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Nomenclature

Latin symbols

A, amplitude of convection;
δ, amplitude of gravity modulation;
g, acceleration due to gravity;
R0, critical Rayleigh number;
d, depth of fluid layer;
q, fluid velocity;
(x, z), horizontal and vertical coordinates;
Nu, Nusselt number;
Pe, Péclet number, Pe = w0d

κT
;

p, reduced pressure;
Sh, Sherwood number;

ΔS, solutal difference across porous media;
Rs, solutal Rayleigh number, Rs =

βSgΔSdK
νκS

;
T , temperature;
ΔT , temperature difference across porous

media;
Ra, thermal Rayleigh number, Ra =

αTgΔTdK
νκT

;
t, time;
a, wavenumber.
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Greek symbols

αT, coefficient of thermal expansion;
Γ, diffusivity ratio, Γ = κS

κT
;

ω, dimensionless oscillatory frequency;
μ, dynamic viscosity of fluid;
κT, effective thermal diffusivity;
ρ, fluid density;
Ω, frequency of modulation;
γ, heat capacity ratio;

ν, kinematic viscosity, ν = μ
ρ0

;
χ, perturbation parameter;
ε, porosity of porous media;
s, slow time;
βS, solutal expansion coefficient;
ψ, stream function;
k̂, vertical unit vector.

Other symbols

∇2, ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .

Subscripts

b, basic state;
c, critical;

0, reference value.

Superscripts

∗, dimensionless quantity; ′, perturbed quantity.

1 Introduction

The problem of thermal instability in porous media was well documented by Vafai[1–2],
Pop and Ingham[3], Ingham and Pop[4], Vadász[5], and Nield and Bejan[6]. The concept of
regulating convective instabilities is an important topic in thermal and engineering sciences.
Such regulations like thermal, gravitational, rotational, and magnetic field modulations can be
used in order to control convection. Davis[7] pointed out that the dynamics of stabilization and
destabilization may lead to dramatic changes of behavior depending on the proper tuning of
the amplitude and frequency of the modulation. If an imposed modulation can destabilize an
otherwise stable state, then there is a major enhancement of heat/mass/momentum transport.
If an imposed modulation can stabilize an otherwise unstable state, then higher efficiencies can
be attained in various processing techniques. The present paper considers the effect of gravity
modulation (where the time-periodic gravity modulation in this problem can be realized by
vertically oscillating the porous media). Thus, related to gravity modulation, the studies by
Gresho and Sani[8] and Clever et al.[9] showed that the gravity modulation acts on the entire
volume of fluid and may have a stabilizing or destabilizing effect depending on the amplitude and
frequency of the forcing. Similar studies related to gravity modulation were done by Malashetty
and Padmavathi[10], Yang[11], Bhadauria et al.[12], Bhadauria[13], Bhadauria et al.[14], Bhadauria
and Kiran[15–16], Bhadauria et al.[17], and Kiran[18].

Convection concerns the process of combined heat and mass transfer which are driven by
buoyancy forces and are usually referred as double diffusive convection. In this case, the mass
friction gradient and the temperature gradient are independent. In some practical problems,
such as seawater flow, mantle flow in the Earth’s crust, in devicing an effective method (Shiv-
akumara and Khalili[19]) of disposing waste material and extraction of energy and engineering
applications, the double diffusive convection plays an important role. The linear and nonlin-
ear stabilities of double diffusive convection in porous media have been studied extensively in
the presence of uniform temperature and concentration gradients by Nield and Bejan[6] and
Shivakumara and Sumithra[20]. Siddheshwar et al.[21] investigated temperature and gravity
modulation effects on double diffusive convection in porous media. They found that both mod-
ulations can be used simultaneously to enhance or diminish heat and mass transfer in the system
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while considering a weakly nonlinear theory for stationary mode. Bhadauria[22] also analyzed
the additional effects of internal heating and anisotropy of Siddheshwar et al.[21]. He found that
internal heat and anisotropy also can be used to enhance or diminish heat and mass transfer
in the system. Malashetty et al.[23] studied the effect of rotation on double diffusive convec-
tion while considering the linear theory for onset of convection and the nonlinear theory for
finite amplitude convection. The effect of double diffusive magnetoconvection under thermal
modulation was investigated by Bhadauria and Kiran[24] for stationary mode of convection.
Bhadauria and Kiran[25] investigated double diffusive magnetoconvection under the effects of
gravity modulation and chaotic oscillatory mode of convection. They found that gravity mod-
ulation can be used to control thermal instability and dynamics of the problem with suitable
ranges of modulation parameters.

