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Abstract Based on the generalized England-Spencer plate theory, the equilibrium of a
transversely isotropic functionally graded plate containing an elastic inclusion is studied.
The general solutions of the governing equations are expressed by four analytic functions
α(ζ), β(ζ), φ(ζ), and ψ(ζ) when no transverse forces are acting on the surfaces of the
plate. Axisymmetric problems of a functionally graded circular plate and an infinite func-
tionally graded plate containing a circular hole subject to loads applied on the cylindrical
boundaries of the plate are firstly investigated. On this basis, the three-dimensional (3D)
elasticity solutions are then obtained for a functionally graded infinite plate containing an
elastic circular inclusion. When the material is degenerated into the homogeneous one,
the present elasticity solutions are exactly the same as the ones obtained based on the
plane stress elasticity, thus validating the present analysis in a certain sense.
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1 Introduction

Elastic response analysis of homogeneous plates inserted with an elastic circular inclusion is
always one of important classical research topics in elasticity. For example, Muskhelishvili[1],
Savin[2], and Lekhnitskii[3] obtained a series of plane elasticity solutions and classical plate
theory solutions by the complex variable method.

Functionally graded materials (FGMs) are a new type of inhomogeneous materials which
can ensure the continuous distribution of stresses and thus avoid some problems appearing
in conventional laminated materials, such as stress concentration and interfacial debonding.
Therefore, FGMs have shown significant application prospects in many fields. Many theoretical
studies have been carried out on static analysis of FGM plates. For instance, Ramirez et al.[4]

obtained approximate static solutions for two types of FGM plates by a discrete layer model in
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conjunction with the Ritz method. Li et al.[5] derived the elasticity solutions for transversely
isotropic FGM circular plates subject to axisymmetric transverse loads. Based on the fourth-
order shear deformation plate theory, the axisymmetric bending of FGM circular plates subject
to a uniform transverse load was studied by Sahraee and Saidi[6]. More recent works on FGM
plate theories and their applications can be found in the review paper of Jha et al.[7].

It is noted that based on the three-dimensional (3D) theory of elasticity, Mian and Spencer[8]

obtained a class of 3D solutions for isotropic FGM plates with tractions-free surfaces, in which
the material properties were assumed to vary arbitrarily with the thickness-coordinate. Using
the complex function theory, England[9] generalized Mian and Spencer’s method[8] to the case
involving the effect of the top-surface pressure, which satisfies the biharmonic equation or
higher-order ones. Hereinafter, this complex formulation will be referred to as the England-
Spencer plate theory. With this formulation, England[10] studied the equilibrium problem of an
isotropic FGM annular plate containing a rigid inclusion. Yang et al.[11–12] extended England’s
method[9] to the transversely isotropic FGM plates and obtained the elasticity solutions of an
FGM rectangular plate with opposite edges simply supported and subject to a special family
of biharmonic polynomial loads (totally 12 different types) as well as those of an FGM annular
plate subject to biharmonic loads under different boundary conditions.

To the best knowledge of the authors, no work is available in the literature on the subject of
the equilibrium problem of an FGM plate containing an elastic circular inclusion. The purpose
of this paper is to investigate 3D equilibrium problems of a transversely isotropic FGM plate
containing an elastic inclusion based on the authors’ previous work[11–12].

2 England-Spencer plate theory

Consider a transversely isotropic FGM plate bounded by the planes z = ±h/2 in the Carte-
sian coordinates (x, y, z). The isotropic planes of the material are parallel with the xy-plane
that coincides with the mid-plane of the plate and are perpendicular to the z-axis that is ver-
tically upward. The plate is free from the shear tractions on the upper and lower surfaces and
subject to a normal biharmonic pressure p (x, y) only on the upper surface. Thus, we have

σz = −p(x, y), σxz = σyz = 0 at z = h/2,
σz = σxz = σyz = 0 at z = −h/2.

By generalizing the England-Spencer plate theory[9], we take the following forms of the
displacement field[11–12]:

⎧
⎪⎨

⎪⎩

u+ iv = u+ iv + 2
∂

∂ζ
(R1Δ +R0w +R2∇2w +R3∇4w +R4∇6w),

w = w + T1Δ + T2∇2w + T3∇4w + T4∇6w,

(1)

where R0, R1, · · · , R4 and T1, T2, · · · , T4 are functions of z, u = u(x, y), v = v(x, y), and
w = w(x, y) are the mid-plane displacements, and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δ = u,x + v,y, ∇2 =
∂2

∂x2
+

∂2

∂y2
, ζ = x+ iy, ζ = x− iy,

2
∂

∂ζ
=

∂

∂x
− i

∂

∂y
, 2

∂

∂ζ
=

∂

∂x
+ i

∂

∂y
.

