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Abstract In this paper, the propagation of longitudinal stress waves under a longitu-
dinal magnetic field is addressed using a unified nonlocal elasticity model with two scale
coefficients. The analysis of wave motion is mainly based on the Love rod model. The
effect of shear is also taken into account in the framework of Bishop’s correction. This
analysis shows that the classical theory is not sufficient for this subject. However, this
unified nonlocal elasticity model solely used in the present study reflects in a manner
fairly realistic for the effect of the longitudinal magnetic field on the longitudinal wave
propagation.
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1 Introduction

Nowadays, the nanostructures, i.e., zero- (nano particles), one- (nanorods, nanowires, and
nanobelts), and two-dimensional (thin films and nano sheets), have attracted great attention of
many scientists and researchers. Due to the superior material properties and the smaller sizes,
they also are candidates to new developing industrial applications. The subject of wave propa-
gation in nanostructures are related closely with many crucial physical properties of them, such
as electrical, optical conductance, and absorption coefficients. Especially, some recent notable
studies done on the longitudinal wave propagation of the nanorods should be mentioned[1–4]

here. Recently in years, in the studies done to reveal different magnetic properties of nano-
structures elements, increasing efforts are observed. In this regard, some notable studies[5–13]

related with the electronic and transport properties of nanotubes under a magnetic field have
attracted considerable interest among the researchers. In relation to the present work, the
investigations done to understand the effect of magnetic field on the wave propagation charac-
teristics in the various structural elements having nano dimensions are crucial and may give the
useful insights for the different applications in the nano-engineering field. As known from the
literature[14], the vibrations of nanotubes are sensitive against changes of magnetic field. The
applications of nanorods working in the magnetic field are diverse: bio magnetic sensors, solar
cells, high density magnetic recording, microwave devices, tunable radio frequency oscillators,
etc. The present open literature is rather rich for the works investigating the magnetic field
effect on the transverse wave characteristics of nanostructures. Some notable previous works
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done relating with this topic have been quoted here. The effect of the longitudinal magnetic
field on wave propagation in multi walled carbon nanotubes which can be viewed as a cylindri-
cal shell embedded in elastic matrix was addressed[15] using the continuum medium theories.
The effect of the longitudinal magnetic field on ultrasonic vibration in single walled carbon
nanotubes which can be viewed as a cylindrical shell was investigated[16] using the nonlocal
continuum medium theory. The effect of transverse magnetic field on dynamic characteristics
of multi walled carbon nanotubes was reported[17]. The effect of the longitudinal magnetic field
on wave propagation in a single walled carbon nanotube based on the nonlocal Euler-Bernoulli
beam theory was presented[18]. The rigorous van der Waals interaction effect on vibration char-
acteristics of multi-walled carbon nanotubes embedded in matrix under a transverse magnetic
field was analytically investigated[19]. The influence of longitudinal magnetic field on the char-
acteristics of both flexural and shear waves in a single walled carbon nanotube embedded in an
elastic matrix was studied[20] by the nonlocal Rayleigh-Timoshenko and higher-order beam the-
ories. Dynamic response of an embedded conducting nanowire subjected to an axial magnetic
shock was investigated in the context of nonlocal continuum theory of Eringen[21]. The effect of
the longitudinal magnetic field on the vibration of a magnetically sensitive double single walled
carbon nanotube system which can be viewed as an equivalent nonlocal double Euler-Bernoulli
beam system was reported[22]. Wave propagation in single-walled fluid-conveying carbon nan-
otubes in magnetic and temperature fields was studied[23] using a nonlocal Timoshenko beam
model. Free vibrations and lateral instability of single walled carbon nanotubes subjected to
three-dimensional magnetic fields were studied[24], where a nonlocal elasticity theory was incor-
porated into the classical Rayleigh beam theory. However, this analysis reported that the axial
applied magnetic field has no effect on the phase velocity of longitudinal waves.