The throughflow effect on double diffusive convection in porous media is an important con-
cept due to its applications in engineering, geophysics, and seabed hydrodynamics. Through-
flow plays an important role in the directional solidification of concentrated alloys, in which the
mushy zone exists and it is regarded as a porous layer with double diffusive origin. The basic
state temperature profile of throughflow changes from linear to nonlinear with layer height,
which in turn affects the stability of the system significantly. The effect of throughflow on the
onset of convection in a horizontal porous layer has been studied by Wooding[26], Sutton[27],
Homsy and Sherwood[28], and Jones and Persichetti[29]. Nield[30] and Shivakumara[31] showed
that a small amount of throughflow can have a destabilizing effect if the boundaries are of
different types and a physical explanation has been given. They also found that the effect of
throughflow is not invariably stabilizing and depends on the nature of the boundaries. Khalili
and Shivakumara[32] investigated the effect of throughflow and internal heat generation on
the onset of convection in porous media. They showed that throughflow destabilizes the sys-
tem, even if the boundaries are of the same type, a result which is not true in the absence
of an internal heat source. The non-Darcian effects on convective instability in porous media
with throughflow were investigated in order to account for inertia and boundary effects by
Shivakumara[33]. The effect of throughflow on the stability of double diffusive convection in
a porous layer was investigated by Shivakumara and Khalili[19] for different types of hydro-
dynamic boundary conditions. They found that throughflow is destabilizing even if the lower
and upper boundaries are of the same type and stabilizing as well as destabilizing, irrespec-
tive of its direction, when the boundaries are of different types. Khalili and Shivakumara[34]

investigated throughflow in the porous layer governed by the Darcy-Forchheimer equation and
the Beavers-Joseph condition was applied at the interface of fluid and the porous layer. They
found that destabilization arises due to throughflow, and the ratio of fluid layer thickness to
porous layer thickness plays an important role in deciding the stability of the system depend-
ing on the Prandtl number. Hill[35] investigated linear and nonlinear thermal instabilities of
vertical throughflow in a fluid-saturated porous layer, while Hill et al.[36] extended the prob-
lem for penetrative convection by considering density to be quadratic in temperature. Brevdo
and Ruderman[37–38] analyzed convective instability in porous media with inclined temperature
gradient and vertical throughflow.

The effects of quadratic drag and vertical throughflow on double diffusive convection in a
horizontal porous layer using the Forchheimer-extended Darcy equation were investigated by
Shivakumara and Nanjundappa[39]. The boundaries of the porous layer are considered to be
either impermeable or porous, but perfect conductors of heat and solute concentration. They
found that irrespective of the nature of boundaries, a small amount of throughflow in either
of its direction destabilizes the system, a result which is in contrast to the single component
system. Shivakumara and Sureshkumar[40] used the linear study to investigate the convec-
tive instability in a horizontal porous medium with viscoelastic fluid of Oldroyd-B type in the
presence of vertical throughflow. They found that the effect of throughflow is to suppress the
oscillatory convection independent of its direction when the velocity boundary conditions are of
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the same type. In contrast to this, throughflow in one particular direction augments oscillatory
convection if the velocity boundary conditions are not of the same type. Brevdo[41] analyzed
the nature of unstable three-dimensional localized disturbances at the onset of convection with
inclined temperature gradient and vertical throughflow. He found that the destabilization or
convective instability depends on the values of the horizontal Rayleigh number and the Péclet
number. It is shown that for marginally supercritical values of the vertical Rayleigh number,
the destabilization has the character of absolute instability in all the cases in which the hor-
izontal Rayleigh number is zero or the Péclet number is zero. The vertical throughflow with
viscous dissipation in a horizontal porous layer was studied by Barletta et al.[42]. They showed
that although generally weak, the effect of viscous dissipation yields an increase in the critical
value of the Darcy-Rayleigh number for downward throughflow and a decrease in the case of
upward throughflow. The effect of vertical throughflow on the onset of thermal convection in a
horizontal layer of an electrically conducting fluid contained between two rigid permeable plates
and heated from below in the presence of a uniform vertical magnetic field was studied by Reza
and Gupta[43]. They found that the positive throughflow is more stabilizing than the negative
throughflow. The effect of vertical heterogeneity of permeability on the onset of convection in a
horizontal porous medium uniformly heated from below with vertical throughflow was studied
by Nield and Kuznetsov[44] using the linear theory. It is found that to the first-order, a linear
variation of the reciprocal of permeability with depth has no effect on the critical Rayleigh
number based on the harmonic mean of the permeability, but a quadratic variation increasing
in the upwards direction leads to a reduction in the critical Rayleigh number. The effect of
vertical throughflow on the onset of convection in a composite porous medium consisting of two
horizontal layers was investigated by Nield and Kuznetsov[45]. They found that throughflow
has a stabilizing effect whose magnitude may be increased or decreased by the heterogeneity.

