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Abstract The buoyant Marangoni convection heat transfer in a differentially heated
cavity is numerically studied. The cavity is filled with water-Ag, water-Cu, water-Al2O3,
and water-TiO2 nanofluids. The governing equations are based on the equations involving
the stream function, vorticity, and temperature. The dimensionless forms of the governing
equations are solved by the finite difference (FD) scheme consisting of the alternating
direction implicit (ADI) method and the tri-diagonal matrix algorithm (TDMA). It is
found that the increase in the nanoparticle concentration leads to the decrease in the flow
rates in the secondary cells when the convective thermocapillary and the buoyancy force
have similar strength. A critical Marangoni number exists, below which increasing the
Marangoni number decreases the average Nusselt number, and above which increasing
the Marangoni number increases the average Nusselt number. The nanoparticles play a
crucial role in the critical Marangoni number.
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1 Introduction

In 1900, Henri Bénard, a French physicist, demonstrated that the attractive hexagonal
structure could be obtained by a simple experiment[1]. Later, Pearson[2] identified that the
Bénard cells were driven by the imbalance of the tangential stress on the interface caused by
the temperature dependence of the surface tension. He also concluded that the character of
the response of the fluid depended on the overall heat transport in the flow system, and the
fluid motion could be induced through an instability process. The fluid motion along a free
surface due to the surface tension effect is a common phenomenon in many material processes
such as crystal growth, droplet vaporizing, and electron beam melting. Such flow is known
either as thermocapillary flow or Marangoni convection. Marangoni convection is dominant for
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a small-scale system or in low-gravity hydrodynamics. The surface tension driven flows also
occur in the respiratory system, where the air penetrates into the lung, resulting in the open of
the airways, which thus makes the interior superior of the airways be coated with a thin lining
fluid.

Strani et al.[3] studied the buoyant Marangoni convection in a cavity, and concluded that the
surface deformation had a negligible effect on the qualitative aspects of the flow-field structure
at a low crispation number. Srinivasan and Basu[4] found that the buoyancy driven flow was
negligible compared with the surface tension gradient driven flow in laser melting. Bergman
and Ramadhyani[5] numerically investigated the characteristics of the buoyancy driven flow in
a square cavity, and showed that the surface tension significantly altered the buoyant flow.
Carpenter and Homsy[6] established the boundary layer scalings for the buoyant and ther-
mocapillary convection. Hadid and Roux[7] analyzed a shallow cavity, and showed that the
surface tension had a quite significant effect on the stability of a primary buoyancy driven flow.
Rudraiah et al.[8] and Hossain et al.[9] studied the effects of a magnetic field on the combined
convection. Saleem et al.[10] examined a square cavity, whose right wall was kept open for the
flow entrainment and exit.

Most of the studies on the buoyant Marangoni convection in cavities have considered the
pure fluid. In recent years, a new type of nanoparticles has been introduced, and followed by
engineered nanofluids[11]. Nanofluids such as water-Cu, water-CuO, water-Cu, water-Al2O3,
water-TiO2, and water-Ag have been utilitized by Khanafer et al.[12], Jou and Tzeng[13], Das
and Ohal[14], Ghasemi and Aminossadati[15], Oztop and Abu-Nada[16], and Öǧüt[17] to increase
the heat transfer performance of the natural convection without thermocapillary effects. Hwang
et al.[18], Santra et a.[19], and Rashmi et al.[20] studied the convection with nanoparticles for
a particular Rayleigh number. Ho et al.[21] investigated the effects of the uncertainties due to
the adoption of different formulas for the ratio of thermal conductivity and dynamic viscosity
for water-Al2O3 nanofluids, and found that the heat transfer could be enhanced or mitigated
because of the use of nanofluids. Qi et al.[22] and He et al.[23] found that the flow and heat
transfer characteristics of nanofluids were more sensitive to viscosity than to thermal conduc-
tivity. Fattahi et al.[24] used a new model for the conductivity of water-Cu nanofluids in a
differentially heated square enclosure, where the thermocapillary was neglected. In the present
study, the buoyant thermocapillary convection of the nanofluids with different nanoparticles is
considered.