Despite numerous studies on analyzing transverse wave vibration of the nanostructures un-
der magnetic field presence, the reports for longitudinal wave propagation still cannot be found,
except a recent work[24]. The longitudinal magnetic field effect on the longitudinal wave prop-
agation cannot be explained up to now by classical and various gradient elasticity models since
these models are constructed in the absence of longitudinal magnetic field. The aim of the
present theoretical analysis is to address accurately the effect of the longitudinal magnetic field
on the longitudinal wave propagation along a nanorod. For this, firstly, developing a nonlocal
elasticity model with the sufficient capacity is required. Therefore, in the present analysis, a
unified nonlocal elasticity theory is incorporated into the classical Rayleigh (Love)-Bishop rod
model[25]. Thus, lateral deformation effect and the contributions of shear stress components
on the elastic strain energy are also taken into account in this analysis. The explicit solution
obtained using Hamilton’s principle is illustrated by some numerical examples. This work de-
veloped to reveal the effect of longitudinal magnetic field on the longitudinal wave propagation
of the nanorods may be helpful particularly in the rational and optimum design of the nano
electro-mechanical systems which can be used in different working fields.

2 Basic differential equations of motion

According to the basic hypotheses of Rayleigh (Love) rod theory, the displacement field in
the Cartesian coordinates is expressed as

u = u(x, t), v = −νy
∂u

∂x
, w = −νz

∂u

∂x
, (1)

where u, v, and w denote the x-, y-, and z-components of the displacement vector, respectively,
and ν is Poisson’s ratio. The x-axis is taken in the axial direction of the rod, and y and z
denote the other perpendicular axes at the centre of geometry of the cross-section.

For the displacement field specified by Eq. (1), the strains and stresses are conventionally
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obtained as follows:
⎧
⎪⎪⎨

⎪⎪⎩

εxx =
∂u

∂x
, εyy =

∂v

∂y
= −ν

∂u

∂x
, εzz =

∂w

∂x
= −ν

∂u

∂x
, γxy =

∂u

∂y
+

∂v

∂x
= −νy

∂2u

∂x2
,

γxz =
∂w

∂x
+

∂u

∂z
= −νz

∂2u

∂x2
, γyz =

∂w

∂x
+

∂v

∂z
= 0,

(2)

⎧
⎪⎪⎨

⎪⎪⎩

σxx = E
∂u

∂x
, σyy = σzz = 0, τxy = − E

2(1 + ν)
νy

∂2u

∂x2
,

τxz = − E

2(1 + ν)
νz

∂2u

∂x2
, τyz = 0,

(3)

where εxx, εyy, and εzz are the normal strains, γxy, γxz, and γyz are the shear strains, σxx, σyy,
and σzz are the normal stresses, τxy, τxz, and τyz are the shear stresses, and E is the elasticity
modulus.

The differential equations of the motion in the Cartesian coordinate system, taking into
account the magnetic field presence, are expressed as follows[26]:

∂σxx

∂x
+

∂τxy

∂y
+

∂τxz

∂z
+ fx = ρ

∂2u

∂t2
, (4)

∂τyx

∂x
+

∂σyy

∂y
+

∂τyz

∂z
+ fy = ρ

∂2v

∂t2
, (5)

∂τzx

∂x
+

∂τzy

∂y
+

∂σzz

∂z
+ fz = ρ

∂2w

∂t2
, (6)

where fx, fy, and fz are the body force components along the x-, y-, and z-directions due to
the longitudinal magnetic field effect. These components are given by[15–16,18]

fx = 0, (7)

fy = ηH2
x

(∂2v

∂x2
+

∂2v

∂y2
+

∂2w

∂y∂z

)
= ηH2

x

∂2v

∂x2
, (8)

fz = ηH2
x

(∂2w

∂x2
+

∂2w

∂y2
+

∂2v

∂y∂z

)
= ηH2

x

∂2w

∂x2
, (9)

where η is the magnetic permeability, and Hx is the component in the x-direction of the
longitudinal magnetic field vector exerted on the nanorod.

