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Abstract Based on the fundamental equations of piezoelasticity of quasicrystals (QCs),
with the symmetry operations of point groups, the plane piezoelasticity theory of one-
dimensional (1D) QCs with all point groups is investigated systematically. The gov-
erning equations of the piezoelasticity problem for 1D QCs including monoclinic QCs,
orthorhombic QCs, tetragonal QCs, and hexagonal QCs are deduced rigorously. The
general solutions of the piezoelasticity problem for these QCs are derived by the opera-
tor method and the complex variable function method. As an application, an antiplane
crack problem is further considered by the semi-inverse method, and the closed-form so-
lutions of the phonon, phason, and electric fields near the crack tip are obtained. The
path-independent integral derived from the conservation integral equals the energy release
rate.
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1 Introduction

Quasicrystals (QCs) as a new structure of solid matter were discovered first on April 8,
1982, and were first reported by Shechtman et al.'l, who won the Nobel’s Prize in 2011. This
discovery has brought a significant breakthrough for condensed matter physics in recent years,
because QCs possess both quasi-periodic long-range translational symmetry and noncrystallo-
graphic rotational symmetry. According to the cut-and-projection method, a three-dimensional
(3D) quasilattice can be obtained by the selected projection of the respective six-dimensional
(6D) periodical lattice> 3. The one-dimensional (1D) (or two-dimensional (2D)) QCs are the
ones in which the atomic structures of the materials are quasiperiodic in one direction or two
directions, while are periodic in the other two directions or one direction. The 3D QCs show
quasiperiodicity in all the three directions. Since the discovery of QCs, great progress has been
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made in the elastic theory for many years/* 8. To solve the boundary value problems of elastic-
ity for QCs, the governing equations and the general solutions are of great importance. Liu et
al.l” investigated systematically the governing equations of the plane elasticity problems for 1D
QCs with all point groups, and obtained the general solutions. With the differential operator
matrix method, Chen et al.l'%), Wang!'!!, Wang and Pan['?/, and Gao et al.'3 analyzed the
general solutions of 3D elastic problems for 1D hexagonal QCs. For the plane elasticity problem
of 2D QCs with noncrystal rotational symmetry, Liu et al.'¥] presented the general solutions
of different point groups including dodecagonal, pentagonal, decagonal, and octagonal systems.
By virtue of the operator method, Gao et al.['! studied a theory of general solutions of the
plane problems for 2D octagonal QCs. Gao and Zhaol'¢! obtained the general solutions of the
3D problems for 2D QCs by introducing the displacement functions and using the operator
analysis technique. For the elastic problems of 3D QCs, Fan and Guol'” derived the final gov-
erning equation and the fundamental solution of plane elasticity of icosahedral QCs. Based on
the stress potential function, Li and Fan!'®l presented the general solution of plane elasticity for
icosahedral QCs. Gao and Zhaol'¥) made a general treatment of 3D elasticity for QCs by the
operator method. Gaol?” further simplified the governing equation of cubic QCs by introducing
a displacement function, and established the general solutions through an operator method.

QCs are sensitive to mechanical, thermal, electrical, magnetic, and optical effects. The
physical properties of QCs have been investigated intensively?’ 29, The independent and
non-vanishing first-order piezoelectric, piezomagnetic, pyromagenetic, photoelastic, and mag-
netoelectric coefficients are obtained®932, The development of QCs, such as the material
properties, the theories of elasticity, and some applications, has been addressed[3336],

Rao et al.[’? studied the electric effects of QCs on the piezoelasticity in QCs. Altay and
Dékmecil®” developed the 3D fundamental equations of piezoelasticity of QCs. As mentioned
above, only the elastic problems of QCs have been concerned. Recently, Li et al.?8! addressed
the 3D general solutions to static problems of 1D hexagonal piezoelectric QCs by introducing
two displacement functions and utilizing the rigorous operator theory. By introducing four
potential functions, Zhang et al.l) obtained the general solutions of the plane problems in 1D
orthorhombic QCs with the piezoelectric effect. However, the governing equations of the plane
piezoelasticity theory of other 1D QCs with all point groups and the general solutions have not
been done up to now. It is well-known that the governing equations and the general solutions
play an important role in solving the boundary value problems of the piezoelasticity of QCs,
because they not only have theoretical merits themselves, but also test the validity of various
approximate methods such as the finite element method and the boundary element method.
Meanwhile, they pave the way to the forthcoming study of dislocation, fracture, interface, and
similar problems for the piezoelasticity of QCs. Therefore, it is the purpose of this work to
investigate systematically the governing equations of the plane piezoelasticity of 1D QCs with
all point groups. With the help of the decomposition and superposition principles, the general
solutions are derived by the operator method and the complex variable function method.

