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Abstract The bifurcation analysis of a simple electric power system involving two
synchronous generators connected by a transmission network to an infinite-bus is carried
out in this paper. In this system, the infinite-bus voltage are considered to maintain
two fluctuations in the amplitude and phase angle. The case of 1:3 internal resonance
between the two modes in the presence of parametric principal resonance is considered and
examined. The method of multiple scales is used to obtain the bifurcation equations of
this system. Then, by employing the singularity method, the transition sets determining
different bifurcation patterns of the system are obtained and analyzed, which reveal the
effects of the infinite-bus voltage amplitude and phase fluctuations on bifurcation patterns
of this system. Finally, the bifurcation patterns are all examined by bifurcation diagrams.
The results obtained in this paper will contribute to a better understanding of the complex
nonlinear dynamic behaviors in a two-machine infinite-bus (TMIB) power system.
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1 Introduction

The stability of electric power systems is a well-established subject with a long history of
research[1]. Actual power systems are forced to operate closer to their stability limits due to the
increasing power demands and other factors such as environmental and economical constraints
for building new power plants and transmission lines. Recently, electric power systems have
become much huger and more complicated. Stability problems have become more complex
as interconnections become more extensive. Therefore, the stability analysis of electric power
systems is still a major issue and has been received significant attention in scientific studies.

Due to the high nonlinearity of the electric power system, its stability is closely related to
a disturbance. If the disturbance is large, the system operating point varies significantly, and
nonlinearities may have a considerable effect on the system performance. In this situation, the
equations that describe the dynamics of the power system cannot be linearized. The tools of
assessment for this type of stability belong to nonlinear system theory, which include geomet-
ric methods, energy functions, bifurcation theories, normal forms of vector fields, and numerical
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simulations[1–3]. The stability analysis can be carried out by using nonlinear dynamic
methods[4–5] and perturbation techniques[6], which are widely used in nonlinear mechanics[7].

There has been great concern in the power system research field on dynamic characteris-
tics relating to the stability of a power system. Some researchers focused their attention on
an equivalent single-machine infinite-bus (SMIB) power system. A good example of using the
perturbation method of multiple scales for stability analysis of a single machine power system
was studied by Nayfeh et al.[8–9]. Duan et al.[10] gave a bifurcation analysis for an SMIB power
system with series capacitor compensation associated with sub-synchronous resonance. Chen
et al.[11] showed the presence of chaos in an SMIB power system through a period-doubling
bifurcation route, and they also investigated the chaotic control and chaotification problem of
that system. Wang et al.[12] investigated dynamical behaviors and singularities in an SMIB
power system formulation by using the geometric singular perturbation theory. Chen et al.[13]

used Melnikov’s method to discuss hetero-clinic and sub-harmonic bifurcations and gave a con-
dition of parameters for chaotic oscillation occurrence in an SMIB power system. Wei et al.[14]

analyzed the effect of the Gaussian white noise on erosion of safe basin in the same model under
different parameters.

The advantage of the SMIB representation is the simplicity of the model which facilitates
sophisticated nonlinear analysis. However, such models are limited to study instability events
involving many generators. For multi-machine power systems, many techniques have been de-
veloped and applied to the stability analysis in terms of theoretical analysis[15–16], numerical
methods[17], and engineering applications[18–19].

A power system is inherently a complex nonlinear system, which exhibits complex dynamic
behavior when subjected to disturbances. For two or more machines infinite-bus power sys-
tem, there exist coupled power angles in the motion equations (called swing equations) which
describe the dynamic characteristics of the interconnected synchronous generators. It has been
pointed out that the inter-area modal phenomenon may occur as a result of a nonlinear in-
teraction of the natural oscillation modes of stressed power system. The conventional linear
techniques[20] analyze the linear modal behavior and cannot account for many complex phe-
nomena that occur when the system is stressed. Therefore, for a better understanding of the
underlying cause of the complex behavior of a stressed power system, many researchers have
turned to seek new methods. Many scientists have made great efforts on applying the method of
normal forms to quantify nonlinear modal interaction in power systems[21–24] and strong modal
resonance analysis[25], as similar to the most widely considered ones for studying the normal
mode bifurcation in nonlinear mechanical systems[26–29].

For a two-machine infinite-bus (TMIB) power system, Yuan and Sun[30] studied the occur-
rence of chaotic phenomenon by using Melnikov’s method under some particular conditions.
They proposed a two-generator electric power system model by considering that the infinite-
bus maintains a voltage of fixed amplitude with a small periodic fluctuation in the phase angle.
However, the internal resonance in the system subjected to disturbances has not been discussed.

The motivation of this paper is to investigate the internal resonance and its effect on the bi-
furcation characteristics of a TMIB power system. Besides the fluctuation of changing phase[31],
the fluctuation of changing voltage is also considered to formulate the infinite-bus in our con-
sidered model. The approximate solutions to normal modes of this system with or without the
internal resonance are derived by using the method of multiple scales. For comparison, the
bifurcation analysis for the case of no internal resonance is carried out by using the single-state-
variable singularity method to show the basic bifurcation characteristics of the system. Then,
the 1:3 internal resonances are proposed, and the bifurcation equations are studied successfully
by employing the two-state-variable singularity method, which reveal the effects of the infinite-
bus voltage amplitude and phase fluctuations on mode solution bifurcation characteristics of
this system.
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2 Mathematical model of TMIB power system

A simple interconnected power system model with two generators and three nodes in this
paper is shown in Fig. 1, where the synchronous generators G1 and G2 are delivering power to
the infinite-bus through transmission lines and main transformers X T1, X T2. The number “3”
represents the infinite-bus node. The motion equations of the two generators can be written as
follows[30–31]:

  
  

Fig. 1 Schematic diagram of two-machine power system

2H1

ω0

d2δ1
dt2

+D1
dδ1
dt

= Pm1 −B13V1VB sin(δ1 − δB) −B12V1V2 sin(δ1 − δ2), (1a)

2H2

ω0

d2δ2
dt2

+D2
dδ2
dt

= Pm2 − B23V2VB sin(δ2 − δB) −B12V1V2 sin(δ2 − δ1), (1b)

where

VB = VB0 + VB1 cos(Ωt+ φV ), (2a)

δB = δB0 + δB1 cos(Ωt+ φB). (2b)

Here, Hi (i = 1, 2) is the inertia constant of the ith generator, Di (i = 1, 2) is the damping
coefficient, δi (i = 1, 2) is the rotor angle (also named power angle) measured with respect to
a synchronously rotating reference frame moving with the constant angular velocity ω0, Pmi

(i = 1, 2) is the mechanical power input to the generator, Vi (i = 1, 2) is the machine terminal
voltage, δB is the infinite-bus voltage phase, VB is the infinite-bus voltage, and B12, B13, B23

are susceptance parameters. The voltage and phase of the infinite-bus are time varying with
the frequency Ω of the periodic variations. VB1, δB1, φV , and φB are assumed to be constant,
and the magnitudes VB1 and δB1 are assumed to be small. From (1), it can be seen that there
exist nonlinear coupling terms in the dynamic equations of the TMIB power system, which is
different from that of the single-machine power system[8–12].

Take the following transformation for (1a) and (1b):

δ1 − δB = θ10 + x, (3)

where θ10 is the steady operating value of the phase angle δ1 around which the variation
Δδ = δ1 − θ10 takes place. Then, it can be obtained that

⎧⎪⎪⎨
⎪⎪⎩

dδ1
dt

=
dx+ dδB + dθ10

dt
=

dx+ d(δB1 cos(Ωt+ φθ))
dt

=
dx
dt

− δB1Ω sin(Ωt+ φθ),

d2δ1
dt2

=
d2x

dt2
− δB1Ω2 cos(Ωt+ φθ).