3 Unified nonlocal elasticity model and general solution

The unified nonlocal elasticity model adopted here is a combination of the nonlocal integral
(or Eringen)[27] and the strain gradient elasticity[28–32] models. Thus, the unified model has
been proposed as[33–34]

(1 − l2m∇2)σij = (1 − l2s∇2)(λδijεkk + 2Gεij), (10)

where lm and ls are the material constants in the nonlocal integral and the gradient elasticity
models, respectively, λ and G are the Lamé constants, ∇2 = ( ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 ) is the Laplacian
operator, and δij denotes the Kronecker delta. The nonlocal elasticity model of Eringen with
ls = 0 removes only the strain singularity near the dislocation core region, while the gradient
elasticity model with lm = 0 removes only the strain singularity near the dislocation core
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region. However, both the strain and stress singularities near the dislocations are removed by
this unified nonlocal elasticity model with two scale coefficients. It has been reported[34] that
this unified nonlocal elasticity model can give a wider conclusion based on the experimental
observations, when compared with the conventional nonlocal elasticity theory. Furthermore,
it has been shown[35] that there is an excellent matching between the dispersive curve of the
Born-Karman model with this unified nonlocal elasticity model.

By Eqs. (4)–(10) and after a few simple derivative operations, the existing stress components
are obtained as

σxx = ρ(1 + 2ν)l2m
∂3u

∂x∂t2
− 2νηH2

xl2m
∂3u

∂x3
+ E

∂u

∂x
− El2s

∂3u

∂x3
, (11)

τxy = −νρyl2m
∂4u

∂x2∂t2
+ νyηH2

xl2m
∂4u

∂x4
− E

2(1 + ν)
νy

∂2u

∂x2
+

E

2(1 + ν)
νyl2s

∂4u

∂x4
, (12)

τxz = −νρzl2m
∂4u

∂x2∂t2
+ νzηH2

xl2m
∂4u

∂x4
− E

2(1 + ν)
νz

∂2u

∂x2
+

E

2(1 + ν)
νzl2s

∂4u

∂x4
. (13)

In the present analysis, the governing equation of longitudinal wave motion is deduced
from the application of Hamilton’s principle. Thus, firstly, the total elastic strain energy U ,
considering the contribution of the shear stress components, is calculated as follows[36–41]:

U =
1
2

∫ ∫ ∫

(σxxεxx + τxyγxy + τxzγxz)dV. (14)

Substituting Eqs. (11)–(13) into Eq. (14), the total elastic strain energy expression becomes
as follows:

U =
1
2

∫ L

0

(
ρ(1 + 2ν)AL2

m

∂u

∂x

∂3u

∂x∂t2
+ EA

(∂u

∂x

)2

− EAl2s
∂u

∂x

∂3u

∂x3
− 2νAηH2

xl2m
∂u

∂x

∂3u

∂x3

+ ρν2Ipl2m
∂2u

∂x2

∂4u

∂x2∂t2
+

E

2(1 + ν)
ν2Ip

(∂2u

∂x2

)2

− E

2(1 + ν)
ν2Ipl2s

∂2u

∂x2

∂4u

∂x4

− ν2IpηH2
xl2m

∂2u

∂x2

∂4u

∂x4

)
dx, (15)

where A and Ip are the cross-sectional area and the second polar moment, respectively.
The kinetic energy T is given by

T =
1
2
ρ

∫ ∫ ∫

(u̇2 + v̇2 + ẇ2)dV, (16)

where dot sign denotes the derivative with respect to time.
When considering the displacement field (1), the potential energy expression becomes as

follows:

T =
1
2

∫ L

0

(
ρA

(∂u

∂t

)2

+ ρν2Ip

( ∂2u

∂x∂t

)2)
dx. (17)