2 Mathematical formulation

Consider a square cavity shown in Fig. 1. The left wall is kept at a low temperature (Tc),
the right wall is kept at a high temperature (Th), and the bottom and top walls are adiabatic.
The top free surface is assumed to be flat and non-deformable.

The surface tension σ on the upper boundary is assumed to vary linearly with the temper-
ature, and it can be expressed by

σ = σ0(1 − γ(T − T0)), (1)

where T0 is a reference temperature defined by

T0 =
1
2
(Th + Tc).

γ is the temperature coefficient of the surface tension defined by

γ =
1
σ0

∂σ

∂T
,
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Fig. 1 Schematic representation of model

where σ0 is a reference surface tension, and T is the temperature of the fluid in the cavity.
The fluid in the enclosure is a water-based nanofluid containing Ag, Cu, and Al2O3 or TiO2

nanoparticles. The fluid is assumed to be Newtonian and incompressible. The flow is unsteady
and laminar. We assume that there is no internal heat generation, absorption, or viscous
dissipation. No-slip velocity conditions are imposed on all the boundaries except the case
where the top wall is slip or symmetric. The direction of the gravitational force is in the
negative y-direction. Under the above assumptions, the conservation equations for the mass,
momentum, and energy are

∂u

∂x
+
∂v

∂y
= 0, (2)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

= − 1
ρnf

∂p

∂x
+
μnf

ρnf

(∂2u

∂x2
+
∂2u

∂y2

)
, (3)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

= − 1
ρnf

∂p

∂y
+
μnf

ρnf

(∂2v

∂x2
+
∂2v

∂y2

)
+ gβnf(T − Tc), (4)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

= αnf

(∂2T

∂x2
+
∂2T

∂y2

)
, (5)

where u and v are the velocity components in the x- and y-directions, respectively. p is the
pressure, α is the thermal diffusivity, and β is the thermal expansion coefficient. The subscript
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nf denotes nanofluids. The appropriate initial boundary conditions are

u = v = 0, T = Tc at t = 0 for the whole enclosure, (6)

u = v = 0, T = Tc at x = 0, (7)

u = v = 0, T = Th at x = �, (8)

u = v = 0,
∂T

∂y
= 0 at y = 0, (9)

v = 0,
∂T

∂y
= 0, μbf

∂u

∂y
= − ∂σ

∂T

∂T

∂x
at y = �. (10)

The dynamic boundary conditions on the top free surface relate the velocity gradient to
the temperature gradient. This represents the balance between the shear stress and the surface
tension gradient at the surface which is responsible for the establishment of the thermocapillary
flow in the cavity. The effect of the interface deformability is not considered here. The shape
of the gas-liquid interface depends on the buoyancy force and the pressure force. For pure
buoyancy flow, the pressure is higher in the upper hot corner, and consequently there is an
elevation of the free boundary in this corner and a depression near the cold corner. For pure
thermocapillary flow, the opposite effect will appear.

The effective density of the nanofluids ρnf is given as follows:

ρnf = (1 − φ)ρbf + φρsp, (11)

where the subscripts bf and sp denote the basefluid and the solid particles, respectively. φ is
the solid volume fraction of the nanoparticles. The thermal diffusivity of the nanofluids is

αnf =
knf

(ρcp)nf
, (12)

where the heat capacitance of the nanofluids is

(ρcp)nf = (1 − φ)(ρcp)bf + φ(ρcp)sp. (13)

The thermal expansion coefficient of the nanofluids can be determined by

βnf = (1 − φ)βbf + φβsp. (14)

The ratio dynamic viscosity of the nanofluids given by Brinkman[25] is

μnf

μbf
=

1
(1 − φ)

5
2
. (15)

The ratio thermal conductivity of the nanofluids restricted to the spherical nanoparticles is
approximated by the Maxwell-Garnetss (MG)[17] model as follows:

knf

kbf
=
ksp + 2kbf − 2φ(kbf − ksp)
ksp + 2kbf + φ(kbf − ksp)

. (16)