(4)
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Use an identical procedure, and let

δ2 − δB = θ20 + y, (5)

where θ20 is the operating value of δ2 around which the variation Δδ = δ2 − θ20 takes place.
Then, one can obtain

⎧⎪⎪⎨
⎪⎪⎩

dδ2
dt

=
dy + dδB + dθ20

dt
=

dy + d(δB1 cos(Ωt+ φθ))
dt

=
dy
dt

− δB1Ω sin(Ωt+ φθ),

d2δ2
dt2

=
d2y

dt2
− δB1Ω2 cos(Ωt+ φθ).

(6)

Expanding (1) in a Taylor series around θ10, θ20, and retaining terms up to third order, we
obtain the following modified swing equation:

ẍ+ 2μ1ẋ+ k11x− k12y

=α2x
2 + α3x

3 − f11yx+ f02y
2 − f21x

2y + f12xy
2 − f03y

3 − F1x cos(Ωt+ φV)

+ F2x
2 cos(Ωt+ φV) + F3x

3 cos(Ωt+ φV) +G1 cos(Ωt+ φθ) +G2 sin(Ωt+ φθ)
− F0 cos(Ωt+ φV), (7a)

ÿ + 2μ2ẏ + k21y − k22x

=β2y
2 + β3y

3 − g20x
2 + g11yx+ g21yx

2 − g12y
2x− g30x

3 − S1y cos(Ωt+ φV)

+ S2y
2 cos(Ωt+ φV) + S3y

3 cos(Ωt+ φV) +Q1 cos(Ωt+ φθ) +Q2 sin(Ωt+ φθ)
− S0 cos(Ωt+ φV), (7b)

where the corresponding coefficients are listed in Appendix A.

3 Perturbation and singularity analysis

In this section, we use the method of multiple scales[7] to obtain a set of four averaged
equations that determine the amplitudes and phases of the steady-state solutions on a slow scale.
It is noted that this technique is applicable to the cases with or without an internal resonance.
The investigation for the case of no internal resonance is first given for comparison. Then, we
study the case of internal resonance. Assume that the solutions of (7) in the neighborhood of
the trivial equilibrium are represented by an expansion of the form:

{
x(t, ε) = x0(T0, T1) + εx1(T0, T1) + · · · ,
y(t, ε) = y0(T0, T1) + εy1(T0, T1) + · · · , (8)

where ε is a small positive parameter, T0 = t represents a fast scale, and T1 = εt is a slow scale
characterizing modulation of the amplitudes and phases of two modes. In terms of T0 and T1,
the time derivatives transform according to

d/dt = D0 + εD1 + · · · , d2/dt2 = D2
0 + 2εD0D1 + · · · , (9)

where Dn = ∂
∂Tn

(n = 0, 1, 2, · · ·).
To obtain a system which is suitable for the application of the method of multiple scales,
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the scales transformations may be introduced as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μ1 → εμ1, α2 → εα2, α3 → εα3, f11 → εf11, f02 → εf02, f21 → εf21,

f12 → εf12, f03 → εf03, F1 → εF1, F2 → εF2, F3 → εF3, G1 → εG1,

G2 → εG2, F0 → εF0, μ2 → εμ2, β2 → εβ2, β3 → εβ3, g11 → εg11,

g20 → εg20, g21 → εg21, g12 → εg12, g30 → εg30, S1 → εS1, S2 → εS2,

S3 → εS3, Q1 → εQ1, Q2 → εQ2, S0 → εS0.

(10)

Substituting (8)–(10) into (7) and equating the coefficients of the same order of ε in both
sides, one obtains the following sets of differential equations:

Order ε0: {
D2

0x0 + k11x0 − k12y0 = 0,

D2
0y0 + k21y0 − k22x0 = 0.

(11)

Order ε1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D2
0x1 + 2D1D0x0 + 2μ1D0x0 + k11x1 − k12y1 − α2x

2
0 − α3x

3
0 + f11y0x0 − f02y

2
0

+ f21x
2
0y0 − f12x0y

2
0 + f03y

3
0 + F1 cos(Ωt+ φV )x0 − F2 cos(Ωt+ φV )x2

0

− F3 cos(Ωt+ φV )x3
0 −G1 cos(Ωt+ φθ) −G2 sin(Ωt+ φθ) + F0 cos(Ωt+ φV ) = 0,

D2
0y1 + 2D0D1y0 + 2μ2D0y0 + k21y1 − k22x1 − β2y

2
0 − β3y

3
0 − g11y0x0 + g20x

2
0

− g21x
2
0y0 + g12x0y

2
0 + g30x

3
0 + S1 cos(Ωt+ φV )y0 − S2 cos(Ωt+ φV )y2

0

− S3 cos(Ωt+ φV )y3
0 −Q1 cos(Ωt+ φθ) −Q2 sin(Ωt+ φθ) + S0 cos(Ωt+ φV ) = 0.

(12)

From the left-hand side of (11), it can be seen that there exist coupled interaction terms of x0

and y0, and supposing that its solution has the following form:{
x0 = A1 (T1) ejω1T0 +A2 (T1) ejω2T0 + Cc,

y0 = Γ1A1 (T1) ejω1T0 + Γ2A2 (T1) ejω2T0 + Cc,
(13)

where “Cc” stands for the complex conjugate of the preceding terms. The quantities A1 and
A2 are unknown at this stage of the analysis, they are determined by eliminating the secular
terms at the next approximation, and jω1, and jω2 are two different pure imaginary roots of
the following characteristic equation about λ:

det
(
k11 + λ2 −k12

−k22 k21 + λ2

)
= 0. (14)

Supposing 0 < ω1 < ω2, it is worth pointing out that ω1, and ω2 are also called the first-order
and the second-order natural frequencies of the normal modes, respectively. For the case of the
parametric principal resonance, the disturbance frequency Ω is assumed to be almost equal to
the second-order natural frequency ω2 according to

Ω = ω2 + εσ1, σ1 = O (1) , (15)

where σ1 is an external detuning parameter to express the nearness of Ω to ω2.
The 1:3 internal resonances may occur under the condition that two natural frequencies of

the system satisfy such relationship ω1/ω2 = 1/3. For comparison, the bifurcation analyses
of the system for both of the non-internal resonance and the 1:3 internal resonance cases are
discussed, respectively.
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3.1 Case of no internal resonance
In this case, the physical parameters are chosen such that the natural frequencies of the two

modes are not of the ratio of 1:3, that is,

ω2 = 3ω1 +O(1).

