m(H0) and σ2(H0) coincide with Eqs. (36a) and (36b) except that H is replaced by H0. The
relations of the function p(T |H0) and the function R(t|H0) have been shown in Eq. (27). The
function R(t|H0), the function p(T |H0), the mean time of the first-passage tMFP(T |H0), and
the control effectiveness K can be evaluated by the numerical technique.

Suppose that the boundary of system first-passage failure is Hc = 0.5, and the other param-
eter values are γ =2.0, β =0.3, D1 =0.2, D2 =0.05, k1 = 2.0, k3 =0.05, and H0 =0. Equation
(24) combined with its initial-boundary conditions in Eqs. (25) and (26) can be solved. The
numerical results for the R(t|H0) function, the p(T |H0) function, and the function tMFP(T |H0)
are shown in Figs. 3–5, respectively. It can be seen from Figs. 3–5 that the control strategy
greatly enhances the system reliability and tMFP of the Duhem system. When the magnitude b
of the control force decreases, the reliability decreases more quickly, and tMFP decreases. The
effectiveness of the optimal bounded control strategy is shown in Fig. 6. The control efficacy
decreases as the control magnitude b increases.

7 Conclusions

In this study, the optimal bounded control of Duhem hysteretic systems for maximizing
the reliability is developed. The controlled hysteretic system is substituted by a controlled
nonlinear system without hysteresis, and the controlled system energy’s Itô equation is deduced.
The optimal bounded control for enlarging system reliability is obtained by the dynamical
programming principle. Then, the conditional reliability function governed by the Kolmogorov
equation is obtained. The results associated with the system reliability of uncontrolled and
controlled systems obtained from the present procedure and the results from the Monte-Carlo
simulation are in good agreement. Also, it can be concluded that the reliability of Duhem
hysteretic systems will be really enhanced by the optimal bounded control. Finally, we note that
the proposed technique cannot be adopted to derive the optimal unbounded control strategy,
since the unbounded control strategy makes the dynamical programming equation unsolvable.
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Fig. 3 Conditional reliability functions
R(t|H0) of uncontrolled and
optimally-controlled systems (30)

Fig. 4 Conditional probability densities
p(T |H0) of first-passage time of uncon-
trolled and optimally-controlled systems
(30)

Fig. 5 Mean of first-passage time
tMFP(T |H0) of optimally-controlled
system (30) with different values of
control magnitude b

Fig. 6 Control effectiveness K versus control
magnitude b
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