2 Basic equations for piezoelasticity of QCs

In a fixed rectangular coordinate system z; (i = 1, 2, 3), the basic equations for the piezoe-
lasticity of QCs presented by Altay and Dékmeci®”) are as follows. The equilibrium equations
are

oiji =0, H;j; =0, D;;=0. (1)

The gradient equations are
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The constitutive equations are

0ij = Cijricrt + Rijriwr — exij B,
H;j = Riujen + Kijuwi — diij B, (3)

D; = €Lij€jk + dkijwjk + AijEj'

In the above equations, a comma denotes partial differentiation, and the repeated indices repre-
sent summation. o;;, €;5, and u; are the stress, the strain, and the displacement of the phonon
field, respectively. H;;, w;j, and w; are the stress, the strain, and the displacement of the
phason field, respectively. D;, E;, and ¢ stand for the electric displacement, the electric field,
and the electric potential, respectively. Cijki, Kijri, Rijki, €ijk, and d;ji, stand for the phonon
elastic, the phason elastic, and the phonon-phason coupling moduli, respectively. A;; stands for
the dielectric permittivity. The following reciprocal symmetry conditions hold:

{Cijkl = Cjirt = Cijik = Criij,  Rijr = Rjir,  Kijr = Ky, n
4

€ijk = Cikj, dijk = dikj,  Aij = Aji-

For stable materials, Cjjri, Kijri, and A satisfy the positive-semidefinite conditions as
follows:

Cijrinijner 2 0, Kijrimigne = 0, Aijming = 0 (5)

for non-zero vector n; and non-zero tensor 7;;.

For the piezoelasticity problems of 1D QCs, there are non-zero phonon displacements u,,
Uy, and u, phason displacement w, (w, = wy = 0), and electric potential ¢. Therefore, the
corresponding strains and electric fields are

. _ Oug . ~ Ouy . _ Ou,
o T oy T 9z

1 Ou,  Ouy 1 Oou, Ouy 1 Ou,  Ouy
Eyz_2<€)y+82)’ 5”_2<ax+az)’ 5”‘2(@*6:5)’

(6)

w 8wz w 7811)2 w 78wz
zYy — ay? zxr — ax7 zzZ az7

_ 0¢ _ 0¢ _ 0¢
E””__ax’ Ey oy’ EZ__(?Z

The above equation holds for the piezoelasticity of all 1D QCs. In this paper, we only con-
sider the piezoelasticity of 1D QCs, because among various QCs, 1D QCs are of particular
interest for researchers after the success of Merlin et al.[*”) in growing model systems, in which
quasiperiodicity was built up.

According to the symmetry operations of point groups*!), for the piezoelasticity of mon-
oclinic QCs with the point group m and the z-axis as a symmetry axis, we can obtain the
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constitutive equations as follows:

T
(U;E;E Oyy Ozz Oyz Ozg Ogy sz Hyz Hz;v D;E Dy Dz)

Cn Cr2 Cis 0 0 Cp B2 0 0 en 0 €31
Caa Cas 0 0 Cx Ry 0 0 e 0 es1

Css 0 0 Cs5 Rs O 0 €13 0 €33

Cy Cys O 0 Rs R4 0 €94 0

055 0 0 R7 R6 €15 0 €35
066 Rg 0 0 0 €26 0
K3 0 0 d13 0 d33

Symmetry Ky Ky 0 doy 0
Ky dis 0 dss
—r11 0 —kKis
—K99 0
—K33

(Eaw Eyy Ezz 26ys 2625 260y Wap Wys Wy — By — By — EZ)T7 (7)
where short notations are used for the phonon elastic constant tensors, i.e.,
1—-1, 22—2, 33—-3, 23—4, 31—-5, 12—6,

and Cjji; is denoted as C)q accordingly. There are 13 independent phonon elastic constants,
ie.,