(2)

The expressions of functions Rj (j = 0, 1, · · · , 4) and Tk (k = 1, 2, · · · , 4) can be determined
by invoking the stress boundary conditions on the upper and lower surfaces of the plate, along
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with the following equations governing w(x, y) and Ω (x, y) = v,x − u,y:

∂

∂ζ
(κ1Δ + κ2∇2w + κ3∇4w + κ4∇6w + iΩ(x, y)) = 0, (3)

S1(h/2)∇4w = −p(x, y) + S21∇2p(x, y), (4)

where the expressions of constants κ1, κ2, κ3, κ4, S1(h/2), and S21 were given by Yang et al.[11].
If p(x, y) = 0, Eqs. (4), (3), and (1) can be immediately simplified as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∇4w = 0,
∂

∂ζ
(κ1Δ + κ2∇2w + iΩ(x, y)) = 0,

u+ iv = u+ iv + 2
∂

∂ζ
(R1Δ +R0w +R2∇2w),

w = w + T1Δ + T2∇2w.

(5)

It is then shown that the mid-plane displacements and the resultant forces can be expressed
as follows:

w = α(ζ) + α(ζ) + ζβ(ζ) + ζβ(ζ), (6)

D = u+ iv =
κ1 + 1
κ1 − 1

φ(ζ) − ζφ′(ζ) − ψ(ζ) − 2
κ2

κ1
(β(ζ) + ζβ′(ζ)), (7)

Nx +Ny = a1(φ′(ζ) + φ′(ζ)) + 4a2(β′(ζ) + β′(ζ)), (8)

Ny −Nx + 2iNxy = a1(ζφ′′(ζ) + ψ′(ζ)) − a5φ
′′′(ζ) + 4a2ζβ

′′(ζ)

+ 2a6α
′′(ζ) − a7β

′′′(ζ), (9)

Mx +My = −b1(φ′(ζ) + φ′(ζ)) + 4b2(β′(ζ) + β′(ζ)), (10)

My −Mx + 2iMxy = a6(ζφ′′(ζ) + ψ′(ζ)) − b5φ
′′′(ζ) + b6ζβ

′′(ζ)
+ b7α

′′(ζ) − b8β
′′′(ζ), (11)

Qxz − iQyz = −(b1 + a6)φ′′(ζ)+(4b2 − b6)β′′(ζ), (12)

where α(ζ), β(ζ), φ(ζ), and ψ(ζ) are four analytic functions of the complex variable ζ, and
a1, a2, a5, a6, a7, b1, b2, b5, b6, b7, and b8 are real constants that can be found in Ref. [11].

3 FGM annular plate

Let us consider an FGM annular plate with the inner radius a and the outer radius b, subject
to the uniform radial forces Na

r , N b
r and the uniform bending moments Ma

r , M b
r acting on the

inner and outer cylindrical boundaries of the plate. This is an axisymmetric problem. We
assume that the four analytic functions take the following simple forms:

φ(ζ) = φ·1ζ, β(ζ) = β·
1ζ, α(ζ) = A ln ζ, ψ(ζ) = ψ·

−1ζ
−1, (13)
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where φ·1, β
·
1, A, and ψ·

−1 are real constants to be determined. Substituting Eq. (13) into
Eqs. (6) and (7) yields

w = 2A ln r + 2β·
1r

2, (14)

ur + iuθ = (u + iv)e−iθ

= 2
( 1
κ1 − 1

φ·1 − 2
κ2

κ1
β·

1

)
r − ψ·

−1

1
r
. (15)

It can be found from Eq. (15) that
⎧
⎪⎨

⎪⎩

ur = 2
( 1
κ1 − 1

φ·1 − 2
κ2

κ1
β·

1

)
r − ψ·

−1

1
r
,

uθ = 0.