The viscosity and conductivity of the nanofluids are integrated in Fig. 2, and the physical
properties of the water and nanoparticles are given in Table 1.
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Fig. 2 Ratio thermal conductivity of water-Ag, water-Cu, water-Al2O3, and water-TiO2 by use of
MG model and ratio dynamical viscosity by use of Brinkman model versus volume fraction

Table 1 Thermo-physical properties of water with Cu[12], Al2O3
[21], Ag, and TiO2

[17]

Physical property Water Ag Cu[12] Al2O3
[21] TiO2

[17]

cp/(J · (kg)−1 · K−1) 4 179 235 383 765 686.2

ρ/(kg · m−3) 997.1 10 500 8 954 3 600 4 250

k/(W · m−1 · K−1) 0.6 429 400 46 8.954

β × 10−5/(K−1) 21 5.4 1.67 0.63 2.4

The governing equations given above are in terms of the so-called primitive variables, i.e., u,
v, p, and T . The solution procedure discussed in this work is based on the equations involving
the stream function ψ, the vorticity ω, and the temperature T . Some of them are defined by

u =
∂ψ

∂y
, v = −∂ψ

∂x
, ω =

∂v

∂x
− ∂u

∂y
.

We first eliminate the pressure between the two momentum equations, then write the ob-
tained results in the stream function, vorticity, and temperature formulation, and finally per-
form nondimensionalization. Then, we can rewrite Eqs. (2)–(5) as follows:

∂2Ψ
∂X2

+
∂2Ψ
∂Y 2

= −Ω, (17)

∂Ω
∂τ

+
∂Ψ
∂Y

∂Ω
∂X

− ∂Ψ
∂X

∂Ω
∂Y

=
Prbf

(1 − φ)
5
2 (1 − φ+ φ

ρsp
ρbf

)

( ∂2Ω
∂X2

+
∂2Ω
∂Y 2

)

+RabfPrbf

(
1 − φ+ φ

βsp

βbf

) ∂Θ
∂X

, (18)

∂Θ
∂τ

+
∂Ψ
∂Y

∂Θ
∂X

− ∂Ψ
∂X

∂Θ
∂Y

=
knf
kbf

1 − φ+ φ
(ρcp)sp
(ρcp)bf

( ∂2Θ
∂X2

+
∂2Θ
∂Y 2

)
. (19)



1174 H. SALEH and I. HASHIM

The dimensionless initial and boundary conditions are

Ψ = 0, Ω = 0, Θ = 0 at τ = 0 for the whole enclosure, (20)

Ψ = 0, Ω = − ∂2Ψ
∂X2

, Θ = 0 at X = 0, (21)

Ψ = 0, Ω = − ∂2Ψ
∂X2

, Θ = 1 at X = 1, (22)

Ψ = 0, Ω = −∂
2Ψ
∂Y 2

,
∂Θ
∂Y

= 0 at Y = 0, (23)

Ω = −∂
2Ψ
∂Y 2

= −Mabf
∂Θ
∂X

,
∂Θ
∂Y

= 0 at Y = 1, (24)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X =
x

l
, Y =

y

l
, Ψ =

ψ

αbf
, Θ =

T − Tc

Th − Tc
,

Mabf = − ∂σ

∂T

(Th − Tc)�
μbfαbf

, P rbf =
νbf

αbf
,

Rabf =
gβbf(Th − Tc)l3

νbfαbf
, P =

pl2

ρnfα2
bf

, Ω =
ωl2

αbf
.

(25)

Once we know the temperature, we can measure the heat transfer performance. The total
heat transfer rate across the cavity in terms of the average Nusselt number (Nu) is defined by

Nuc =
∫ 1

0

(knf

kbf

∂Θ
∂X

)
X=0

dY at the cold wall, (26)

Nuh =
∫ 1

0

(knf

kbf

∂Θ
∂X

)
X=1

dY at the hot wall. (27)

3 Numerical method and validation

The finite difference (FD) scheme, consisting of the alternating direction implicit (ADI)
method and the tri-diagonal matrix algorithm (TDMA), is used to solve Eqs. (17) and (19)
subject to Eqs. (20)–(24). The effect of the grid resolution is examined in order to select the
appropriate grid density as demonstrated in Table 2 for water-Cu at φ = 0.03, Mabf = 103, and
Rabf = 103. The results indicate that a 110 × 110 mesh can be used in the final computation.
As a validation, our results for the average Nusselt number agree well with those obtained by
Ref. [9] for the special case φ = 0 as shown in Table 3.