Substitute (13) into (12). In order to eliminate the terms that lead to secular terms from
(12), suppose that its particular solution can be written as

{
x1 = U11A1 (T1) ejω1T0 + U12A2 (T1) ejω2T0 + Cc,

y1 = U21A1 (T1) ejω1T0 + U22A2 (T1) ejω2T0 + Cc.
(16)

Substituting (13) and (16) into (12) and equating the harmonic coefficients of the frequencies
ω1 and ω2 for both sides leads to⎧⎨

⎩
(
k11 − ω2

r

)
U1r − k12U2r = Q1r, r = 1, 2,

− k22U1r +
(
k21 − ω2

r

)
U2r = Q2r,

(17)

where

Q11 = − 2jω1Ȧ1 − 2jμ1ω1A1 + α3

(
3A2

1A1 + 6A1A2A2

)
− f21

(
3Γ1A

2
1A1 + 4Γ2A1A2A2 + 2Γ1A1A2A2

)
+ f12

(
3Γ2

1A
2
1A1 + 4Γ1Γ2A1A2A2 + 2Γ2

2A1A2A2

)
− f03

(
3Γ3

1A
2
1A1 + 6Γ1Γ2

2A1A2A2

)
+ F2A1A2ej(σ1T0+φV ),

Q12 = − 2jω2Ȧ2 − 2jμ1ω2A2 + α3

(
3A2

2A2 + 6A1A1A2

)
− f21

(
3Γ2A

2
2A2 + 4Γ1A1A1A2 + 2Γ2A1A1A2

)
+ f12

(
3Γ2

2A
2
2A2 + 4Γ1Γ2A1A1A2 + 2Γ2

1A1A1A2

)
− f03

(
3Γ3

2A
2
2A2 + 6Γ2

1Γ2A1A1A2

)
+ F2

(
A1A1 +A2A2

)
ej(σ1T0+φV ) +

1
2
G1ej(σ1T0+φθ)

− 1
2
F0ej(σ1T0+φV ) − jG2

2
ej(σ1T0+φθ),

Q21 = − 2jω1Γ1Ȧ1 − 2jμ2ω1Γ1A1 + β3

(
3Γ3

1A
2
1A1 + 6Γ1Γ2

2A1A2A2

)
+ g21

(
3Γ1A

2
1A1 + 4Γ2A1A2A2 + 2Γ1A1A2A2

)
− g12

(
4Γ1Γ2A1A2A2 + 2Γ2

2A1A2A2 + 3Γ2
1A

2
1A1

)
− g30

(
3A2

1A1 + 6A1A2A2

)
+ S2Γ1Γ2A1A2ej(σ1T0+φV ),

Q22 = − 2jω2Γ2Ȧ2 − 2jμ2ω2Γ2A2 + β3

(
3Γ3

2A
2
2A2 + 6Γ2

1Γ2A1A1A2

)
+ g21

(
3Γ2A

2
2A2 + 4Γ1A1A1A2 + 2Γ2A1A1A2

)
− g12

(
4Γ1Γ2A1A1A2 + 2Γ2

1A1A1A2 + 3Γ2
2A

2
2A2

)
− g30

(
3A2

2A2 + 6A1A1A2

)
+ S2

(
Γ2

1A1A1 + Γ2
2A2A2

)
ej(σ1T0+φV )

+
1
2
Q1ej(σ1T0+φθ) − 1

2
S0ej(σ1T0+φV ) − j

2
Q2ej(σ1T0+φθ).



Nonlinear dynamic singularity analysis of two interconnected synchronous generator system 991

In (17), the harmonic term whose frequency is ω1 (or ω2) relies on both the left and the
right sides to balance each other, with the following solvability condition:

det
(
Q1r −k12

Q2r k21 − ω2
r

)
= 0, r = 1, 2. (18)

The solvability condition can be written as

Q11 + Γ1Q21 = 0, Q12 + Γ2Q22 = 0, Γ1 =
k12

k21 − ω2
1

, Γ2 =
k12

k21 − ω2
2

. (19)

Introducing the polar representation for A1 (T1) = a1 (T1) ejθ1(T1) and A2 (T1) = a2 (T1) ejθ2(T1)

into (19) and then separating real and imaginary parts give rise to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 + Γ2

1

)
2ω1a1D1θ1 + c11a

3
1 + c12a1a

2
2 + f1a1a2 cos (σ1T0 + φV − θ2) = 0,(

1 + Γ2
1

)
2ω1D1a1 + c21a1 − f1a1a2 sin (σ1T0 + φV − θ2) = 0,(

1 + Γ2
2

)
2ω2a2D1θ2 + c31a

3
2 + c32a

2
1a2 + F cos (σ1T0 + φV − θ2)

+ f2 cos (σ1T0 + φθ − θ2) + f3 sin (σ1T0 + φθ − θ2) = 0,(
1 + Γ2

2

)
2ω2D1a2 + c41a2 − F sin (σ1T0 + φV − θ2)

− f2 sin (σ1T0 + φθ − θ2) + f3 cos (σ1T0 + φθ − θ2) = 0,

(20)

where for notation purpose, four functions a1 (T1) , a2 (T1) , θ1 (T1) , and θ2 (T1) have been ex-
pressed by a1, a2, θ1, and θ2, respectively.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F = F2

(
a2
1 + a2

2

)
+ Γ2S2

(
Γ2

1a
2
1 + Γ2

2a
2
2

) − 1
2
Γ2S0 − 1

2
F0,

c11 = 3α3 − 3f21Γ1 + 3f12Γ2
1 − 3f03Γ3

1 + 3β3Γ
4
1 + 3g21Γ2

1 − 3g12Γ3
1 − 3g30Γ1,

c12 = 6α3 − 2f21 (Γ1 + 2Γ2) + 2f12
(
2Γ1Γ2 + Γ2

2

) − 6f03Γ1Γ2
2 + 6β3Γ

2
1Γ

2
2

+ 2g21Γ1 (Γ1 + 2Γ2) − 2g12Γ1

(
2Γ1Γ2 + Γ2

2

)
+ 6Γ1g30,

c21 = 2ω1μ1

(
1 + Γ2

1

)
, f1 =

(
F2 + S2Γ2

1Γ2

)
,

c31 = 3α3 − 3f21Γ2 + 3f12Γ2
2 − 3f03Γ3

2 + 3β3Γ
4
2 + 3g21Γ2

2 − 3g12Γ3
2 − 3g30Γ2,

c32 = 6α3 − f21 (2Γ2 + 4Γ1) + f12
(
4Γ1Γ2 + 2Γ2

1

) − 6f03Γ2
1Γ2 + 6β3Γ

2
1Γ

2
2

+ 2g21Γ2 (Γ2 + 2Γ1) − 2g12Γ2

(
2Γ1Γ2 + Γ2

1

) − 6g30Γ2,

c41 = 2ω2μ2

(
1 + Γ2

2

)
, f2 =

1
2

(G1 + Γ2Q1) , f3 =
1
2

(G2 + Γ2Q2) .

By letting φ = σ1T0+φV−θ2, the steady solution can be obtained by finding the solutions to
the four algebraic equations which can be obtained by letting D1θ1 = D1θ2 = D1a1 = D1a2 = 0
in (20). Then, (20) becomes⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c11a
3
1 + c12a1a

2
2 + f1a1a2 cosφ = 0,

c21a1 − f1a1a2 sinφ = 0,(
1 + Γ2

2

)
2ω2a2σ1 + c31a

3
2 + c32a

2
1a2 + F cosφ+ f2 cos (σ1T0 + φθ − θ2)

+ f3 sin (σ1T0 + φθ − θ2) = 0,
− c41a2 + F sinφ+ f2 sin (σ1T0 + φθ − θ2) − f3 cos (σ1T0 + φθ − θ2) = 0.

(21)

According to the typical phenomenon of a multi-degree-of-freedom vibration system[32],
when the disturbance frequency is close to the second-order natural frequency, because of the
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presence of damping, only the second-order mode determines the long-term dynamic behavior
of the system. Therefore, we can let a1 = 0 in (21), which yields

⎧⎪⎨
⎪⎩

(
1 + Γ2

2

)
2ω2a2σ1 + c31a

3
2 + F cosφ+ f2 cos (σ1T0 + φθ − θ2)

+ f3 sin (σ1T0 + φθ − θ2) = 0,
− c41a2 + F sinφ+ f2 sin (σ1T0 + φθ − θ2) − f3 cos (σ1T0 + φθ − θ2) = 0.