Ci1 = Cr111, Cog = Ca02, (33 = C333s,
Ci2 = Cr122, Ci13=Cli133, (3 = Caass,
Cuqg = Ca323, Cs5 = C3131, Cps = Ci212,
Cys = Caz31, Cie = Cr112, Co6 = Ca12, (36 = C3312;
4 independent phason elastic constants, i.e.,
K1 = K131, K2 = K3232, K3 = K3333, Kq= K3132;
8 phonon-phason coupling elastic constants, i.e.,
{31 = Ry133, R = Raoss, R3 = R3szz3, R4 = Ra3si,
Rs = Rass2, Re = Rz131, R7 = R3132, Rg = Ri233;
15 independent piezoelastic constants, i.e.,
€11 = €111, €12 = €122, €13 = €133, €15 = €113,
€24 = €223, €26 = €212, €31 = €311, €32 = €322,
€33 = €333, €35 = €331, di13=d133, d33 = d333,
d2q4 = da23, dis =di13, d3s = d331;
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and 4 independent dielectric permittivities, i.e., K11, K22, k33, and k13. Thus, for the 1D
monoclinic QCs, there are 44 non-zero material constants in total.
From Eq. (7), we can obtain the corresponding stress-strain relations as follows:

Oze = Cl1€za + Craeyy + Cizezz + 2C1660y + Riw,. —enn By —e31E,

oyy = Cra€ae + Cooeyy + Coze.e + 20680y + Row.. — e12E, —e31F.,

022 = C136zz + Cozeyy + Cs3e. + 203660y + Raw,, — e13l; — e33l;,

0oy = 20446y + 2045620 + Rsw.y + Ryw.p — euEy,

Ozp = 204562y + 2055620 + Rrw,y + Rew.q — e15E; — ess B,

Ozy = C16€za + Co6Eyy + C36622 + 2C66E0y + Rew.. — e26Ey,

H.. = Ricgs + Roeyy + R3e., + 2Rgeyy + Kaw,, — disEy — dssE.,

H., =2Rse.y + 2Rre 0 + Kow.y + Kyw.z — dos By,

H.o =2R4e.y + 2Re€ 20 + Kaw,y + Kiw.y — disEy — dss B,

Dy = e11620 + €126yy + €136 + 2€15620 + d13W. + d15Wee + K11 By + K13 E2,

Dy = 2624€Zy + 26266my + d24(.«.)zy + KQQEy,

Dz = €31€zx + €32Eyy + €336z, + 26355zz + d33wzz + d35wzm + ’113Em + H33Ez-

The corresponding equilibrium equations to Eq. (1) are

002y n 002y n 00z 0

Ox Oy oz

doye  Ooyy 0oy,

Ox + Oy + 0z 0,
00.; 00,y 00,

Ox * Ay * 0z ’ )
OH..  OH.,  OH..

Ox Ay 0z
oD, 0D, 0D.

Or + dy + 0z 0

It is found from Egs. (6), (8), and (9) that there are 29 equations and 29 field variables including
4 displacements, 9 strains, 9 stresses, 3 electric fields, 3 electric displacements, and one electric
potential. Thus, the elastic equilibrium problem of piezoelasticity of 1D monoclinic QCs is more
complicated than that of 3D classic elasticity, 1D monoclinic QC elasticity and piezoelectric
materials. We will present a rigorous treatment of the problem in this work.

3 Governing equations of plane piezoelasticity of QC systems

3.1 Monoclinic QC
If there is a straight dislocation or a Griffith crack along the direction of the atom quasiperi-
odic arrangement and the polarized direction of the electric field along the z-axis, the deforma-
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tion is independent of the z-axis, i.e.,
a(-)

o = 0. (10)

Therefore, we have the following gradient equations and equilibrium equations in the absence
of the body forces of phonon and phason fields and the electric density:

. _ Oug . _ Ouy
zr — ox’ yy — (?y’
1 0u, _ 10u, 1

. . . (Bum_’_ﬁuy)
V2 20y T 2027 T 2\ gy oz /)’

_ Ow, _ Ow,
Wyz = 3y y  Wex = Oz )
0¢ 13J0)
E,=— s E, =— s
Or Y oy
00z 004y _o 00yy 0oy, 0
Ox Ay T Oz Ay ’
00,z 004y 0H., O0H,
12
Ox Oy 0, Ox Oy 0, (12)
oD, 0D, 0
Ox oy

The constitutive equation (8) can be simplified as follows:

Ozx = Cl1€2z + Craeyy + 2C 1660y — €11 Ey,

Oyy = Cr2840 + Caeyy + 20260y — €12E5,

02z = C1380z + Cozeyy + 203662y — €13y,

02y = 204482y + 2045620 + Rswzy + Ryw.o — €24 By,

020 = 204582y + 2055625 + Ryw.y + Rew.z — €15,

Ozy = C16€ze + C26eyy + 2C66€2y — €26 Ey, 3
H,, = Rieyy + Rocyy + 2Rge,y — disly, (3
H.y = 2R5e.y + 2Rre.p + Kow,y + Kyw,z — das By,