Table 2 Grid sensitivity check for water-Cu at φ = 0.03, Mabf = 103, and Rabf = 103

Grid size 20 × 20 30 × 30 40 × 40 50 × 50 60 × 60 70 × 70

Nuc 1.168 6 1.162 6 1.160 2 1.158 9 1.158 1 1.157 7

Nuh 1.176 7 1.182 5 1.184 9 1.186 1 1.186 8 1.187 3

Grid size 80 × 80 90 × 90 100 × 100 110 × 110 120 × 120

Nuc 1.141 2 1.141 0 1.140 8 1.124 9 1.124 8

Nuh 1.204 2 1.204 5 1.204 6 1.221 1 1.221 2
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Table 3 Results of Nu for Rabf = 1.08 × 103, Prbf = 0.054, and φ = 0.00

Mabf Present Ref. [7]

0 1.149 2 1.114 44

100 1.168 1 1.116 25

1 000 1.450 7 1.440 93

4 Results and discussion

The present work visualizes a surface tension and some nanofluid effects on a differentially
heated square cavity. The fluid flow, temperature distribution, and overall heat transfer char-
acteristics are analyzed through the streamlines, isotherms, and average Nusselt number at the
cold and hot walls. The analysis in the undergoing numerical investigation is performed in the
following ranges of associated dimensionless groups:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
0 � Mabf � 1 000,

0.00 � φ � 0.05,

103 � Rabf � 104.

The present work will also compare the utilization of different nanoparticles, i.e., Ag, Cu,
Al2O3, and TiO2, as specified in Table 1. The flow and temperature fields of the nanofluids
and the base fluid are shown in Figs. 3 and 4 for the steady state and in Figs. 5 and 6 for the
unsteady condition, respectively. The corresponding average Nusselt numbers are presented in
Figs. 7–9.

Figure 3 displays the evolutions of the fluid flow and temperature distribution in a differen-
tially heated square cavity for water-Cu nanofluids with the volume fraction 3% and the pure
water at different Marangoni numbers and Rabf = 103. From the figure, we can see that the
temperature of the right wall is higher than that of the nanofluids or the base fluids inside the
cavity. Therefore, the wall transmits heat to the fluid, and raises the temperature of the fluid
particles adjoining the right wall. When the temperature rises, the fluid starts moving from
the right (hot) wall to the left (cold) wall and falling along the cold wall, then rises again at
the hot wall, and creates a counter and single clockwise rotating cells in the cavity as shown
in the streamline patterns. From the figure, we can also observe that the circulations of the
nanofluid cells are smaller than those of the water cells. The relative small stress at the top
surface does not affect the flow and temperature characteristics in the cavity. When the shear
stress increases at the free surface Mabf = 100, the intensity of the main flow at the bottom
portion due to the gravity force weakens significantly. A secondary flow develops at the top
portion of the cavity, and rotates in a clockwise direction. The strength of the flow circulations
of the nanofluids is slightly weaker than that of the base fluid. The main cells of the nanofluids
are smaller than the water cells. The main cells of the water are more suppressed to the bottom
than those of the nanofluids. The negative signs in the streamlines refer to clockwise flow, and
represent the surface tension effect. The positive signs in the streamlines refer to anti-clockwise
flow, and represent the natural convection effect. With a further increase in the Marangoni
number, e.g., Mabf = 1 000, as shown in Fig. 3(c), the surface tension induced shear increases
the free surface velocity significantly, and therefore, the main flow weakens substantially first,
and then becomes invisible. The strength of the secondary flow circulations of the nanofluids is
slightly stronger than that of the base fluid. The isotherms are more distorted at the stronger
Marangoni convection with denser boundary layers near the upper-right corner of the cavity.
Moreover, adding the nanoparticles alters the temperature distribution at the lower and upper
regions.
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Fig. 3 Steady state streamlines and isotherms: water-Cu nanofluids with φ = 0.03, solid lines; pure
water for different Marangoni numbers at Rabf = 103, dashed lines