(22)

(22) can be transformed into the following form:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ω − ω2 +
c31a

2
2

2ω2 (1 + Γ2
2)

+

√
F 2 + f2

2 + f2
3

2ω2 (1 + Γ2
2) a2

sin (σ1T0 + φθ − θ2 + ϑ1 + ϑ2) = 0,

− c41a2

2ω2 (1 + Γ2
2)

−
√
F 2 + f2

2 + f2
3

2ω2 (1 + Γ2
2)

cos (σ1T0 + φθ − θ2 + ϑ1 + ϑ2) = 0,

(23)

where ϑ1 = arctan(f2/f3), and ϑ2 = arctan(F/
√
f2
2 + f2

3 ).
Considering the resonance condition, we can have 2ω2 ≈ 2Ω, by letting

ωe = ω2 − c31
(1 + Γ2

2) 2ω2
a2
2, 2ω2 ≈ Ω + ωe,

(23) can be written as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ω2 − ω2
e = −

√
F 2 + f2

2 + f2
3

(1 + Γ2
2) a2

sin (σ1T0 + φθ − θ2 + ϑ1 + ϑ2) ,

− 2Ωμ2a2 =

√
F 2 + f2

2 + f2
3

(1 + Γ2
2)

cos (σ1T0 + φθ − θ2 + ϑ1 + ϑ2) .

(24)

Eliminating the trigonometric terms by using the relations between trigonometric functions in
(24) gives rise to

((Ω2 − ω2
e )

2 + (4Ω2μ2
2))a

2
2 =

F 2 + f2
2 + f2

3

(1 + Γ2
2)2

. (25)

(25) is the so-called frequency-response equation, which can reflect the bifurcation characteris-
tics of the second-order mode as the disturbance frequency Ω changes. Actually, some system
parameters of the TMIB power system may also change, which can lead to a sudden change in
the mode amplitude. This has a significant effect on the power system’s stability and secure
operation. Therefore, in order to discuss the bifurcation characteristics in a wider parameter
space, the engineering unfolding analysis is carried out[33]. Let z = a2

2. Then, (25) becomes

L = ((Ω2 − ω2
e )

2 + (4Ω2μ2
2))z −

F 2 + f2
2 + f2

3

(1 + Γ2
2)2

= 0, (26)

where ωe = ω2 − c31

(1+Γ2
2)2ω2

z, and F =
(
F2 + S2Γ2

2Γ2

)
z − 1

2 (Γ2S0 + F0).

Choose Ω as a bifurcation parameter and VB1 and δB1 as unfolding parameters. The tran-
sition sets can be obtained by using the singularity theory with one variable as follows[34]:

Σ= B ∪H ∪D,
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where

B = { (VB1, δB1) ∈ R2
∣∣∃ (z,Ω) ∈ R2, s.t. L = LΩ = Lz = 0},

H = { (VB1, δB1) ∈ R2
∣∣ ∃ (z,Ω) , s.t. L = LΩ = Lz = Lzz = 0},

D = { (VB1, δB1) ∈ R2
∣∣ ∃ (zi,Ω) (i = 1, 2) and z1 �= z2, s.t. L = Lzi = 0}.

For a given TMIB power system, the values for the system parameters are[1] listed as follows:
ω0 = 100π, VB0 = 1, H1 = 2.37, Pm1 = 1, V1 = 1.27, H2 = 2.37, Pm2 = 1, V2 = 1.27, B12 =
0.1, B13 = 1.2, B23 = 1.0,Ω = 8.1, D1 = 0.008, D2 = 0.008. Figure 2 shows the transition sets
in VB1-δB1 symmetrical plane which is divided into four regions. The frequency-response curves
in four regions are shown in Figs. 3–6, respectively. It can be seen that every bifurcation dia-
gram corresponding to different region possesses different topological structures. It should be
noted that all of the frequency-response curves present softening nonlinearity and the jump phe-
nomenon can occur at a lower frequency. As shown in Fig. 6(a), when the disturbance ratios of
the infinite-bus voltage amplitude and phase angle are both less than 5%, the frequency-response
curve in Region IV is nearly close to be a single-valued curve with small amplitude, and the
jump and hysteresis phenomena do not appear. The frequency-response curves depicted in
Fig. 6(b) also lie in Region IV, but in this case, the disturbance ratios of the infinite-bus voltage
amplitude and phase angle are 5% and 25%, respectively. We can see that the jump and hys-
teresis phenomena occur. Therefore, for an actual TMIB power system, it is better to choose the

 

Fig. 2 Transition sets with four regions Fig. 3 Bifurcation diagram in Region I

Fig. 4 Bifurcation diagram in Region II Fig. 5 Bifurcation diagram in Region III
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Fig. 6 Bifurcation diagram in Region IV (small disturbance) and bifurcation diagram in Region IV
(big disturbance)

physical parameters lying in Region IV and guarantee the disturbance ratios of the infinite-bus
voltage amplitude and phase angle are both less than 5%. For these chosen parameters, the
generator rotors swing periodically with small amplitude, which can avoid losing synchronism.
3.2 Case of 1:3 internal resonance

When there exists a relationship ω2 ≈ 3ω1, the case of 1:3 internal resonance will occur.
Introduce a detuning parameter σ2 to express the nearness of the two natural frequencies

ω2 = 3ω1 + εσ2, σ2 = O (1) . (27)

Suppose the solution of (11) has the following form:

{
x0 = a1 (T 1) cos (ω1T0 + β1 (T 1)) + a2 (T 1) cos (ω2T0 + β2 (T 1)) ,

y0 = Γ1a1 (T 1) cos (ω1T0 + β1 (T 1)) + Γ2a2 (T 1) cos (ω1T0 + β1 (T 1)) .
(28)

Substituting (28) into (12) and taking into consideration (17), we can obtain

Q11 =2ω1ȧ1 sinψ1 + 2ω1a1β̇1 cosψ1 + 2μ1ω1a1 sinψ1 + α3

(3
4
a3
1 +

3
2
a2
2a1

)
cosψ1

+ α3
3
4
a2
1a2 cos (2ψ1 − ψ2) − f21

(3
4
Γ1a

3
1 +

1
2
Γ1a1a

2
2 + Γ2a1a

2
2

)
cosψ1

− f21

(1
2
Γ1 +

1
4
Γ2

)
a2
1a2 cos (2ψ1 − ψ2)

+ f12

(3
4
Γ2

1a
3
1 +

1
2
Γ2

2a1a
2
2 + Γ1Γ2a1a

2
2

)
cosψ1

+ f12

(1
2
Γ1Γ2 +

1
4
Γ2

1

)
a2
1a2 cos (2ψ1 − ψ2)

− f03

(3
4
Γ3

1a
3
1 +

3
2
Γ1Γ2

2a
2
2a1

)
cosψ1

− f03
3
4
Γ2

1Γ2a
2
1a2 cos (2ψ1 − ψ2) +

1
2
a1a2F2 cos (ψ1 + ψ2 − θ)

+
1
2
a1a2F2 cos (ψ1 − ψ2 + θ) +

1
4
a2
1F2 cos (2ψ1 − θ) ,
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Q21 = 2ω1Γ1ȧ1 sinψ1 + 2ω1Γ1a1β̇1 cosψ1 + 2μ2ω1Γ1a1 sinψ1

+ β3

(3
4
Γ3

1a
3
1 +

3
2
Γ1Γ2

2a
2
2a1

)
cosψ1 + β3

3
4
Γ2

1Γ2a
2
1a2 cos (2ψ1 − ψ2)