H.: = 2Rye.y + 2Ree20 + Kawzy + Kiwze — dis By,

D, = e11640 + €128yy + 2€15€25 + d15Wes + K11 By,

Dy = 2624€zy + 262651y + d24wzy + K/22Ey,

Dz = €31€z2 + €32Eyy + 2635€zm + d35wzm + ’113Ez~

Substituting the gradient equations in Eq. (11) into the constitutive equations in Eq. (13),
and then into the equilibrium equations in Eq. (12), we have the final governing equations in
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terms of the displacements and electric potential as follows:

0? 0? 0?

(Oll gp2 T Cee a9y +2C16 axay)um
2 82 2 82 82
+ (Clﬁ ap2 T Coag ay2+(012 + C66)8Iay>uy + (611 gg2 T €26 8y2>¢ =0,
92 2 2
(Cw O + Ca oy? +(Ch2 + Cee) (“)x(“)y)uI
82 2 62 a2¢
+ <C66 Ox? + 0 oy? +2C3 8I8y)uy + (e12 + €26) 0xdy =0,
2 2 2
<055 9e2 T Cu 0y + 2045 8w8y)uz

2 2 82 82 82 (14>

o
+ (B o+ Bs gyt (Ra+ R7)8wy)wz + (e15,,, +en 8y2)¢ =0,

2 2
0y? + (Ra+ Br) axay)”Z

02 02 02 02 02
+ (Kl ap2 T K> 9y +2K4 8:1:8y>w2 + <d15 oz2 Tt day 8y2)¢ =0,

o o ?u, o o
(611 922 + €26 8y2>uz + (e12 + ea6) D0y + (615 922 + €24 8y2>uz
0? 0? 0? 0?
+ <d15 o2 T day oy? )wz - (fill g2 T 22 8y2>¢ =0.

This is a phonon-phason-electric coupling elasticity problem, involving the displacements u,,
Uy, Uz, W, and the electric potential ¢.
3.2 Orthorhombic QC

For the orthorhombic QC with the point group 2mm, the increase in the symmetric elements
leads to

{016202620362045:07 Ry=R;=Rg =0, Ky=0, as)
€11 =ep=e13=¢€z =e35 =0, diz=d3zs =0, rK13=0.

Therefore, the number of the non-zero independent electro-elastic constants of 1D orthorhom-
bic QCs reduces to 28, i.e.,

Ch1, Ca2, C33, Cia, Ci3, Ca3, Cua, Css, Ces

for the phonon elastic constants, K7, K, and K3 for the phason elastic constants, Ry, Rs, R3,
R4, Rs5, and Rg for the phonon-phason coupling elastic constants,

€15, €24, €31, €32, €33, d33, do4, dis

for the piezoelastic constants, and k11, k22, and k33 for the independent dielectric permittivities.
With the superposition principle, we can decompose Eqgs. (11)—(13) and (15) into the following
two uncoupled problems.
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Problem I

Ogx = Cllg;uv + 0125yy7

Oyy = Cio€pa + C225yy7

Ozz = Cl3ezz + 0236yy7

Ogy = 20665zy7

sz = Rlezz + R25yy7 (16)
Dz = €31Egx T €32Eyy,

003z n 00y

0oye 00y,
Or dy +

=0, Ox Oy

:0,

B Ouy i Ou,

. Ouy . Ouy S 1( )

It is similar to a plane strain problem for orthorhombic crystals. The solution of Problem I
agrees well with that of the classical elasticity theory. Therefore, it is not given in this work.

Problem II

Oy = 20448y + Rsw.y — €24y,
02z = 2055820 + Rowzx — €15 E,
H,y =2Rse.y + Kow.y — das By,
H.. =2R¢e.0 + Kiwzy — disExz,
Dy = 2e15620 + diswzr + K11 Ey,

Dy = 262452y + d24wzy + 522Ey7

(17)
00 5 n 00y o, 0H .. n 0H, o, oD, n oD, —0,
Ox Jy ox Jy ox dy
~ 10u, ~ 10u,
5yz—28y’ 6zz_28$’
o — (“)wz w _ awz
yz = Ay ) I T
0o ¢
EI = — ) E - - .
ox Y dy

It is an anti-plane phonon-phason-electric coupling elasticity problem, involving only the dis-
placements u, and w, and the electric potential ¢.
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For Problem II, the governing equations turn into