In general, throughflow is a subcomponent of interflow, for example, it is the lateral unsat-
urated flow of water in the soil zone, where a highly permeable geologic unit overlays a less
permeable geologic unit, which returns to the surface, as return flow, prior to entering a stream
or groundwater. Once water infiltrates into the soil, it is still affected by gravity and either
infiltrates to the water table or travels down slope. Throughflow usually occurs during peak
hydrologic events, and flow rates are dependent on the hydraulic conductivity of the geologic
medium. For this problem, one needs to understand the study of throughflow under gravity
modulation. Moreover, the literature shows no study on thermal instability which considers
modulation along with vertical throughflow for nonlinear mode of thermal instability. The ob-
jective of the present paper is, therefore, to carry out a weakly nonlinear stability analysis of
porous media with simultaneous temperature and solute concentration gradients for constant
vertical throughflow. Analytic expressions for both the Nusselt and Shearwood numbers are
derived from the non-autonomous complex Ginzburg-Landau equation (CGLE)[15–17,46–47] to
calculate the finite amplitude. To the best of the author’s knowledge till date, no study on
oscillatory convection under gravity modulation with vertical throughflow is available in the
literature.

2 Mathematical formulation

Consider an infinitely extended horizontal binary fluid saturated in a horizontal porous layer
of the thickness d with a constant vertical throughflow of the magnitude w0 which is either
gravity aligned or otherwise in its directions. The porous layer is homogeneous and isotropic.
In this problem, only two-dimensional disturbances are considered, i.e., horizontal x and vertical
z directions. The graphical representation of the problem is given in Fig. 1. The porous media
are heated and salted from below. The lower and upper boundaries are maintained at constant
but different temperatures and solutal concentrations, respectively. Using the modified Darcy’s
model and the Boussinesq approximation for this system, the governing equations of the flow
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are given by (for the isotropic case of Bhadauria[22])

Fig. 1 Sketch of physical problem

∇ · q = 0, (1)

ρ0

ε

∂q

∂t
= −∇p+ ρg − μ

K
q, (2)

γ
∂T

∂t
+ (q · ∇)T = κT∇2T, (3)

∂S

∂t
+ (q · ∇)S = κS∇2S, (4)

ρ = ρ0(1 − αT(T − T0) + βS(S − S0)), (5)

where the physical variables are given in Nomenclature. The flow of fluid through the porous
media can be in a steady state because there is a constant flow of fluid in the porous media.
Equation (1) states that, in any steady state process, the rate at which mass enters the porous
media is equal to the rate at which mass leaves the porous media. When a periodic force is
applied to a system, it will typically reach the steady state after going through some transient
behavior. This may often be observed in a vibrating system. The heat capacity ratio γ is taken
to be 1 for simplicity of the problem. The externally imposed time dependant gravitational
field, thermal, and solutal boundary conditions are given by[25]

g = g0(1 + χ2δ cos(Ωt))k̂, (6)
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T = T0 + ΔT at z = 0,

T = T0 at z = d,

S = S0 + ΔS at z = 0,

S = S0 at z = d,

(7)

where ΔT and ΔS are the temperature difference and the solute difference across the porous
media, respectively, χ is the smallness of amplitude of modulation, and δ and Ω are the ampli-
tude and the frequency of gravity modulation, respectively.

3 Conduction state

The basic state is assumed to be quiescent, and the quantities in this state are given by
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{
qb = (0, 0, w0), ρ = ρb(z, t), p = pb(z, t),
T = Tb(z, t), S = Sb(z, t).