Figure 4 displays the fluid flow and thermal characteristics inside the cavity for water-Cu
nanofluids with the volume fraction 3% and the pure water at different Marangoni numbers and
Rabf = 104. Comparing Figs. 3 and 4, we can clearly find that the strength of the primary flow
circulations gets stronger, and the boundary layers at the hot and cold walls become denser
when the Rayleigh number increases. The secondary flows are not prominent for

Mabf � 100

when the gravity is strong enough. The strength of the primary flow circulations of the
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Fig. 4 Steady state streamlines and isotherms: water-Cu nanofluids with φ = 0.03, solid lines; pure
water for different Marangoni numbers at Rabf = 104, dashed lines

nanofluids is stronger than that of the base fluid. The strong imbalance of the tangential
stress on the interface suppresses these circulations, and forces them to the bottom cavity
(see Fig. 4(c)). The cells of the primary base fluids locate closer to the bottom wall than the
nanofluid cells. The strength of the negative flow circulations of the nanofluids is slightly weaker
than that of the base fluid. The isotherms display a boomerang-shape. The signals of the con-
vective thermocapillary at the top portion and the buoyancy force at the bottom portion have
similar strength. The isotherms of the base fluids are more distorted at the top portion, while
the isotherms of the base fluids are less distorted than the nanofluid isotherms at the bottom
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portion of the cavity. This unusual behavior does not happen when Mabf < 1 000 (see Figs. 4(a)
and 4(b)) due to the relative small thermocapillary force.

Fig. 5 Streamlines when Mabf = 750 and Rabf = 104 at τ = 0.003, 0.010, 0.030, 0.050, 0.400, 0.700:
nanofluids with φ = 0.03, solid lines; pure-fluid for water-Cu, dashed lines

Figure 5 illustrates the time history of the streamlines for water and water-Cu nanofluids
when

Mabf = 750, Rabf = 104, τ = 0.003, 0.010, 0.030, 0.050, 0.400, 0.700.
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The time history of the flow field is described as follows. Initially, at

τ = 0.000,

the left and right walls are cold, and there is no fluid motion inside the cavity. When heating
is started, i.e.,

τ = 0.003,

the fluid temperature increases due to the heat from the hot-right wall. The fluid moves from
the right region of the cavity to the left region due to the buoyancy force. This movement
creates the primary cells in the lower portion. The cells are elongated vertically. At the same
time, the circular cells are developed in the right-upper portion of the cavity. These secondary
cells are caused by the surface tension effect. At

τ = 0.010,

both the primary cells and the secondary cells get bigger and stronger, and occupy one half of
the enclosure. As time goes on, the anti-clockwise and clockwise circulation cells occupy the
whole enclosure, and the strength increases significantly. The core of the main cells moves to
the center of the enclosure at

τ = 0.050,

and the strength of the anti-clockwise flow circulations decreases. At the same time, the core of
the secondary cells widens and fills almost the whole top region. This motion finally becomes
permanent at

τ = 0.400.

This means that increasing time further will not affect the flow pattern. We also observe that
the strength of the primary flow circulations of the nanofluids is always stronger than that of
the base fluid.

Figure 6 illustrates the time history of isotherms for water and water-Cu nanofluids when{
Mabf = 750, Rabf = 104,

τ = 0.003, 0.010, 0.030, 0.050, 0.400, 0.700.

The time history of the temperature field is described as follows. From Figs. 6(a) and 6(b), we
can see that, at the very beginning, i.e.,

τ = 0.003, τ = 0.010,

the isotherms for the nanofluids and base fluids are almost parallel and vertical. This implies
that the conduction or diffusion mode is superior compared with convection. From Fig. 6(c),
we can see that, at

τ = 0.030,

the natural and Marangoni convection becomes superior compared with the conduction. As
time goes on, the temperature is well distributed from the hot wall to the cold wall. The steady
state mode is then achieved later. From

τ = 0.003

to
τ = 0.700,

the isotherms of the nanofluids and the base fluids in all regions exhibit distinct patterns.