0? 0? 0? 0? 0? 0?
(055 Ox? +Cu 3y2)uz * (RG ox? + B oy? )wz + (615 Ox? e Oy? ) ¢=0,
32 82 32 82 32 82
= 18
(Ra g2 T 8y2)uz - (K1 og2 T2 8y2)w2 - (dlsaxQ + day 8y2>¢ 0, (18)
32 2 2 32 32 82
(615 oz2 T o a;ﬁ)”z + <d15 o2 T ay2>w“ N (””agﬁ e 8y2)¢ =0

3.3 Tetragonal QC
For the tetragonal QC with the point group 4mm, besides Eq.(15), the number of new
symmetrical elements increases, i.e.,

Ci1 = Caa, Ci13=C2, Cu=0Cs5, R1=Ry, Rs5=Rg, "
{Kl =Ky, e31=e32, e€15=-enu, dis=du, K11 =K. 1
For Problem II, from Eq. (18), we can simplify the governing equations as follows:
CuVu. + RsVw, + e15V?¢ = 0,
RsV?u, + K1 V2w, + di5 V36 = 0, (20)
e15Viu, + disViw, — k11 V2 =0,
where V2 is the Laplace operator defined by
0? 0?
V2 = g2+ oy
3.4 Hexagonal QC
For the hexagonal QCs with the point group 6mm, we further have
Coo = (Cn1 — Ca). (21)
For Problem II, the governing equations are the same as Eq. (20).
4 General solutions of QC systems
4.1 Monoclinic QC system
The governing equation (14) can be rewritten as the following matrix equation:
DV =0, (22)

where V' = (ug, uy, us, w,, $)T, and D is a 5 x 5 differential operator matrix expressed by
D1y Dis D3 Dy Dis
Do Dos Dy Das
D= D33 Dss Dss |. (23)
Symmetry D4y Dys
Dss
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The elements in Eq. (23) are

2 2 2
Dy =C C 2C'
11 1 g2 + Ceo 0y + 206 0y’
2 2 2
D2 =Cis 92 + C 2 + (Cr2 + 066)895831’

D13 = D1y = Daz = Doy =0,

Dis =en 36‘)1;22 T €26 3(9;2’ Das = (612 + 626)3529’
0? 0 ’
Dy = Ceg 0g2 T Caz oy? + 2C% Dz’ (24)
2 2 2
D33 = Css D2 + Cyy 2 + 2045 00y’
2 2 0?
D34 = Re Ox2 + 1t Oy? (B + Br) dxdy’
2 2 0? 2 ?
D35 = e15 92 + e o2 Dys = Ky o2 + K> dy? + 2Ky Oxdy’
2 2 0? 9?
Dys = dys 922 + day dy?’ Dss = —/-@11(%2 — K22 92

The general solutions of Eq. (22) can be obtained by the operator method developed by Gao
and Zhaol'?!, Wang and Wang!*?, and Wang and Shil*3]. Due to the complexity, we do not give
them here. Among various 1D QCs, the special QCs including orthorhombic QCs, tetragonal
QCs, and hexagonal QCs are of particular interest for researchers. Therefore, we will give the
general solutions of these special QCs by the operator method or the complex variable function
method as follows.
4.2 Orthorhombic QC system

The solutions of Problem IT are given as follows by using the operator method. The governing
equation (18) is rewritten as the following matrix equation:

AU =0, (25)

where U = (u., w., )T, and A is a 3 x 3 differential operator matrix expressed by

82 2 2 2 32 32
Cs5 gpa T Cna a9y Re g o + 15 a2 o + e a9y
02 o 02 02
A= Ky oz2 T Ko 1 dis oz2 T daa 12 (26)
0? o
Symmetry TR o T 22 0y?

Let us introduce a 3 x 3 differential operator matrix B as the “adjoint matrix” of A such that

AB = BA = det(A)I, (27)
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where the components B;; of B are “algebraic complement minors” of A, i.e.,

By = _(Klaag; +K2$2><5116T2 +Ii2288y22> - <d15aax22 +d24aay22>2»

02 0? 0? 0?
Big = By = (Rs 92 + Rj 8y2) (Hll 92 + Koo 8y2>

+ (615;:2 +€24§;2)(d1586; +d2488y22)7

02 0? 02 0?
Biz = Bs1 = (R6 Oz + s 8y2) (d15 0x? e 8y2)

2 32 82 32 82 82

Boy — — (055 a2 +Cy 8y2> (Iill 92 + ka2 8y2> - (615 P + €24 2 )27

0? 0? 0? 0?
Bas = B3y = — (055 gz2 T Cua 8y2> (d15 o2 T daq 8y2>

+ <R6 a; + s a;) (615 88;2 e 88:2)’

By — (05558; +C44§;2)(K188; +K2§;2) - (Raa; +R5§;)2.