(8)

Substituting Eq. (8) into Eqs. (1)–(5) yields the following relation which helps us to define
hydrostatic pressure and temperature:

∂pb

∂z
=

μ

K
w0 − ρbg, (9)

w0
∂Tb

∂z
= κT

∂2Tb

∂z2
, (10)

w0
∂Sb

∂z
= κS

∂2Sb

∂z2
, (11)

ρb = ρ0(1 − αT(Tb − T0) + βS(Sb − S0)). (12)

The solutions of Eqs. (10)–(11) subject to the boundary conditions given in Eq. (7) are

Tb = T0 + ΔT
ePez − ePe

1 − ePe
, (13)

Sb = S0 + ΔS
e(PeΓ−1)z − e(PeΓ−1)

1 − e(PeΓ−1)
. (14)

4 Dimensionless governing equations

The finite amplitude perturbations on the basic state are superposed in the forms of

q = qb + q′, ρ = ρb + ρ′, p = pb + p′, T = Tb + T ′, S = Sb + S′. (15)

Substitute the above equation (15) and the basic state temperature (Eq. (13)) and solutal
(Eq. (14)) equations into Eqs. (1)–(5), and then use the stream function ψ as u′ = ∂ψ

∂z , w
′ = −∂ψ

∂x
for the two-dimensional flow. The equations are then non-dimensionalized using the following
physical variables:

(x, y, z) = d(x∗, y∗, z∗), t =
d2

κT
t∗, ψ = κTψ

∗, T
′
= ΔTT ∗, S

′
= ΔSS∗, Ω =

κT

d2
Ω∗.

The resulting non-dimensionalized system of equations can be expressed as (dropping the
asterisk)

( 1
PrD

∂

∂t
+ ∇2

)
ψ =

(
Rs

∂S

∂x
−Ra

∂T

∂x

)
(1 + χ2δ cos(Ωt)), (16)

− dTb

dz
∂ψ

∂x
−

(
∇2 − Pe

∂

∂z

)
T = −∂T

∂t
+
∂(ψ, T )
∂(x, z)

, (17)

− dSb

dz
∂ψ

∂x
−

(
Γ∇2 − PeΓ−1 ∂

∂z

)
S = −∂S

∂t
+
∂(ψ, S)
∂(x, z)

, (18)

where PrD = ενd2

KκT
.

The non-dimensionalized parameters in the above equations are given in Nomenclature. It
is clear from Eq. (17) and Eq. (18) that througflow and basic state profile of temperature and
solutal fields affect the stability problem. The above system can be solved by considering the
stress free and isothermal boundary conditions as given below

ψ = T = S = 0 at z = 0, z = 1. (19)
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5 Derivation of CGLE

Introducing a small perturbation parameter χ that shows deviation from the critical state
of onset of convection, the variables for a weak nonlinear state can be expanded as a power
series in terms of χ as (Malkus and Veronis [48] and Venezian[49])

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ra = R0 + χ2R2 + χ4R4 + . . . ,

ψ = χψ1 + χ2ψ2 + χ3ψ3 + . . . ,

T = χT1 + χ2T2 + χ3T3 + . . . ,

S = χS1 + χ2S2 + χ3S3 + . . . ,

(20)

where R0 is the critical value of the Darcy-Rayleigh number at which the onset of convection
takes place in the absence of gravity modulation. According to Kim et al.[50], Bhadauria
and Kiran[15–16,46–47] and Bhadauria et al.[17] introduced the following scale of time as ∂

∂t =
∂
∂τ + χ2 ∂

∂s , where τ is the fast time scale, and s is the slow time scale.
5.1 Lowest-order system

At the first-order, the nonlinear terms in governing equations vanish. Therefore, the first-
order problem reduces to the linear stability problem for the oscillatory mode of thermal insta-
bility. The following system is obtained at this order:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∇2 R0
∂

∂x
−Rs ∂

∂x

−dTb

dz
∂

∂x

( ∂

∂τ
−∇2 + Pe

∂

∂z

)
0

−dSb

dz
∂

∂x
0

( ∂

∂τ
− Γ∇2 + PeΓ−1 ∂

∂z

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ψ1

T1

S1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (21)

The solution of the lowest-order system subject to the boundary conditions given in Eq. (19) is
assumed to be

ψ1 =
(
A(s)eiωτ +A(s)e−iωτ

)
sin(ax) sin(πz), (22)

T1 =
(
B(s)eiωτ +B(s)e−iωτ

)
cos(ax) sin(πz), (23)

S1 =
(
C(s)eiωτ + C(s)e−iωτ

)
cos(ax) sin(πz). (24)

The undetermined amplitudes are the functions of the slow time scale and are related by the
following relations:

B(s) = − 4π2a

(4π2 + Pe2)(c+ iω)
A(s), (25)

C(s) = − 4π2a

(4π2 + (PeΓ−1)2)(Γc+ iω)
A(s), (26)
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where c = a2 + π2. The critical Rayleigh number R0 for the oscillatory mode of convection is
given by

R0 =
(4π2 + Pe2)(c− ω2PrD)

4a2π2

+
Rs(4π2 + Pe2)(Γc2 + ω2)

(4π2 + (PeΓ−1)2)(Γ2c2 + ω2)
. (27)

The corresponding critical wavenumber will be calculated while minimizing the critical Rayleigh
number with respect to the wavenumber. The growth rate of the disturbance ω2 can be defined
as follows:

ω2 =
4π2a2Rs(1 − Γ)

(4π2 + Pe2)(1 + cPr−1
D )

− c2Γ2. (28)

It is to be noted that for existing an oscillatory mode of convection (ω2 > 0), the values of
Pe, PrD, and the diffusivity ratio Γ must consider to satisfy Eq. (28).
5.2 Second-order system

At the second-order system, the nonlinear effects are obtained in terms of Jacobian. In this
case, the following relations are obtained for the temperature and solutal fields:

ψ2 = 0, (29)

( ∂

∂τ
−∇2

)
T2 =

∂(ψ1, T1)
∂(x, z)

, (30)

( ∂

∂τ
− Γ∇2

)
S2 =

∂(ψ1, S1)
∂(x, z)

. (31)

Using the first-order solutions, the second-order solutions are obtained. From the above
relations, according to Kim et al.[50], Bhadauria and Kiran[15–16,46–47], and Kiran[51], one can
deduce that the velocity, temperature, and solutal fields have the terms of the frequency 2ω
and are independent of the fast time scale. Thus, introduce the temperature and solutal con-
centration terms at the second-order system as

T2 = (T20 + T22e2iωτ + T 22e−2iωτ ) sin(2πz), (32)

S2 = (S20 + S22e2iωτ + S22e−2iωτ ) sin(2πz), (33)

where (T20, T22) and (S20, S22) are the temperature and solutal fields of the terms, which have
the frequency 2ω and are independent of the fast time scale, respectively. The second-order
solutions are defined using the expressions of T2 and S2 in Eqs. (30)–(31). For measuring tem-
perature and concentration transports, define the horizontally averaged Nusselt and Sherwood
numbers for the oscillatory mode of convection as follows:

Nu = 1 +

(
ac
2π

∫ 2π
ac

0

(
∂T2
∂z

)
dx

)

z=0(
ac
2π

∫ 2π
ac

0

(
dTb
dz

)
dx

)

z=0

, (34)

Sh = 1 +

(
ac
2π

∫ 2π
ac

0

(
∂S2
∂z

)
dx

)

z=0(
ac
2π

∫ 2π
ac

0

(
dSb
dz

)
dx

)

z=0

. (35)



Throughflow and g-jitter effects on binary fluid saturated porous medium 1293

5.3 Third-order system
For the third-order system, the following relations are obtained:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∇2 R0
∂

∂x
−Rs ∂

∂x

−dTb

dz
∂

∂x

( ∂

∂τ
−∇2 + Pe

∂

∂z

)
0

−dSb

dz
∂

∂x
0

( ∂

∂τ
− Γ∇2 + PeΓ−1 ∂

∂z

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
ψ3

T3

S3

⎤

⎦ =

⎡

⎣
R31

R32

R33

⎤

⎦ , (36)

where the expressions for R31, R32, and R33 are given in Appendix A. Now, under the solv-
ability condition[15–18,46–47], for the existence of third-order solution, derive the following non-
autonomous CGLE that describes the temporal variation of the amplitude A(s) of the convec-
tion cell[15–18,46–47,52],

dA(s)
ds

− γ−1
1 F (s)A(s) + γ−1

1 k1|A(s)|2A(s) = 0, (37)

where the coefficients γ1, F (s), and k1 are given in Appendix A. Write A(s) in the phase-
amplitude of the following form:

A(s) = |A(s)|eiθ. (38)