The general expression of the work done by body forces is given by[36]

Wb =
∫ ∫ ∫

fiuidV, (18)

where fi denotes the body force components, and ui denotes the displacement components.
The contribution of this work for the present problem is absent (Wb =

∫∫∫
fxudV = 0).
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Hamilton’s principle can be expressed as

δ

∫ t2

t1

(T − U)dt = 0. (19)

By substituting Eqs. (15) and (16) for U and T , respectively, into Eq. (19), the governing equa-
tion of motion is obtained as

− ρA
∂2u

∂t2
+ EA

∂2u

∂x2
− Eν2Ip

2(1 + ν)
∂4u

∂x4
+ ρν2Ip

∂4u

∂x2∂t2
+ l2m

(
ρ(1 + 2ν)A

∂4u

∂x2∂t2
− ρν2Ip

∂6u

∂x4∂t2

)

+ l2s

( Eν2Ip

2(1 + ν)
∂6u

∂x6
− EA

∂4u

∂x4

)
− 2νAηH2

xl2m
∂4u

∂x4
+ ν2IpηH2

xl2m
∂6u

∂x6
= 0 (20)

together with the associated boundary conditions

(
− EA

∂u

∂x
+ (l2s EA + 2l2mνAηH2

x + Gν2Ip)
∂3u

∂x3
− (l2s Gν2Ip + l2mν2IpηH2

x)
∂5u

∂x5

− (l2m(1 + 2ν)ρA + ρν2Ip)
∂3u

∂x∂t2
+ l2mρν2Ip

∂5u

∂x3∂t2

)
|δu|L0

+
(
− (Gν2Ip +

1
2
(l2s EA + 2l2mνAηH2

x))
∂2u

∂x2

+ (l2s Gν2Ip + l2mν2IpηH2
x)

∂4u

∂x4
− l2mν2ρIp

∂4u

∂x2∂t2

)
|δu′|L0

+
(1

2
(l2s EA + 2l2mνAηH2

x)
∂u

∂x
− 1

2
(l2s Gv2Ip + l2mν2IpηH2

x)
∂3u

∂x3

)
|δu′′|L0

+
(1

2
(l2s Gv2Ip + l2mν2IpηH2

x)
∂2u

∂x2

)
|δu′′′|L0

=0, (21)

where ()′ represents the derivative with respect to x.
In this investigation, the harmonic longitudinal wave propagation in the axial direction is

assumed. Therefore, its propagation can be expressed in the complex form as follows:

u = Ũeik(x−ct), (22)

where k denotes the wave number, c is the phase velocity, and Ũ is the wave amplitude.
Substituting Eq. (22) into Eq. (20), the corresponding general solution for the phase velocity is
obtained in the dimensionless form as follows:

c∗ =

√
√
√
√1 + ν2r2

0k2

2(1+ν) + l2mk2 ηH2
x

E (2ν + ν2r2
0k

2) + l2sk
2(1 + ν2r2

0k2

2(1+ν) )

1 + ν2r2
0k

2 + l2mk2(1 + 2ν + ν2r2
0k

2)
, (23)

where c∗ = c
c0

, c0 = E
ρ , and the gyration radius r0 =

√
Ip
A . For a solid rod with the radius a,

r0 is a/
√

2.
The group velocity cg is given as follows:

cg = c0

√
A

B
+

1
2
c0k

1
√

A
B

A′B − B′A
B2

, (24)
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where

A = 1 +
ν2r2

0k
2

2(1 + ν)
+ l2mk2 ηH2

x

E
(2ν + ν2r2

0k
2) + l2sk

2
(
1 +

ν2r2
0k

2

2(1 + ν)

)
,

B = 1 + ν2r2
0k

2 + l2mk2(1 + 2ν + ν2r2
0k

2),

and ( )′ prime denotes derivative with respect to the wave number k.