+ g21

(3
4
Γ1a

3
1 +

1
2
Γ1a1a

2
2 + Γ2a1a

2
2

)
cosψ1

+ g21

(1
2
Γ1 +

1
4
Γ2

)
a2
1a2 cos (2ψ1 − ψ2)

− g12

(3
4
Γ2

1a
3
1 +

1
2
Γ2

2a1a
2
2 + Γ1Γ2a1a

2
2

)
cosψ1

− g12

(1
2
Γ1Γ2 +

1
4
T2

1

)
a2
1a2 cos (2ψ1 − ψ2)

− g30

(3
4
a3
1 +

3
2
a2
2a1

)
cosψ1 − g30

3
4
a2
1a2 cos (2ψ1 − ψ2)

+
1
2
Γ1Γ2a1a2S2 cos (ψ1 + ψ2 − θ)

+
1
2
Γ1Γ2a1a2S2 cos (ψ1 − ψ2 + θ) +

1
4
Γ2

1a
2
1F2 cos (2ψ1 − θ) ,

Q12 = 2ω2ȧ2 sinψ2 + 2ω2a2β̇2 cosψ2 + 2μ1ω2a2 sinψ2 + α3
a3
1

4
cos 3ψ1

+ α3

(3
4
a3
2 +

3
2
a2
1a2

)
cosψ2

− f21

(
Γ1a

2
1a2 cosψ2 +

3
4
Γ2a

3
2 cosψ2 +

1
2
Γ2a

2
1a2 cosψ2 +

1
4
Γ1a

3
1 cos 3ψ1

)

+ f12

(
Γ1Γ2a

2
1a2 cosψ2 +

3
4
Γ2

2a
3
2 cosψ2 +

1
2
Γ2

1a
2
1a2 cosψ2 +

1
4
Γ2

1a
3
1 cos 3ψ1

)

+ (G1 − F0) cos θ +G2 sin θ − f03

(Γ3
1a

3
1

4
cos 3ψ1 +

(3
4
Γ3

2a
3
2 +

3
2
Γ2

1Γ2a
2
1a2

)
cosψ2

)

+ F2

(1
2

(
a2
1 + a2

2

)
cos θ +

1
4
a2
2 cos (2ψ2 − θ)

)
,

Q22 = 2ω2Γ2ȧ2 sinψ2 + 2ω2Γ2a2β̇2 cosψ2 + 2μ2ω2Γ2a2 sinψ2 +
1
4
β3Γ

3
1a

3
1 cos 3ψ1

+ β3

(3
4
Γ3

2a
3
2 +

3
2
Γ2

1Γ2a
2
1a2

)
cosψ2 + g21

(
Γ1a

2
1a2 cosψ2 +

3
4
Γ2a

3
2 cosψ2

+
1
2
Γ2a

2
1a2 cosψ2 +

1
4
Γ1a

3
1 cos 3ψ1

)
− g12

(
Γ1Γ2a

2
1a2 cosψ2 +

3
4
Γ2

2a
3
2 cosψ2

+
1
2
Γ2

1a
2
1a2 cosψ2 +

1
4
Γ2

1a
3
1 cos 3ψ1

)
+ (Q1 − S0) cos θ +Q2 sin θ

− g30

(a3
1

4
cos 3ψ1 +

(3
4
a3
2 +

3
2
a2
1a2

)
cosψ2

)

+ S2

(1
2

(
Γ2

1a
2
1 + Γ2

2a
2
2

)
cos θ +

1
4
Γ2

2a
2
2 cos (2ψ2 − θ)

)
,

where ψ1 = ω1T0 + β1 (T 1) , ψ2 = ω2T0 + β2 (T 1) , and θ = ΩT0 + φθ.

According to the solvability condition expressed by (19) and separating the same harmonic
term leading to secular terms yields the governing equations for the amplitudes a1, a2 and



996 Xiaodong WANG, Yushu CHEN, and Lei HOU

phases γ1, γ2 as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

3p2ȧ1 + p1a1 +N11a
2
1a2 sin γ1 = 0,

3p2a1β̇1 +N21a
3
1 +N22a

2
2a1 +N11a

2
1a2 cos γ1 = 0,

p4ȧ2 + p3a2 −N31a
3
1 sin γ1 + (q1a2

1 + q3a
2
2 + q2) sin γ3 + f4 cos γ3 = 0,

p4a2β̇2 + +N31a
3
1 cos γ1 +N41a

3
2 +N42a

2
1a2 + (q1a2

1 + 3q3a2
2 + q2) cos γ3

− f4 sin γ3 = 0,

(29)

where γ1=3β1−σ2T1−β2, γ2=3β1−σ2T1−σ1T1−φV, and γ3 = γ2−γ1, and the corresponding
symbols are listed in Appendix B.

The steady-state solutions correspond to ȧ1, ȧ2 = 0 and γ̇1, γ̇2 = 0. Eliminating the trigono-
metric terms in (29) gives rise to⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

W1(a1, a2, σ1, σ2) = p2
1 + (p2σ1 + p2σ2 +N21a

2
1 +N22a

2
2)

2 −N2
11a

2
1a

2
2=0,

W2(a1, a2, σ1, σ2) = (N11p3a
2
2 +N31p1a

2
1)

2(q1a2
1 + 3q3a2

2 + q2)2a2
2

−N2
11(q1a

2
1 + q3a

2
2 + q2)2(q1a2

1 + 3q3a2
2 + q2)2a4

2

+ (q1a2
1 + q3a

2
2 + q2)2(N31a

2
1(p2σ1 + p2σ2 +N21a

2
1 +N22a

2
2)

−N11N41a
4
2 −N11N42a

2
1a

2
2 −N11p4σ1a

2
2)

2a2
2 = 0.

(30)

When 1:3 internal resonances take place, the singularity theory with single variable is not
applicable for bifurcation characteristic analysis of (30) which has two mode amplitudes. Here,
for two-machine power system, we first use the singularity method with two variables to discuss
the bifurcation behaviors of the two normal mode solutions. In (30), letting x = a2

1, y = a2
2 as

two state variables, supposing λ = σ1 is the bifurcation parameter, VB1, and δB1 are engineer-
ing unfolding parameters. According to the singularity method with two variables[35−36], the
transition sets are obtained by the following formulae (the corresponding symbols are listed in
Appendix C):

Σ = B ∪H ∪D,

B =

⎧⎪⎨
⎪⎩

(VB1, δB1) ∈ R2|∃(x, y, λ) s.t.
W1 = 0, W2 = 0,
W1xW2y −W1yW2x = 0, W1xW2λ −W1λW2x = 0,

D =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(VB1, δB1) ∈ R2|∃(x, y, λ) s.t.
W1 = 0, W2 = 0,
W1xW2y −W1yW2x = 0, W1xl2 −W2xl1 = 0,

l1 = W1xxW
2
1y − 2W1xyW1xW1y +W1yyW

2
1x,

l2 = W2xxW
2
1y − 2W2xyW1xW1y +W2yyW

2
1x,

H =

⎧⎪⎨
⎪⎩

(VB1, δB1) ∈ R2|∃(z1, z2, λ) s.t.
W1 = 0, W2 = 0,
det(dW )zi,λ,VB1,δB1 = 0, z = (x, y), i = 1, 2.