(16)

It is shown from Eqs. (14) and (16) that the four analytic functions in Eq. (13) do give rise
to a state of axisymmetric deformation. Substituting Eq. (13) into Eqs. (8)–(10) and (12) yields

Nr +Nθ = Nx +Ny = 2a1φ
·
1 + 8a2β

·
1, (17)

Mr +Mθ = Mx +My = −2b1φ·1 + 8b2β·
1, (18)

Nθ −Nr + 2iNrθ = (Ny −Nx + 2iNxy)ei2θ

= −(a1ψ
·
−1 + 2a6A)

1
r2
, (19)

Qrz − iQθz = (Qxz − iQyz)eiθ = 0. (20)

We obtain from Eqs. (17)–(19) that

Nr = a1φ
·
1 + 4a2β

·
1 + (a1ψ

·
−1 + 2a6A)

1
2r2

, (21)

⎧
⎨

⎩

Nθ = a1φ
·
1 + 4a2β

·
1 − (a1ψ

·
−1 + 2a6A)

1
2r2

,

Nrθ = 0,
(22)

Mr = −b1φ·1 + 4b2β·
1 + (a6ψ

·
−1 + b7A)

1
2r2

, (23)

⎧
⎪⎨

⎪⎩

Mθ = −b1φ·1 + 4b2β·
1 − (a6ψ

·
−1 + b7A)

1
2r2

,

Mrθ = 0.

(24)

The following conditions are satisfied on the cylindrical boundaries (r = a, b) of the annular
plate:

Nr(a) = Na
r , Mr(a) = Ma

r , Nrθ(a) = 0, Qrz(a) +
∂Mrθ(a)
a∂θ

= 0, (25)

Nr(b) = N b
r , Mr(b) = M b

r , Nrθ(b) = 0, Qrz(b) +
∂Mrθ(b)
b∂θ

= 0. (26)
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Obviously, the last two equations in Eqs. (25) and (26) are automatically met. Substituting
Eqs. (21) and (23) into the first two equations in Eqs. (25) and (26) yields

a1φ
·
1 + 4a2β

·
1 + (a1ψ

·
−1 + 2a6A)

1
2a2

= Na
r , (27)

a1φ
·
1 + 4a2β

·
1 + (a1ψ

·
−1 + 2a6A)

1
2b2

= N b
r , (28)

− b1φ
·
1 + 4b2β·

1 + (a6ψ
·
−1 + b7A)

1
2a2

= Ma
r , (29)

− b1φ
·
1 + 4b2β·

1 + (a6ψ
·
−1 + b7A)

1
2b2

= M b
r . (30)

It can be found from Eqs. (27)–(30) that

[
φ·1
β·

1

]

=
1

(1 − r0) J1

[
4b2 −4a2

b1 a1

] [
N b

r − r0N
a
r

M b
r − r0M

a
r

]

, (31)

[
ψ·
−1

A

]

=
2a2

(1 − r0)J2

[
b7 −2a6

−a6 a1

] [
Na

r −N b
r

Ma
r −M b

r

]

, (32)

where

r0 =
a2

b2
, J1 = 4(a1b2 + b1a2), J2 = a1b7 − 2a2

6. (33)

By substituting Eqs. (31) and (32) into Eqs. (21)–(24), we obtain

Nr =
1

1 − r0

(
N b

r − r0N
a
r +

a2

r2
(Na

r −N b
r )
)
, (34)

Nθ =
1

1 − r0

(
N b

r − r0N
a
r − a2

r2
(Na

r −N b
r )
)
, (35)

Mr =
1

1 − r0

(
M b

r − r0M
a
r +

a2

r2
(Ma

r −M b
r )
)
, (36)

Mθ =
1

1 − r0

(
M b

r − r0M
a
r − a2

r2
(Ma

r −M b
r )
)
. (37)

By substituting Eqs. (31) and (32) into Eqs. (16) and (14), we obtain

[
ur

w

]

=
1

(1 − r0)J1

⎡

⎣ 4
( 2b2
κ1 − 1

− b1
κ2

κ1

)
r −4

( 2a2

κ1 − 1
+ a1

κ2

κ1

)
r

2b1r2 2a1r
2

⎤

⎦

[
N b

r − r0N
a
r

M b
r − r0M

a
r

]

+
2a2

(1 − r0) J2

[

−b7
r

2a6

r−2a6 ln r 2a1 ln r

][
Na

r −N b
r

Ma
r −M b

r

]

. (38)



422 Bo YANG, Weiqiu CHEN, and Haojiang DING

4 Three cases

4.1 FGM circular plate
We have r0 = 0 when a → 0. In this case, the annular plate becomes a circular plate with

radius b. It can be found from Eqs. (34)–(38) that

Nr = Nθ = N b
r , Mr = Mθ = M b

r , (39)
[
ur

w

]