4 Degenerate cases and numerical results

For ls = 0, the general solution (23) is reduced to the degenerate case based on Eringen’s
integral approach in the following form:

c∗ =

√
√
√
√ 1 + ν2r2

0k2

2(1+ν) + l2mk2 ηH2
x

E (2ν + ν2r2
0k

2)

1 + ν2r2
0k

2 + l2mk2(1 + 2ν + ν2r2
0k

2)
. (25)

The terms containing the following forms: ν2r2
0k2

2(1+ν) and 2ν. When these two are removed, the
general solution (25) is reduced to the degenerate case based on the nonlocal Love rod theory
in the following form:

c∗L =

√

1 + l2mk2 ηH2
x

E ν2r2
0k

2 + l2s k
2

(1 + l2mk2)(1 + ν2r2
0k

2)
. (26)

For ls = Hx = 0, Eq. (24) is reduced to the nonlocal Love rod solution (without the magnetic
field effect) derived by the different way[42].

For short wavelengths (i.e., k → ∞), the general dispersion relation (23) is reduced to the
following form:

c∗ =

√
ηH2

x

E
+

( ls
lm

) 1
2(1 + ν)

. (27)

For k → ∞, Eqs. (25) and (26) give the same results as follows:

c∗ = c∗L =

√
ηH2

x

E
. (28)

Comparing the relations (25) and (26), the superiority of the present model can be under-
stood clearly. It can be seen in the above that while the nonlocal elasticity theory of Eringen
gives the solution independent of the shear and scale coefficients influences, the present unified
general model gives a physically realistic solution containing these effects for the phase velocity.

Figure 1(a) shows the effect of length scale parameter ratio m = ls/lm on the phase ve-
locity based on the present model, where ka, c∗ (= c

c0
), and H = ηH2

x

E are the dimensionless
wave number, the dimensionless phase velocity, and the dimensionless parameter reflecting the
effect of magnetic field, respectively. In calculations, lm and H are taken to be 0.1 and 0.5,
respectively. It is seen from Fig. 1(a) that the phase velocity always increases with the increase
in the scale coefficient ratio m, and then for sufficiently high values of the wave number, the
dispersion curves become asymptotic. It means that the stiffening capability of the longitudinal
magnetic field on the nanorod occurs in smaller wave numbers for high values of the ratio m.
Figure 1(b) depicts the effects of the ratio of scale coefficients m on the dispersion curves with-
out the magnetic field. A simple comparison between Figs. 1(a) and (b) shows that the presence
of the longitudinal magnetic field has a significant structural stiffening capability.
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Fig. 1 Variation of phase velocity versus wave number for different ratios of scale coefficients m

Figure 2 illustrates the effect of shear on the phase velocity comparing the present and
nonlocal Love solutions for ls = 0, where cps is the present solution, and cnL is the nonlocal
Love solution. Figure 2 shows that the shear effect increases with the increase in H , and for
high values of the wave number, the increase is more significant.

Fig. 2 Comparison of present Rayleigh-Bishop and nonlocal Love solutions under different magnetic
fields for ls = 0

Figure 3 shows the variation of phase velocity with short wavelengths versus m for different
values of H . It is seen that the limit phase velocity increases with the increase in m and H . It
must be noticed that the limit phase velocity variation versus the parameter m, in the small
values of parameter H , is more significant. In all numerical calculations, Poisson’s ratio ν is
taken to be 1/4, except Fig. 12.

Fig. 3 Variation of phase velocity with short wavelength (c∗sw) versus ratio of scale coefficients m
under different magnetic field intensities H
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The variation of phase velocity c∗ based on the generalized nonlocal integral model versus
the dimensionless wave number for two different scale parameters and magnetic fields intensities
is depicted in Fig. 4. It can be seen from Fig. 4 that the phase velocity always increases with the
increase in the magnetic field intensity H and with the decrease in the scale coefficient lm. The
increase seen in the phase velocity with the increase in the intensity of magnetic field becomes
more evident when increasing the values of scale coefficients.