Consider a specific system with the system parameters: Rated MVA=160, Rated PF=0.85,
Rated KV=15, ω0 = 100π,H1 = 2.37, Pm1 = 1.0, B13 = 1.2, B12 = 1.0, V1 = 1.0, H2 =
0.6, Pm2 = 0.6B23 = 1, V2 = 1.0, VB0 = 1.0, D1 = 0.008, and D2 = 0.005. Figure 7 shows the
transition sets in VB1-δB1 plane which is divided into seven regions. The frequency-response
curves of the two modes in every region are shown in Fig. 8. As the infinite-bus voltage ampli-
tude and phase fluctuate periodically, the frequency-response curves of the two modes exhibit
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Fig. 7 Transition sets with seven regions
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Fig. 8 (a) Bifurcation diagrams in Region I; (b) bifurcation diagrams in Region II; (c) bifurcation
diagrams in Region III; (d) bifurcation diagrams in Region IV; (e) bifurcation diagrams in
Region V; (f) bifurcation diagrams in Region VI; (g) bifurcation diagrams in Region VII
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parametric vibration characteristics as shown in Fig. 8. Owing to occurrence of 1:3 internal
resonances, the first-order mode amplitude is considerably larger than that of the second-order
mode. We can see that when the infinite-bus voltage amplitude or phase fluctuates, both of the
two mode solutions exhibit rich bifurcation patterns leading to a change in the number of the
possible normal mode solutions, for example, three to two, three to one, or two to three.

In comparison with no internal resonance, it can be found that the bifurcation behavior and
stability of the system are significantly influenced by the infinite-bus voltage amplitude and
phase. The coupled modes of the TMIB power system have more critical bifurcation points
and quite rich bifurcation patterns, which is greatly different from that of no internal resonance
case.

Such work is obviously preliminary to a closer understanding of the complex bifurcation
behavior of the TMIB power system. When making parameter design for the system stability,
it is better to avoid choosing these parameters corresponding to the critical points, where the
state of motion may change suddenly. We can adjust the system parameters to achieve a
required working pattern in practical engineering applications. Therefore, the above discussion
can provide a theoretical direction for the dynamic analysis, bifurcation control, and engineering
optimization design for an actual TMIB power system with different working and structural
parameters.

4 Conclusions

In this paper, the bifurcation analysis of a simple electric power system involving two syn-
chronous generators connected by a transmission network to an infinite-bus has been carried
out. In this system, the infinite-bus voltage are considered to maintain two fluctuations in the
amplitude and phase angle. By using the method of multiple scales, the bifurcation equations
of this system have been obtained. Then, the singularity methods for single state variable and
for two state variables have been respectively used to analyze the bifurcation characteristics of
the system without and with 1:3 internal resonance. The transition sets determining different
bifurcation patterns of the system are obtained and analyzed, which reveal the effects of the
infinite-bus voltage amplitude and phase fluctuations on bifurcation patterns of this system.
The results show that the bifurcation behavior and stability of the system are significantly
influenced by the infinite-bus voltage amplitude and phase. In comparison with the non in-
ternal resonance case, the 1:3 internal resonance makes the bifurcation characteristics more
complicated and induces more numbers of bifurcation patterns. Owing to occurrence of 1:3 in-
ternal resonance, the energy transfer makes that the first-order mode amplitude is considerably
larger than that of the second-order mode. The results obtained in this paper will contribute
to a better understanding of the complex nonlinear dynamic behaviors in a TMIB power system.

References

[1] Anderson, P. M. and Fouad, A. A. Power System Control and Stability, Wiley-IEEE Press, New
York (2002)

[2] Chiang, H. D. Direct Methods for Stability Analysis of Electric Power Systems: Theoretical Foun-
dation, BCU Methodologies, and Applications, John Wiley, New York (2011)

[3] Zhang, J., Wen, J. Y., and Cheng, S. J. Power system nonlinearity modal interaction by the
normal forms of vector fields. Journal of Electrical Engineering & Technology, 3(1), 8–13 (2008)

[4] Guckenheimer, J. and Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations
Vector Fields, Springer-Verlag, New York (1983)

[5] Moon, F. C. Chaos Vibrations, an Introduction for Applied Scientists and Engineers, Wiley-
InterScience, New York (1987)



1000 Xiaodong WANG, Yushu CHEN, and Lei HOU

[6] Nayfeh, A. H. Introduction to Perturbation Techniques, Wiley-Interscience, New York (1981)

[7] Nayfeh, A. H. and Mook, D. T. Nonlinear Oscillations, Wiley-InterScience, New York (1979)

[8] Nayfeh, M. A., Hamdan, A. M. A., and Nayfeh, A. H. Chaos and instability in a power system:
subharmonic-resonant case. Nonlinear Dynamics, 2, 53–72 (1991)

[9] Nayfeh, M. A., Hamdan, A. M. A., and Nayfeh, A. H. Chaos and instability in a power system:
primary resonant case. Nonlinear Dynamics, 1, 313–339 (1990)

[10] Duan, X. Z., Wen, J. Y., and Cheng, S. J. Bifurcation analysis for an SMIB power system with
series capacitor compensation associated with sub-synchronous resonance. Science in China Series
E-Technological Sciences, 52(2), 436–441 (2009)

[11] Chen, H. K., Lin, T. N., and Chen, J. H. Dynamic analysis, controlling chaos and chaotification
of an SMIB power system. Chaos Solitons & Fractals, 24, 1307–1315 (2005)

[12] Wang, J. L., Mei, S. W., Lu, Q., and Teo, K. L. Dynamical behavior and singularities of a single-
machine infinite-bus power system. Acta Mathematicae Applicatae Sinica (English Series), 20(3),
457–476 (2004)

[13] Chen, X. W., Zhang, W. N., and Zhang, W. D. Chaotic and sub-harmonic oscillations of a
nonlinear power system. IEEE Transactions on Circuits and Systems-II, 52(12), 811–815 (2005)

[14] Wei, D. Q., Zhang, B., Qiu, D. Y., and Luo, X. S. Effect of noise on erosion of safe basin in power
system. Nonlinear Dynamics, 61, 477–482 (2010)

[15] Zhang, J., Wen, J. Y., and Cheng, S. J. Power system nonlinearity modal interaction by the
normal forms of vector fields. Journal of Electrical Engineering & Technology, 3(1), 8–13 (2008)

[16] Revel, G., Leon, A. E., Alonso, D. M., and Moiola, J. L. Bifurcation analysis on a multimachine
power system model. IEEE Transcations on Circuits and Systems-I: Regular Papers, 57(4), 937–
949 (2010)

[17] Jiang, N. Q. and Chiang, H. D. Damping torques of multi-machine power systems during transient
behaviors. IEEE Transactions on Power Systems, 29(3), 1186–1193 (2014)

[18] Amano, H., Kumano T., Inoue, T., and Taniguchi, H. Proposal of nonlinear stability indices of
power swing oscillation in a multi-machine power system. Electrical Enginerring in Japan, 151(4),
215–221 (2005)

[19] Senjyu, T., Morishima, Y., Arakaki, T., and Uezato, K. Improvement of multi-machine power
system stability using sdaptive PSS. Electric Power Components and Systems, 30, 361–375 (2002)

[20] Yu, Y. P., Min, Y., and Chen, L. Analysis of forced power oscillation steady-state response
properties in multi-machine power systems (in Chinese). Automation of Electric Power Systems,
33(22), 5–9 (2009)

[21] Lin, C. M., Vittal, V., Kliemann, W., and Fouad, A. A. Investigation of modal interaction and
its effects on control performance in stressed power systems using normal forms of vector fields.
IEEE Transactions on Power Systems, 11(2), 781–787 (1996)

[22] Saha, S., Fouad, A. A., Kliemann, W. H., and Vittal, V. Stability boundary approximation of a
power system using the real normal form of vector fields. IEEE Transactions on Power Systems,
12(2), 797–802 (1997)