1180 H. SALEH and I. HASHIM

Fig. 6 Time history of isotherms with Mabf = 750 and Rabf = 104 at τ = 0.003, 0.010, 0.030, 0.050,
0.400, 0.700: water-Cu nanofluids with φ = 0.03, solid lines; pure water, dashed lines

Figure 7(a) shows the variations of the average Nusselt number along the cold wall and the
hot wall for various Mabf . At the early stages of the flow development, the average Nusselt
number is identic for different Mabf . When time goes on, Nuc increases, while Nuh decreases.
The average Nusselt number is no longer identical. From the figure, we can also see that
stronger thermocapillary force gives higher Nu. The differences grow explicitly with time going
on. After reaching a specific time, the value of Nu is kept constant when τ varies, or in other
words, the steady condition is achieved. The numerical values of Nu at

Rabf = 103
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reach their respective steady conditions earlier than the numerical values of Nu at

Rabf = 104

(see Figs. 3 and 4). The Nu profiles exhibit different tendencies when Mabf increases. Initially,
Nu at the cold surface increases with the increase in the Marangoni number for fixed time.
Moreover, the lowest Mabf gives the highest value for Nu at the hot surface under the steady
condition.

Fig. 7 Variations of Nuc and Nuh with time τ for different Ma with 5% Cu nanoparticles at Rabf =
103 and Rabf = 104

Figure 8 displays the average Nusselt number along the cold wall and the hot wall against
the volume fraction for different nanoparticles at

Rabf = 104.

The results demonstrated in this figure help to compare the heat transfer of Ag, Cu, Al2O3,
or TiO2 suspended in the water. The results show that the heat transfer rate for TiO2 is the
lowest (see Fig. 2 and Table 1). From Fig. 2, we can also see that increasing φ will increase
the thermal conductivity ratio monotonically, and eventually lead to a monotonic increase in
the heat transfer rate. When 1% φ of Ag, Cu, Al2O3, and TiO2 increase, Nuc increases about
1.4%, 1.3%, 1.2%, and 1.2%, respectively. When 1% φ of Ag, Cu, Al2O3, and TiO2 increase,
Nuh increases about 1.5%, 1.4%, 1.3%, and 1.3%, respectively. These results signify that the
hot wall is more sensitive to the adding nanoparticles.
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Fig. 8 Variations of Nuc and Nuh with φ for nanoparticles at Rabf = 104, Mabf = 1000, and steady
state

Figure 9 shows the average Nusselt number along the cold and hot walls against the
Marangoni number for different Cu concentrations at

Rabf = 104

in the steady state. As shown in the figure, Mabf varies from 0 to 1 000. In general, increasing
the nanoparticle concentration increases Nuc and Nuh. It is observed that the effect of adding
the nanoparticles is insignificant when Mabf is about 250. Figure 9 also shows that the Nusselt
number shows a minimum at the Marangoni number of roughly 500 for pure water (φ = 0.00).
The location of the minimum moves at a higher Cu concentration.

Fig. 9 Variations of Nuc and Nuh with Ma for different φ at Rabf = 104, water-Cu, and steady
state

5 Conclusions

The effects of the nanoparticle types and the concentration on the buoyant Marangoni
convection in a differentially heated square cavity are studied. The dimensionless forms of
the governing equations are solved with the FD scheme consisting of the ADI method and the
TDMA. The obtained results for the flow and temperature field and the average Nusselt number
are presented in graphs. The main conclusions of the present analysis are as follows:
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(i) For the convective thermocapillary and buoyancy force with similar strength, when the
nanoparticle concentration increases, the flow rates in the primary cells increase, while the flow
rates in the secondary cells decrease.

(ii) The average Nusselt number on the cold wall increases smoothly while the average
Nusselt number on the hot wall decreases smoothly when time goes on. The steady state
average Nusselt numbers on both the cold wall and the hot wall increase when the nanoparticle
concentration increases. Moreover, the average Nusselt number on the hot wall is slightly higher
than the average Nusselt number on the cold wall.

(iii) A critical Marangoni number exists, below which the average Nusselt number decreases
when the Marangoni number increases, and above which the average Nusselt number increases
when the Marangoni number increases. The nanoparticles play a crucial role in the critical
Marangoni number.
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