Fig. 4 Variation of phase velocity based on present solution versus wave number in strong magnetic
fields for two different scale coefficients lm

The variation of the ratio of velocities cg/c versus the dimensionless wave number ka with-
out the magnetic field is depicted in Fig. 5. The ratio of velocities, i.e., group and phase,
continuously decreases as can be seen from Fig. 5, and this decrease becomes quicker with the
increase in the value of scale coefficient. In this case, since the ratio cg/c is always less than
1, the dispersion relation is called the normal dispersion[43]. Furthermore, it is seen that the
group velocity approaches zero with increasing the values of the wave number ka. Moreover,
the group velocity becomes zero in smaller values of the wave number ka with increasing the
scale coefficient lm.

Fig. 5 Variation of ratio of group and phase velocities versus wave number without magnetic field
for two different scale coefficients lm

The variation of the ratio cg/c versus the wave number ka under a weak magnetic field
is depicted in Fig. 6. It is seen that the variations of curves are insensitive to the magnetic
field intensity variation in its current intensity range for sufficiently small wave number (e.g.,
< 2) values. Comparing Fig. 5 with Fig. 6, it can be clearly seen that the variations of curves
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depending on the magnetic field presence are significantly different. The structural stiffening
capability of longitudinal magnetic field becomes more evident with increasing the wave number
ka and the scale coefficient lm as can be seen from Fig. 6. However, since the ratio cg/c is always
less than 1, the characteristic of the longitudinal wave is the normal dispersion in the current
range, as previously indicated.

Fig. 6 Variation of ratio of group and phase velocities versus wave number under two different weak
magnetic fields for two different values of scale coefficients

The variation of the ratio cg/c versus the wave number ka under a strong magnetic field
is depicted in Fig. 7. It is seen that for higher values of ka, the scale coefficient becomes
cg/c > 1 under a strong magnetic field. Therefore, the characteristics of longitudinal wave
become abnormal dispersion at specific intervals.

Fig. 7 Variation of ratio of group and phase velocities versus wave number under two different strong
magnetic fields for two different values of scale coefficients lm

The variation of the ratio cg/c versus the dimensionless wave number ka under a weak
magnetic field for different values of m (= ls/lm) is depicted in Fig. 8. The ratio cg/c increases
with the increase in m, as can be seen from Fig. 8. However, the ratio cg/c is always smaller
than 1.

The same variation is shown in Fig. 9 for H = 0.5. It is seen that the ratio cg/c is nearly 1
in a current range of the dimensionless wave number ka, i.e., the wave characteristic becomes
quasi non-dispersive for m = 1.

The variation of the ratio cg/c with the wave number ka for H = 1 is depicted in Fig. 10. It
can be seen that the wave characteristics becomes abnormal (i.e., cg/c > 1) for sufficient high
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values of ka (e.g., > 4) and in all present values of m. With the increase in the ratio m under
the strong magnetic field, the ratio becomes cg/c > 1. A comparison between Figs. 8–10 shows
that the longitudinal magnetic field intensity has a dominant effect on the wave characteristics
(i.e., abnormal dispersive or normal dispersive).

Fig. 8 Variation of ratio of group and phase velocities versus wave number under different values of
ratio of scale coefficients m for H = 0.01

Fig. 9 Variation of ratio of group and phase velocities versus wave number under different values of
ratio of scale coefficients m for H = 0.5