[23] Thapar, J., Vittal, V., Kliemann, W., and Fouad, A. A. Application of normal form of vector
fields to predict inter-area separation in power systems. IEEE Transactions on Power Systems,
12(2), 844–850 ( 1997)

[24] Deng, J. X. and Zhao, L. L. Study on the second order non-linear interaction of the critical inertial
modes (in Chinese). Proceeding of the CSEE, 25(7), 75–80 (2005)

[25] Dobson, I., Zhang, J. F., Greene, S., Engdahl, H., and Sauer, P. W. Is strong modal resonance a
precursor to power system oscillation. IEEE Transactions on Circuits and Systems-I: Fundamental
Theory and Applications, 48(3), 340–349 (2001)

[26] Li, X. Y., Chen, Y. S., and Wu, Z. Q. Singular analysis of bifurcation of nonlinear normal modes
for a class of systems with dual internal resonances. Applied Mathematics and Mechanics (English
Edition), 23(10), 1122–1133 (2002) DOI 10.1007/BF02437660

[27] Li, X. Y., Ji, J. C., and Hansen, C. H. Non-linear normal modes and their bifurcation of a two DOF
system with quadratic and cubic non-linearity. International Journal of Non-Linear Mechanics,
41, 1028–1038 (2006)



Nonlinear dynamic singularity analysis of two interconnected synchronous generator system 1001

[28] Li, X. Y., Chen, Y. S., and Wu, Z. Q. Non-linear normal modes and their bifurcation of a class
of systems with three double of pure imaginary roots and dual internal resonances. International
Journal of Non-Linear Mechanics, 39, 189–199 (2004)

[29] Nayfeh, A. H., Lacarbonara, W., and Chin, C. Nonlinear normal modes of buckled beams: three-
to-one and one-to-one internal resonance. Nonlinear Dynamics, 18, 253–273 (1999)

[30] Yuan, B. and Sun, Q. H. Chaos in the multi-machine power system (in Chinese). Automation of
Electric Power System, 19(2), 26–31 (1995)

[31] Ueda, Y. and Ueda, Y. Nonlinear resonance in basin portraits of two coupled swings under periodic
forcing. International Journal of Bifurcation and Chaos, 8(6), 1183–1197 (1998)

[32] Chen, Y. S. Nonlinear Vibration (in Chinese), Higher Education Press, Beijing (2002)

[33] Chen, Y. S. and Leung, A. Y. T. Bifurcation and Chaos in Engineering, Springer-Verlag, London
(1998)

[34] Golubitsky, M. and Schaeffer, D. G. Singluarities and Groups in Bifurcation Theory-I, Springer-
Verlag, New York (1984)

[35] Qin, Z. H., Chen, Y. S., and Li, J. Singularity analysis of a two-dimensional elastic cable with 1:1
internal resonance. Applied Mathematics and Mechanics (English Edition), 31(2), 143–150 (2010)
DOI 10.1007/s10483-010-0202-z

[36] Qin, Z. H. and Chen, Y. S. Singular analysis of bifurcation systems with two parameters. Acta
Mechanica Sinica, 26(3) 501–507 (2010)

Appendix A

Symbols used in (7)

θ10 = arcsin
Pm1

B13V1VB0
, θ20 = arcsin

Pm2

B23V2VB0
,

K =
ω0

2H1
B13V1VB0 cos θ10, L=

ω0

2H1
B12V1V2 cos (θ10 − θ20) ,

k11 = (K + f10) , k12 = L, α2 = (α2 + f20) ,

α3 = (α3 + f30) , α2 =
1

2
K tan θ10, α3 =

1

6
K,

F0 =
VB1

VB0
K tan θ10, f20 = f02 =

1

2
L tan (θ10 − θ20) ,

f11 = L tan (θ10 − θ20) , f30 = f03 =
1

6
L, f21 = f12 =

1

2
L,

F1 =
VB1

VB0
K, F2 =

1

2

VB1

VB0
K tan θ10, F3 =

1

6

VB1

VB0
K,

G1 = δB1Ω
2, G2 =

ω0

2H1
D1δB1Ω, μ1 =

ω0

4H1
D1,

R =
ω0

2H2
B23V2VB0 cos θ20, T =

ω0

2H2
B12V1V2 cos (θ10 − θ20) ,

k21 = R = (R + g01) , k22 = g10 = g01 = T,

β2 = (β2 − g02) , β3 = (β3 + g03) , β2 =
1

2
R tan θ20,

β3 =
1

6
R, S0 =

VB1

VB0
R tan θ20,

g20 = g02 =
1

2
T tan (θ10 − θ20) , g11 = T tan (θ10 − θ20) ,

g30 = g03 =
1

6
T, g21 = g12 =

1

2
T, S1 =

VB1

VB0
R,

S2 =
1

2

VB1

VB0
R tan θ20, S3 =

1

6

VB1

VB0
R, Q1 = δB1Ω

2,

Q2 =
ω0

2H2
D2δB1Ω, μ2 =

ω0

4H2
D2.
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Appendix B

Symbols used in (29)

p1 = 2ω1

`
μ1 + μ2Γ

2
1

´
, p2 =

2

3

`
1 + Γ2

1

´
ω1, p3 = 2ω2

`
μ1 + μ2Γ

2
2

´
,

p4 = 2ω2

`
1 + Γ2

2

´
, f =

1

2

`
F2 + Γ2

1Γ2S2

´
,

N11 =
1

4
(3α3 − 2f21Γ1 − f21Γ2 + 2f12Γ1Γ2 + f12Γ

2
1 − 3f03Γ

2
1Γ2 + 3β3Γ

3
1Γ2

+ 2Γ2
1g21 + Γ1Γ2g21 − 2g12Γ

2
1Γ2 − g12Γ

3
1 − 3g30Γ1),

N21 =
3

4

`
α3 − f21Γ1 + f12Γ

2
1 − f03Γ

3
1 + β3Γ

4
1 + g21Γ

2
1 − g12Γ1Γ

2
1 − g30Γ1

´
,

N22 =
1

2
(3α3 − f21Γ1 − 2f21Γ2 + f12Γ

2
2 + 2f12Γ1Γ2 − 3f03Γ1Γ

2
2 + 3β3Γ

2
1Γ

2
2 + g21Γ

2
1

+ 2g21Γ1Γ2 − g12Γ1Γ
2
2 − 2g12Γ

2
1Γ2 − 3g30Γ1),

N31 =
1

4

`
α3 + β3Γ

3
1Γ2 − f21Γ1 + g21Γ1Γ2 + f12Γ

2
1 − g12Γ

2
1Γ2 − f03Γ

3
1 − g30Γ2

´
,

q1 =
1

2

`
F2 + Γ2

1Γ2S2

´
, q2 = (G1 + Q1Γ2) − (F0 + S0Γ2) ,

q3 =
1

4

`
F2 + S2Γ2Γ

2
2

´
, q4 = (G2 + Q2Γ2) ,

N41 =
3

4

`
α3 + β3Γ

4
2 − f21Γ2 + g21Γ

2
2 + f12Γ

2
2 − g12Γ2Γ

2
2 − f03Γ

3
2 − g30Γ2

´
,

N42 =
1

2
(3α3 + 3β3Γ

2
1Γ

2
2 − 2f21Γ1 − f21Γ2 + 2g21Γ1Γ2 + g21Γ

2
2

+ 2f12Γ1Γ2 + f12Γ
2
1 − 2g12Γ1Γ

2
2 − g12Γ2Γ

2
1 − 3f03Γ

2
1Γ2 − 3g30Γ2).