Now substituting the above expression of A(s) into Eq. (37), we obtain the following equations
for the amplitude |A(s)| of convection:

d|A(s)|2
ds

− 2pr|A(s)|2 + 2lr|A(s)|4 = 0, (39)

d(ph(A(s)))
ds

= pi − li|A(s)|2, (40)

where

γ−1
1 F (s) = pr + ipi, γ−1

1 k1 = lr + ili,

in which the subscripts i and r represent imaginary and real parts of the quality, respectively,
and ph(·) represents the phase. As Eq. (37) is non-autonomous, it is evaluated numerically using
NDSolve of MATHEMATICA 8.0 with the suitable initial condition A(s) = a0. Without loss
of generality, R2 = R0 is assumed in the calculations, and this is done to keep the parameters
to the minimum. From Eq. (20), for R2 = R0, one gets Ra

1+χ2 = R0. This means that the actual
Rayleigh number is diminished as a result of this assumption. In the event of R2 becoming
negative, it means that the actual Rayleigh number is enhanced.

6 Results and discussion

When a horizontal porous medium is heated uniformly from below and cooled from above,
a cellular regime of steady convection is set up at the value of the Rayleigh number exceeding a
critical value. To determine this amplitude of convection, one has to develop a nonlinear theory
to analyze the nonlinear interactions of fluid motion with temperature and concentration. A
method is presented here to determine the amplitude of this convection and analyze heat and
mass transfer. The combined effect of gravity modulation and vertical throughflow on thermal
convection in an infinite horizontal fluid saturated porous medium is investigated. The presence
of throughflow is to alter the basic temperature and solutal gradients from linear to nonlinear



1294 P. KIRAN

with respect to the porous layer height. Using the CGLE, a weakly nonlinear stability analysis
is performed to investigate the effect of gravity modulation and vertical throughflow on heat and
mass transports. Since the porous medium is assumed to be closely packed, the Darcy-model is
considered. It is observed that, for existing the oscillatory mode of convection, the oscillatory
frequency (ω) must be positive. Hence, the values of Pe, PrD, and the diffusivity ratio Γ must
consider to satisfy Eq. (28). Also, the values of δ and Ω are considered to be small. For small
values of amplitude and frequencies, the heat and mass transfer can reach the maximum. A
small amount of throughflow is in a particular direction either to destabilize or stabilize the
system. Hence, the values of Pe are taken around 0.1. The numerical results for Nu and Sh
obtained from the expressions given in Eqs. (34) and (35) by solving Eq. (39) are presented in
Figs. 2–12. The effect of each parameter on heat and mass transports is shown in Figs. 2–12,
wherein the plots of Nu and Sh versus the slow time s are presented. It is found from the
figures that, the values of Nu and Sh start with one and remain constant for quite some time,
showing the conduction state initially. Then, the values of Nu and Sh increase with the time,
thus showing the convection state, and finally become constant on further increasing. Thus,
the steady state is obtained.

The oscillatory Rayleigh number (Eq. (27)) increases with Pe, and it is independent of the
throughflow direction. This may be due to the fact that, throughflow is to confine a significant
thermal gradient to a thermal boundary layer at the boundary towards which the throughflow
is directed. The effective length scale is thus smaller than the thickness of the porous layer.
Hence, the Rayleigh number will be much smaller than the actual value of the Rayleigh number.
Therefore, large values of the Rayleigh number are needed for the onset of convection when the
throughflow strength increases, which are the results obtained by Khalili and Shivakumara[34]

for free-free boundaries. The opposite results were obtained by Nield[30] in the case of a fluid
layer for small amount of throughflow. Reza and Gupta[43] also stated that, with increasing the
throughflow velocity, a temperature boundary layer forms at one of the boundaries. This reduces
the effective thickness of the stratified layer, while the characteristic temperature difference
across the layer remains constant. Thus, one would expect that the critical Rayleigh number
increases with the increase in Pe. Shivakumara and Sureshkumar[40] pointed out that the
reason for the opposite effect may be due to the distortion of steady-state basic temperature
distribution from linear to nonlinear because of throughflow. A measure of throughflow is given
by the basic state temperature, and this can be interpreted as a rate of energy transfer into the
disturbance by interaction of the perturbation convective motion with the basic temperature
gradient. The maximum temperature occurs at a place where the perturbed vertical velocity
is high, and this leads to an increase in the energy supply for destabilization. A similar case
for the solutal concentration is presented, where the conduction state profile of concentration
given in Eq. (14) is nonlinear.