The determinant of A is defined by

where

a8 a8 a8 a8

det(A) :a8y6 +b8x28y4 +cax48y2 +d8:z6’

a = —Cy4K2k2 + 2Rsdasezs — Koe3, + Rikos — Cuadsy,

b= —CuKski1 — Cs5Kakar — CaaK1K22 + 2Rsdose15 + 2Red2ae24 + 2R5d15€24

— 2Ksease15 — Kie3, + Rek11 — 2ReRskiaa — Cssda, — 2Cusdaadys,

¢ = —Cs5Kak11 — CuaK1k11 — Cs5 K1 k22 + 2Redoae1s + Rsdiseis + Rediseas

+ 2Rgdageas + Rsdasers — Koels — 2Kie15e24 + 2ReRskiny + Rakao

— 2C55dagdrs — Caadss,

d = —C55K1/€11 + 2R6d15€15 - K16%5 + Réﬂll - C55d%5.

Let us introduce a displacement function F', which satisfies

ViV3ViF =0,

803

(31)
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where V? can be written as follows:

V2 =

v 0x? +

2 9y i=1,2, 3. (32)

In Eq. (32), s? (i = 1, 2, 3) are three characteristic roots of the following cubic algebra equation
of s%:

as® —bs* +¢cs* —d=0. (33)
The three roots expressed by a, b, ¢, and d exist a real one among them. Assume that s? is the

real root without loss of generality. Moreover, we further assume Re(s?) > 0.
Therefore, the general solutions of Eq. (25) can be obtained as follows:

u, = By F, w,= BpF, ¢=DB;3F. (34)

Take one of the general solutions of Eq. (34) as an example, i.e.,

U, = By F, w, = ByF, ¢ = B3k, (35)
or
O*F L O*F i O*F
U, = a a a )
Mot 2 92202 13 gyt
O*F L 0*F i 0*F (36)
W, = a a a )
ot 2 ox2oy? T T gyt
p 0*F N 0*F N 0*F
=a a a
81 5.4 32 9120y2 33 gy
where
a1 = Rek11 + eisdss,
a12 = Rekaz + Rsk11 + e1s5das + e24dss,
a13 = Rskaz + e21doay,
az1 = —Cszki1 — €35, a2z = —Cugkiog — €34, (37)

a2z = —Cs5K22 + Caak11 — 2e15€24,

az1=—Cssd1s + Reers, asz=—Caados + Rseaq,

a3y = —Cssdog — Cyadis + Reeoas + Rseqs.

From the work of Gao and Zhaol'6!, it can be proved that the above-mentioned general solutions
are complete in any limited domain in E3[%. According to the theorem, if the domain Q is
y-convex and F' follows that

ViViViF =0, FeqQ, (38)

then there exist displacement functions F; (¢ = 1,2, 3) in the three forms as follows:
Case 1
F=F +F+F; si#s3#s5. (39)
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Case 2
F=F +yF+F3 si=s5%#s3. (40)

Case 3
F=F +yF+y*F;, s1=s3=s2 (41)
In the above equations, F; (i = 1, 2, 3) satisfy the following second-order governing equations:

V2F; = 0. (42)

It is clearly seen that the complicated governing equations (18) can be simplified into several
partial differential equations of lower order by the operator method. We will deduce three
different forms of the general solutions of the anti-plane problem for the orthorhombic QC
system by considering the different cases of three characteristic roots.

For Case 1, when

51 # 55 # 55 # 51,
Egs. (32), (39), and (36) yield
O*F; O*F; O*F;
U= iy w, = 3 R =" oyt (43)
where
1 1 +
o =a —a a3,
113? 12 52 13
1 1
Bi = a4 —ax , +ass, (44)
S Si
Ly
i =a —a ass.
i 31 S;_l 32 312 33
For Case 2, when
s1= 53 # 53,
Egs. (32), (36), and (40) lead to
84F1 84F2 84F3 2&12 (93F2
U =AU +yoq et +a3 it + <4a13— 52 ) Y3
64F1 84F2 64F3 20,22 83F2
= Aoy — ) , 45
wy; = y +ybh y + B3 y +< a3 2 ) oy (45)
84F1 84F2 64F3 20,32 83F2
- dazs — ) .
p=m oy +ymn oy + 73 oy +( ass 2 ) oy