Fig. 10 Variation of ratio of group and phase velocities versus wave number under different values
of ratio of scale coefficients m for H = 1
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In Figs. 11 and 12, the current nonlocal Love rod solution including the magnetic field effect
is compared with the nonlocal Love rod solution without the magnetic field effect that was
developed by Narendar[42]. Figure 11 shows the magnetic field effect on the dispersion curves
of the nanotubes for different mean radii rmean = 1 nm and 5 nm. In numerical calculations,
H = 0.1, ν = 0.12[44], and the nonlocal scale coefficient lm = 0.1. Figure 11 reveals that
the magnetic field effect on the frequencies f is almost absent, for the sufficiently small wave
numbers, and by the decrease in the nanotube radius, the magnetic field effect appears in
higher wave numbers. Furthermore, the magnetic field effect on the frequencies becomes more

Fig. 11 Longitudinal magnetic field effect on
variation of frequency versus wave
number of nonlocal Love nanotube
for two different radii

Fig. 12 Longitudinal magnetic field effect on
variation of frequency versus wave
number of nonlocal Love nanorod for
two different scale coefficients

meaningful, for the high radii, especially in the values of high wave numbers.
The relationship between the nonlocal scale coefficient and the magnetic field capability is

addressed in Fig. 12. In numerical calculations, H = 0.1, the nanorod radius is 1 nm, and
lm = 0.1 nm and 0.5 nm. It can be seen from Fig. 12 that the magnetic field effect on the
frequencies is almost absent for sufficiently small wave numbers, and the magnetic field effect
appears in higher wave numbers due to the decrease in the nanorod radius. Furthermore, the
magnetic field effect on the frequencies becomes more meaningful for high scale coefficients,
especially in the values of high wave numbers.

Unfortunately, experimental or molecular dynamic studies to check correctness of the present
results are unavailable in the open literature. Also, as far as known in the open literature,
no previous studies are available investigating the effect of longitudinal magnetic field on the
nonlocal longitudinal wave propagation including inertia and shear effects. Therefore, a direct
comparison of the analysis cannot be made. However, the present analysis reveals that the
phase velocity decreases with the increase in the scale coefficient. This result is compatible
with a recent study[24] done in the literature on carbon nanotubes. Moreover, it has been
reported[24] that the presence of the longitudinal magnetic field has no effect on the phase
velocity of longitudinal waves. This analytical finding constitutes a powerful support of the
present analysis.

5 Conclusions

In the present work, to investigate the characteristics of longitudinal wave propagation
along a nanorod subjected to the longitudinal magnetic field, a new nonlocal elasticity model
is developed. To this end, a unified nonlocal elasticity theory with two scale coefficients is
incorporated into the classical Rayleigh (Love)-Bishop rod model. As indicated previously
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in the introduction section, the effect of longitudinal magnetic field on the longitudinal wave
propagation cannot be explained up to now by classical and various gradient elasticity models,
since these models do not contain the longitudinal magnetic field. The present analysis shows
that the dispersion relation based on the nonlocal elasticity model of Eringen (i.e., l = 0) does
not contain the influence of scale coefficients in the limiting case with short wave lengths. For
this reason, the phase velocities for short wavelengths seem independent of the shear effect.
Secondly, the present analysis clearly shows that the dispersion relation obtained by the strain
gradient elasticity model (i.e., lm = 0) does not reflect the influence of the longitudinal magnetic
field. Hence, the nonlocal second- and fourth-order strain gradient models[2] for an ultrasonic
wave dispersion analysis of a nanorod cannot be used in this paper. Similarly, the nonlocal
elasticity theories obtained by incorporating the classical Rayleigh[24] or Bernoulli-Euler[1–4]

beam models cannot be used for the present analysis. Moreover, it should be seen that any
information regarding the influence of the longitudinal magnetic field cannot be obtained for
the present analysis using the classical Rayleigh (Love)-Bishop rod model. As a final statement,
this work gives reliable and sensitive results for the characteristics of longitudinal wave in a
nanorod under a longitudinal magnetic field using a new consistent nonlocal elasticity model.
The successful technological applications of various nanostructures are closely related with their
physical properties determining sensitively. Thus, this analysis can be hopefully expected to be
useful, for the rational and optimal design of the nano electro-mechanical structures.
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