The basic state thermal and solutal concentration distributions are obtained for representa-
tive values of Pe and Γ and are presented graphically in Figs. 2 and 3 in order to understand
their influence on the stability of the system. For throughflow, the basic state distributions be-
come nonlinear and deviate from each other with an increase in the Péclet number Pe. In fact,
the nonlinearity in the base-state solute concentration stratification becomes more dominant as
compared to the temperature stratification with a decrease in Γ. It is found that Nu and Sh
start with one, showing the conduction state, increase with the time s, and then become oscil-
latory, showing the convection state. The effect of upward throughflow (Pe > 0) is to enhance,
and the downward throughflow (Pe < 0) is to diminish heat and mass transfer in the system
as given in Figs. 2(a) and 2(b). The effect of the diffusivity ratio Γ is to diminish heat and
mass transfer in the system given in Figs. 3(a) and 3(b). These results conform the results of
Bhadauria[22] and Bhadauria and Kiran[24]. The corresponding results of PrD are presented in
Figs. 4(a) and 4(b), and it is observed that Nu and Sh increase upon increasing PrD. These re-
sults conform the results of Bhadauria[22] and Bhadauria and Kiran[53]. The effect of the solutal
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Rayleigh number Rs in Figs. 5(a) and 5(b) is to increase heat and mass transfer. Although the
stabilizing gradient of the solute concentration delays the onset of convection, the strong finite
amplitude flows (Bhadauria and Kiran[24]), for large values of Rayleigh number, tend to mix
the solute and redistribute it so that the interior layers of the fluid are more neutrally stratified.
As a result, the enhancing effect of the solute concentration is greatly decreased. Hence, the
fluid will convect more due to the increase in heat and mass transfer as Rs increases. This is
possible only for nonlinear theories.

Fig. 2 Effect of Péclet number on heat and mass transfer

Fig. 3 Effect of diffusivity ratio on heat and mass transfer

Fig. 4 Effect of Vadasz number PrD on heat and mass transfer
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Fig. 5 Effect of solutal Rayleigh number on heat and mass transfer

Further, in Fig. 6, the effect of amplitude of gravity modulation is to increase the magnitudes
of Nu and Sh, thus increase the heat and mass transports. Also, from Fig. 7, it is observed that,
with the increase in the value of Ω, the magnitudes of Nu and Sh decrease, and the effect of fre-
quency of modulation is to decrease the heat and mass transport. At high frequency, the effect
of gravity modulation on thermal instability disappears altogether. These results agree with the

Fig. 6 Effect of amplitude of modulation on heat and mass transfer

Fig. 7 Effect of frequency of modulation on heat and mass transfer



Throughflow and g-jitter effects on binary fluid saturated porous medium 1297

linear theory results of Malashetty and Padmavathi[10] and Venezian[49], where the correction in
the critical value of Rayleigh number due to gravity and thermal modulations becomes almost
zero at high frequencies. Figure 8 shows the comparison between the stationary (ω = 0) and
oscillatory modes of convection. It is found that, the oscillatory mode of convection increases
heat and mass transfer rather than the stationary mode of convection. The reason behind this is
that for the oscillatory mode of convection, an additional quantity oscillatory frequency ω2 (the
growth rate of disturbances) plays a critical role in the Rayleigh number and in the amplitude
of convection. These are the results obtained by Bhadauria and Kiran[15–16,46–47], Bhadauria
et al.[17], and Kiran[18].

Fig. 8 Comparison between stationary and oscillatory modes of convection

Figure 9 presents a comparison between the analytical solution of the unmodulated case
and the numerical solution of the modulated system. It is observed that, the values of the
Nusselt and Sherwood numbers for the unmodulated case are larger than those in the modulated
case. These are the results qualitatively similar to Bhadauria[22] for the unmodulated case
and Srivastava et al.[54] for the modulated case. Davis[7] stated that, for nonlinear flows, the
modulated (Gresho and Sani[8]) flows transport less heat than their corresponding unmodulated
flows. The present results conform the results of Davis[7].