=
2
J1

⎡

⎣ 2
( 2b2
κ1 − 1

− b1
κ2

κ1

)
r −2

( 2a2

κ1 − 1
+ a1

κ2

κ1

)
r

b1r
2 a1r

2

⎤

⎦

[
N b

r

M b
r

]

. (40)

4.2 Infinite FGM plate with circular hole
We also have r0 = 0 when b → ∞. Then, the annular plate becomes an infinite plate with

a circular hole of a radius a. Let N b
r = 0 and M b

r = 0. We find from Eqs. (34)–(38) that

Nr =
a2

r2
Na

r = −Nθ, Mr =
a2

r2
Ma

r = −Mθ, (41)

[
ur

w

]

=
2a2

J2

[

−b7
r

2a6

r−2a6 ln r 2a1 ln r

] [
Na

r

Ma
r

]

. (42)

4.3 Infinite FGM plate containing elastic inclusion
To investigate the problem of a plate containing an elastic inclusion, we propose to insert

an elastic inclusion of a radius a + ε into the hole of a radius a in the infinite plate. Here, ε
is a small quantity whose order is the same as some allowable displacement of the plate. The
friction between the inclusion and the plate is ignored. This is still an axisymmetric problem.

In the following, the physical quantities of the inclusion are distinguished by the superscript
(1) from those of the plate without any superscript. Thus, the radius of the elastic inclusion
becomes a+ ε+ u

(1)
r , and that of the plate is a+ ur, when the elastic inclusion is inserted into

the circular hole of the plate. Therefore,

ur − u(1)
r = ε, (43)

while the transverse displacement is continuous. Thus,
[
ur

w

]

−
[

u
(1)
r

w(1)

]

=
[
ε
0

]

. (44)

There are the resultant forces N0
r and M0

r acting on the interface between the inclusion and
the plate. Let r = a + ε, N b

r = N0
r , and M b

r = M0
r in Eq. (40). Let r = a, Na

r = N0
r , and

Ma
r = M0

r in Eq. (42). Equation (44) can be further expressed as

− 2

J
(1)
1

⎡

⎢
⎢
⎢
⎢
⎣

2
( 2b(1)2

κ
(1)
1 − 1

− b
(1)
1

κ
(1)
2

κ
(1)
1

)
(a+ ε) −2

( 2a(1)
2

κ
(1)
1 − 1

+ a
(1)
1

κ
(1)
2

κ
(1)
1

)
(a+ ε)

b
(1)
1 (a+ ε)2 a

(1)
1 (a+ ε)2

⎤

⎥
⎥
⎥
⎥
⎦

[ N0
r

M0
r

]

+
2a2

J2

[ −b7
a

2a6

a

−2a6 ln a 2a1 ln a

][ N0
r

M0
r

]

=

[
ε

0

]

. (45)
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The resultant forces N0
r and M0

r can be solved from Eq. (45). Replacing the resultant forces
Na

r and Ma
r with N0

r and M0
r in Eqs. (41) and (42), respectively, we can obtain the expressions

of the mid-plane displacements and the resultant forces of the infinite plate and further the 3D
displacement and stress fields.

5 Degeneration analysis

When the material of the elastic inclusion and the plate degenerates to the transversely
isotropic homogeneous one, we have

a2 = 0, a6 = 0, a7 = 0, b1 = 0, b5 = 0, k2 = 0.

Hence,

J
(1)
1 = 4a(1)

1 b
(1)
2 , J2 = a1b7. (46)

If the material is isotropic and homogeneous, we have

a1 =
2Eh
1 + v

= 4Gh, κ1 =
2

1 − v
, κ1 − 1 =

1 + v

1 − v
. (47)

5.1 Homogeneous circular plate
It can be found from Eq. (40) that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(1)
r =

(
1 − v(1)

)
r

2G(1)
(
1 + v(1)

)
N0

r

h
,

w(1) = − 3
(
1 − v(1)

)
M0

r

G(1)
(
1 + v(1)

)
h3
.

(48)

By taking

K =
3 − v

1 + v
, μ = G,

N0
r

h
= −P,

we find that the expression of the radial displacement in Eq. (48) is exactly the same as that
obtained by Muskhelishvili[1].
5.2 Infinite homogeneous plate with circular hole

It can be found from Eq. (42) that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ur = − a2

2Gr
N0

r

h
,

w =
6a2 ln r
Gh3

M0
r .