For Case 3, when

2_ 2 _ 2
81 = 82 = 53,



806 Jing YU, Junhong GUO, Ernian PAN, and Yongming XING

Egs. (32), (36), and (41) result in

v —ay 3;;1 +yoy 3(;;2 + o0 3;;3 n <4a13 3 23%12) 363;;2
+ <8algy — 421%”) 883;;3 + (12a13 - 2;%12) 882;;3»
w, = B 884;1 +yB 8;;2 + 426 8;;3 + (4(123 - 23%22) 85;2
(46)
 (sasy ) TL 4 (120 - 2 O
Y=m 8;;1 +ymn 8;;2 + ' 3;;:3 + <4a33 - 2;?2) 3;;;2

4.3 Tetragonal QC system

For Problem II, Eq. (20) is satisfied if u,, w., and ¢ are harmonic functions. This can be
achieved by letting u,, w,, and ¢ be the imaginary parts of the analytic functions U(z), W(z),
and ®(z), respectively, such that

u, =ImU(z), w, =ImW(z2), ¢=ImdP(z), (47)

where z = = + iy, and Im denotes the imaginary part of the complex function. The stresses
of the phonon field, the phason field, and the electric displacements can then be expressed as
follows:

0p> = Im(CyaU'(2) + RsW'(2) + e15®'(2)),
oy = Re(CyaU'(2) + RsW' (2) 4 €159/ (2)),
( )
( )

) )

) ) )
H.p = Im(RsU'(2) + K1 W' (2) + di5®' (2)
H., = Re(RsU'(2) + KaW'(2) + d159'(2)),

D, = Im(615U/(Z) + d15W/(Z) — I<611(I)/ z )7

(2)
Dy = R€(€15U/(Z) + d15W/(Z) - ﬁll@’(z)),

where Re is the real part of the complex function, and the prime indicates differentiation with
respect to the complex variable z.

It is found that the solution to Problem II of the hexagonal QC system is the same as that
of the tetragonal QC system.

5 Fracture mechanics of Griffith crack

To our interest, the phonon-phason-electric coupling anti-plane elasticity problem described
by Eq. (47) may bring new insight into the piezoelasticity scope of QCs.
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Consider a mode III fracture problem, for which a Griffith crack with the length 2a is
embedded in an infinite 1D hexagonal QC subjected to far-field phonon, phason, and electrical
loads (see Fig.1). The boundary conditions on the upper and lower surfaces of the crack are
free of the surface traction and the surface charge, i.e.,

oy, =0, Hy,=0, D,=0, |z]<a, y=0. (49)

(OJOJONOXONONOXONOJOXO)

®C¥)®®®®®®®%®%(UQ,H;,D§)

Fig. 1 Griffith crack in 1D hexagonal QCs subjected to far-field mechanical and electrical loads
Then, with Eq. (47), we can obtain the stresses and the electric displacements as follows:
0zr = Im(CyU'(2) + RsW'(2) + €159 (2)),

)

(
Oyz = RG(C44U/(Z + RgW/ z)+ 615(1)/(2
(

)

)
)
)

(50)
)

(2)

) (2)
H., =Im(R3U'(2) + KoW'(2) + di5®' (2
H., = Re(RsU'(z) + KoW'(2) + d15%'(2)),

D, = Im(615U/(Z) + d15WI(Z) — )\11@/(2)),
Dy = R€(€15UI(Z) + d15W/(Z) - /\11(I)I(Z))7

where Re is the real part of the complex function, and the prime indicates differentiation with
respect to the complex variable z. If the medium is loaded uniformly at infinity, we take a
semi-inverse method by assuming U(z), W(z), and ®(z) to be

U(z) = AV2? — a2, W(z) = BV 22 — a2, D(z) = —CV22 - a2 (51)
It can be seen that Eqgs. (47) and (49) are satisfied. The unknown real constants A, B and

C will be determined from the far-field loading conditions. Substituting Eq. (51) into Eqgs. (47)
and (50) yields

uy = Ay/rirgsin (01 ;92),
w, = By/rirgsin (91 ; 92), (52)
¢ =—Cy/r1resin (01 + 02),

2
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Opr = (C44A +R3B - 6150)\/7. ) sin (6‘ — 01 +02),

T 2

T1T2 2

0, +06
UyZ:(C44A+R3B—€15C)\/T COS(Q— 1+ 2),

01+ 6
Hzm = (R3A+ K2B — d150) \/7‘:7‘2 sin (9 — 1t 2),

6, + 0
sz:(R3A+KgB—d15C)\/T 2cos(e— 1t ),

D, = (e154+ di5B + )\110)\/7. sin (6‘ — b1+ 6‘2),

rir2

0, +90
Dy = (615A + d15B + )\110) \/,:;7‘2 COs (9 — ! 2),

where r and 6 are the coordinates defined in Fig. 2.