Appendix C

W1x = 2N21p2λ + 2N21p2σ2 + 2N2
21x + 2N21N22y − N2

11y,

W1y = 2N22p2λ + 2N22p2σ2 + 2N22N21x + 2N2
22y − N2

11x,

W1λ = 2p2
2λ + 2p2

2σ2 + 2p2N21x + 2p2N22y, W1xx = 2N2
11,

W1xy = 2N22N21 − N2
11, W1yy = 2N2

22,

W2x = 2q1y (q1x + q3y + q2) (p2λN31x + p2σ2N31x + N21N31x
2 + N22N31xy − N11N41y

2

− N11N42xy − N11p4λy)2 + 2N31p1y (N11p3y + N31p1x) (q1x + 3q3y + q2)
2

+ 2q1y (N11p3y + N31p1x)2 (q1x + 3q3y + q2) − 2N2
11q1y

2 (q1x + q3y + q2) (q1x + 3q3y + q2)
2

− 2N2
11q1y

2 (q1x + q3y + q2)
2 (q1x + 3q3y + q2) + 2y(q1x + q3y + q2)

2(p2λN31x + p2σ2N31xxy

+ N21N31x
2 + N22N31 − N11N41y

2 − N11N42xy − N11p4λy)(N31p2λ + N31p2σ2 + N31N21x

+ N31N22y + N31xN21 − N11N42y),
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W2y = 2q3y(q1x + q3y + q2)(p2N31λx + p2N31σ2x + N21N31x
2 + N22N31xy − N11N41y

2 − N11N42xy

· −N11p4λy)2 + (q1x + q3y + q2)
2(p2N31λx + p2N31σ2x + N21N31x

2 + N22N31xy − N11N41y
2

· −N11N42xy − N11p4λy)2 + 2N11p3y (N11p3y + N31p1x) (q1x + 3q3y + q2)
2

+ 6q3y (N11p3y + N31p1x)2 (q1x + 3q3y + q2) + (N11p3y + N31p1x)2 (q1x + 3q3y + q2)
2

− 2N2
11q3y

2 (q1x + q3y + q2) (q1x + 3q3y + q2)
2 − 6N2

11q3y
2 (q1x + q3y + q2)

2 (q1x + 3q3y + q2)

− 2N2
11y (q1x + q3y + q2)

2 (q1x + 3q3y + q2)
2 + 2y (q1x + q3y + q2)

2 (p2N31λx + p2N31σ2x

+ N21N31x
2 + N22N31xy − N11N41y

2 − N11N42xy − N11p4λy)

· (N31N22x − 2N11N41y − N11N42x − N11p4λ) ,

W2λ = 2y (q1x + q3y + q2)
2 (N31p2x − N11p4y) (p2N31λx + p2N31σ2x + N21N31x

2

+ N22N31xy − N11N41y
2 − N11N42xy − N11p4λy),

W2xx = 2q2
1y

`
p2N31xλ + p2N31xσ2 + N21N31x

2 + N22N31xy − N11N41y
2 − N11N42xy − N11p4λy

´2

+ 8q1y (q1x + q3y + q2) (p2N31xλ + p2N31xσ2 + N21N31x
2 + N22N31xy − N11N41y

2

− N11N42xy − N11p4λy)(p2N31λ + p2N31σ2 + N21N31x + N22N31y + N31xN21 − N11N42y)

+ 2y (q1x + q3y + q2)
2 (p2N31λ + p2N31σ2 + N21N31x + N22N31y + N31xN21 − N11N42y)2

+ 4 (q1x + q3y + q2)
2 N31N21y(p2N31xλ + p2N31xσ2 + N21N31x

2 + N22N31xy − N11N41y
2

− N11N42xy − N11p4λy) + 2N2
31p

2
1y (q1x + 3q3y + q2)

2 + 8N31p1q1y (N11p3y + N31p1x)

· (q1x + 3q3y + q2) + 2q2
1y (N11p3y + N31p1x)2 − 2N2

11q
2
1y2 (q1x + 3q3y + q2)

2

− 8N2
11q

2
1y2 (q1x + q3y + q2) (q1x + 3q3y + q2) − 2N2

11q
2
1y2 (q1x + q3y + q2)

2 ,

W2xy = 2q1q3y(p2N31xλ + p2N31xσ2 + N21N31x
2 + N22N31xy − N11N41y

2 − N11N42xy − N11p4ay)2

+ 4q1y (q1x + q3y + q2) (N31N22x − 2N11N41y − N11N42x − N11p4λ) (p2N31xλ + p2N31xσ2

+ N21N31x
2 + N22N31xy − N11N41y

2 − N11N42xy − N11p4λy) + 2q1 (q1x + q3y + q2)

· `
p2N31xλ + p2N31xσ2 + N21N31x

2 + N22N31xy − N11N41y
2 − N11N42xy − N11p4λy

´2

+ 4q3y (q1x + q3y + q2) (p2N31xλ + p2N31xσ2 + N21N31x
2 + N22N31xy − N11N41y

2

− N11N42xy − N11p4λy) (p2N31λ + p2N31b + N21N31x + N22N31y + N31xN21 − N11N42y)

+ 2y (q1x + q3y + q2)
2 (N31xN22 − 2N11N41y − N11N42x − N11p4a) (p2N31λ + p2N31σ2

+ N21N31x + N22N31y + N31xN21 − N11N42y),

W2yy = 4N11p3 (N11p3y + N31p1x) (q1x + 3q3y + q2)
2 + 8q3y (q1x + q3y + q2)

`
p2N31xλ + p2N31xσ2 + N21N31x

2 + N22N31xy − N11N41y
2 − N11N42xy − N11p4ay

´

· (N31N22x − 2N11N41y − N11N42x − N11p4λ) − 4N11N41y (q1x + q3y + q2)
2

· `
p2N31xλ + p2N31σ2x + N21N31x

2 + N22N31xy − N11N41y
2 − N11N42xy − N11p4ay

´
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− 2y2N2
11q

2
3 (q1x + 3q3y + q2)

2 − 24N2
11q

2
3y2 (q1x + q3y + q2) (q1x + 3q3y + q2)

+ 2N2
11q

2
3y (q1x + 3q3y + q2)

2 + 24N11p3q3y (N11p3y + N31p1x) (q1x + 3q3y + q2)

− 8N2
11q3y (q1x + q3y + q2) (q1x + 3q3y + q2)

2 − 24N2
11q3y (q1x + q3y + q2)

2 (q1x + 3q3y + q2)

+ 2q2
3y

`
p2N31λx + p2N31xσ2 + N21x + N22y − N11N41y

2 − N11N42xy − N11p4λy
´2

+ 4q3 (q1x + q3y + q2) (p2N31xλ + p2N31xσ2 + N21N31x
2 + N22N31xy − N11N41y

2

− N11N42xy − N11p4λy)2 + 2y (q1x + q3y + q2)
2 (N31N22x − 2N11N41y − N11N42x − N11p4λ)2

+ 18q2
3y (N11p3y + N31p1x)2 − 2N2

11 (q1x + q3y + q2)
2 (q1x + 3q3y + q2)

2 + 4 (q1x + q3y + q2)
2

· `
p2N31xλ + p2N31xσ2 + N21N31x

2 + N22N31xy − N11N41y
2 − N11N42xy − N11p4λy

´

(N31N22x − 2N11N41y − N11N42x − N11p4λ) + 12q3 (N11p3y + N31p1x)2 (q1x + 3q3y + q2)

− 18N2
11q

2
3y2 (q1x + q3y + q2)

2 .