Fig. 9 Comparison between modulated and unmodulated systems

In Figs. 10–12, the streamlines and the corresponding isotherms and isohalines are depicted
for gravity modulation, respectively, at various stages of the slow time s = 0.0, 0.9, 1.2, 1.5, 2.5,
and s = 3.5 for Pe = 0.2, Rs = 60, P rD = 4.0,Γ = 0.3, δ = 0.1, Ω = 3.0, and χ = 0.3.
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One can easily observe from the figures that, initially the magnitude of streamlines is small for
small values of the time s as given in Figs. 10(a)–10(b) and isotherms in Figs. 10(a)–10(b) and
isohalines in Figs. 11(a)–11(b) are flat showing the system in the conduction state. However, as
time passes, the magnitude of streamlines increases given in Figs. 10(b)–10(d), and the isotherms
in Figs. 11(b)–11(d) and the isohalines in Figs. 12(b)–12(d) lose their evenness, thus showing
that the convection is in progress. Convection becomes faster on further increasing the value
of time s. At later point of time, the system achieves the steady state beyond s = 2.5 as there
is no change in the streamlines (Figs. 10(e)–10(f)), the isotherms (Figs. 11(e)–11(f)), and the
isohalines (Figs. 12(e)–12(f)).

Fig. 10 Streamlines at various values of time s for PrD = 4.0, Rs = 60, Pe = 0.2, Γ = 0.3, δ = 0.1,
Ω = 3.0, and χ = 0.3
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Fig. 11 Isotherms at various values of time s for PrD = 4.0, Rs = 60, Pe = 0.2, Γ = 0.3, δ = 0.1,
Ω = 3.0, and χ = 0.3

7 Conclusions

The combined effects of throughflow and gravity modulation are investigated for the oscil-
latory mode of convection in the porous media while performing a weakly nonlinear stability
analysis resulting in the complex Ginzburg-Landau amplitude equation. The following conclu-
sions are made:

(i) The effect of the upward throughflow (Pe > 0) enhances heat and mass transfer, and the
downward throughflow (Pe < 0) diminishes heat and mass transfer. Thus, throughflow has a
dual behavior on heat and mass transfer.
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Fig. 12 Isotherms at various values of time s for PrD = 4.0, Rs = 60, Pe = 0.2, Γ = 0.3, δ = 0.1,
Ω = 3.0, and χ = 0.3

(ii) An increment in the amplitude δ of modulation is to enhance heat and mass transfer.
(iii) The frequency Ω of modulation decreases heat and mass transfer as its value increases.
(iv) The oscillatory mode of convection is more effective than the stationary mode of con-

vection.
(v) Throughflow and gravity modulation can be used to regulate heat and mass transfer in

the system effectively.
(vi) For nonlinear fluid flows, gravity modulated system transports less heat and mass trans-

port than their corresponding unmodulated flows.
(vii) Gravity modulated flows are similar to lower boundary temperature modulation[51]

flows.
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Appendix A

The expressions given in Eqs. (34)–(35) are simplified as

Nu(s) = 1 +
ePe − 1

Pe(4π2 + Pe2)

·
“ 2π2a2c

(c2 + ω2)
+

2π4a2

√
4π4 + ω2

√
c2 + ω2

”
|A(s)|2,

Sh(s) = 1 +
e(PeΓ−1) − 1

PeΓ−1(4π2 + (PeΓ−1)2)

·
“ 2π2a2c

(Γ2c2 + ω2)
+

2π4a2

√
4π4Γ2 + ω2

√
Γ2c2 + ω2

”
|A(s)|2.

The expressions given in Eq. (36) are

R31 = − 1

PrD

∂

∂s
(∇2ψ1) +Rsδ cos(Ωs)

∂S1

∂x

− (R2 +R0δ cos(Ωs))
∂T1

∂x
,

R32 =
∂ψ1

∂x

∂T2

∂z
− ∂T1

∂s
,

R33 =
∂ψ1

∂x

∂S2

∂z
− ∂S1

∂s
.



1304 P. KIRAN

The coefficients given in Eq. (37) are

γ1 =
c

PrD
+

4π2R0a
2

(4π2 + Pe2)(c+ iω)2

− 4π2Rsa2

(4π2 + (PeΓ−1)2)(Γc+ iω)2
,

F (s) =
4π2R0a

2

(4π2 + Pe2)(c+ iω)
(1 + δ cos(Ωs))

− 4π2Rsa2

(4π2 + (PeΓ−1)2)(Γc+ iω)
δ cos(Ωs),

k1 =
a4π2cR0

(4π2 + Pe2)(c2 + ω2)(c+ iω)

+
a4π4R0

(4π2 + Pe2)(2π2 + iω)(c+ iω)2

− a4cπ2Rs

(4π2 + (PeΓ−1)2)(Γ2c2 + ω2)(Γc+ iω)

− a4π4Rs

(4π2 + (PeΓ−1)2)(2π2Γ + iω)(Γc+ iω)2
.