(49)

It can also be proved that the radial displacement given by Eq. (49) is identical to that
obtained by Muskhelishvili[1] by letting μ = G and N0

r /h = −P .
5.3 Infinite homogeneous plate containing elastic inclusion

Equation (45) can be rewritten as
[
a11 a12

a21 a22

] [
N0

r

M0
r

]

=
1
2

[
ε
0

]

, (50)
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in which
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11 = − 2

J
(1)
1

(
2b(1)2

κ
(1)
1 − 1

− b
(1)
1

κ
(1)
2

κ
(1)
1

)

(a+ ε) − ab7
J2

,

a12 =
2

J
(1)
1

(
2a(1)

2

κ
(1)
1 − 1

+ a
(1)
1

κ
(1)
2

κ
(1)
1

)

(a+ ε) +
2aa6

J2
,

a21 = − b
(1)
1

J
(1)
1

(a+ ε)2 − 2a6

J2
a2 ln a,

a22 = − a
(1)
1

J
(1)
1

(a+ ε)2 +
2a1

J2
a2 ln a.

(51)

It can be obtained from Eq. (50) that
[
N0

r

M0
r

]

=
ε

2 (a11a22 − a12a21)

[
a22

−a21

]

. (52)

When the material is homogeneous, we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11 = − 1

a
(1)
1 (κ(1)

1 − 1)
(a+ ε) − a

a1
,

a12 = 0, a21 = 0,

a22 = − 1

4b(1)2

(a+ ε)2 +
2
b7
a2 ln a.

(53)

Therefore, we arrive at

M0
r = 0, N0

r =
ε

2a11
. (54)

When the material is transversely isotropic, we have
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a
(1)
1 = 4c(1)66 h, a1 = 4c66h, κ1 =

c1
c0
,

c0 =
c66
c44

, c1 =
(
c11 − c213

c33

)
c−1
44 ,

(55)

which become for the isotropic materials as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a
(1)
1 = 4G(1)h, a1 = 4Gh, κ

(1)
1 =

2
1 − v(1)

,

κ
(1)
1 − 1 =

1 + v(1)

1 − v(1)
.

(56)

Hence, we have

2a11 = − (1 − v(1))G(a+ ε) +G(1)(1 + v(1))a
2hGG(1)(1 + v(1))

. (57)
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By substituting Eq. (57) into Eq. (54), we obtain

N0
r =

−2hGG(1)(1 + v(1))ε
(1 − v(1))G(a+ ε) +G(1)(1 + v(1))a

. (58)

The solution of this problem obtained by Muskhelishvili[1] is as follows:

P =
4μμ0ε

2μ0R+ μ(κ0 − 1)(R + ε)
. (59)

Note that we have κ0 = (3 − v0)/(1 + v0) for the plane stress problem, in which v0 is Poisson’s
ratio of inclusion. Therefore, Eq. (59) can be rewritten as

P =
2μμ0(1 + v0)ε

μ0(1 + v0)R + μ(1 − v0)(R + ε)
. (60)

Since G = μ, G(1) = μ0, v(1) = v0, a = R, and N0
r = −Ph, we can find that Eq. (58) gives

exactly the same result as Eq. (60).
We finally note that Eq. (52) is the solution of an FGM plate, and Eq. (54) corresponds to

a homogeneous plate, for which M0
r = 0, indicating that it is a plane stress problem.

6 Conclusion

Based on a generalization of the England-Spencer plate theory for a transversely isotropic
FGM plate, the elasticity solutions of FGM plates subject to loads applied on the cylindrical
boundaries of the plates for three different cases are obtained. They include a circular plate,
an infinite plate with a circular hole, and an infinite plate containing an elastic inclusion. In
the analysis, the material coefficients are allowed to vary arbitrarily in a continuous fashion
along the thickness of the plate. The analysis is based on the England-Spencer formulations
in terms of four analytic functions α(ζ), β(ζ), φ(ζ), and ψ(ζ). With these functions, the 3D
displacement and stress fields for a boundary-value problem are completely determined.

The obtained analytical solutions for the three considered cases exactly satisfy the equilib-
rium equations of the plate and the traction boundary conditions on the faces/interfaces of
the plate. Approximations are introduced only in the satisfaction of the boundary conditions
around the circumferential edge of the plate. The elasticity solutions of a transversely isotropic
(or isotropic) and homogeneous plate for the above three cases are also obtained through the
degenerate analysis.

Because no simplified hypotheses about the stress and displacement fields are introduced,
the present elasticity solutions can serve as a benchmark to access the validity and accuracy of
various simplified plate theories or numerical methods that may be used in the analysis of such
plates.
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