Yy

(€)]

P

6y 0 6,
/ ) )\

-a (0] a x

Fig. 2 Coordinate system at crack tip

(53)

By applying the far-field loading conditions, the constants A, B, and C' are obtained for the

following possible boundary conditions at infinity:

Case 1 op3 =7, HyY = H*®, D;°* = D> as 2> + y* — oo

A 044 R3 —€15 -t TOO
B = Ry K, —dis H™>
C eis dis  An D>

Case 2 0,9 =7, HyY = H>®, E° = E® as 2> + 3> — o0

e (8)-(5% B)((R)+(2)")

Case 3 090 =7°°, wi? =w™, DX = D> as 2> +y* — o0

_ AN _ [ Cu —es ) T Rs i~
B=w", <C><€15 /\11> D= ) " \as )Y )

(55)
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Case 4 o079 =7, wpS =w™, B = E™ as 2% +y* — o0
o] o0 1 o0 o] o0
B=w> C=E* A= (7°° = R3w™ + e15E°) . (57)
Cus

Case 5 7p0 =260 =7, Hyg = H®, D* = D™ as 2° + 3> — o0

-1
s B\ _( Ky —dis H> R3 '\
e ()= (i ) ((52)-(&)m) o
Case 6 7,2 = 2ep2 =7, Hyo = H®, E° = E* as 2 + y* — o0

1
A=v, C=F% B= . (H*-Ry™ +disE>). (59)

Case 7T 7y: =260 =7, wy; =w™, Dy = D> as 22 +y? — o0

1
A=~ B=w> (= N (D> — e157%° — d15w0™). (60)
11
Case 8 7p2 =260 =79, wy? =w™, E° = E™ as 2% + y* — oo
A=~ B=w> (C=E%. (61)

Evaluating the solution (53) near the right crack tip and extending the traditional concept
of stress intensity factors to other field variables, we have

Kﬁ si O K”S cos 01
rz — — m ., z = ,
7 V27 9 T V27 2
S S
Wez = — KJ_ sin 01 y  Wyz = KJ_ COs 917
217y 2 V271 2
K 0 K 0
E,=— Eogin ! , By = Eocos ! ,
V21 2 \/2mry 2 (62)
62
11 11
Ogpr = — K” sin o Oyr = K” cos o
i V2mry 27 TV onr 27
H.,,=— KEI sin 01 H,, = Kiﬂ cos 01
= V2mry 2’ oo /2mr 27
D, =— Kp sin o D, = Kp cos o1
’ Vorry 20 YT 2 2’

where K ﬁ and K ﬁH denote the strain factor and the stress intensity factor of the phonon field,
respectively. Ki and K Ifl stand for the strain factor and the stress intensity factor of the
phason field, respectively. Kg and Kp are the electric field factor and the electric displacement
intensity factor, respectively. For this problem, these field intensity factors have the following



810 Jing YU, Junhong GUO, Ernian PAN, and Yongming XING

forms:

Kﬁ = Ay/ra = v*°V/7a,
KE = Byrma = w™vra, Kg=Cv/ra=E>\/na,
Kﬁn =C44KE+R3KE —e15Kg = 7°°/7a, (63)

KM= RyKi} + K3 K — dis K = H®/ma,

KD = 615Kﬁ + d15KJS_ + )\11KE = DOO\/TFCL.

For this particular problem, the field variables have the same crack-tip behavior as the clas-
sical mode III fracture problem. If all electrical quantities are made to vanish, the present
solutions can be reduced to the solutions of 1D hexagonal QCs[36!. If all the phason field quan-
tities vanish, the present solutions can be reduced to the solutions of piezoelectric materials!*4).
It can be seen from Egs. (62) and (63) that the stresses of the phonon field, the phason field,
and the electric displacement are uncoupled with each other. Further, the field intensity factors
corresponding to the field variables used at infinity are independent of the material constants,
and are uncoupled with each other. Therefore, we will consider the energy release rate in the
characterizing defects subjected to more than one field loading. For this, we firstly derive a
conservative integral. Mariano and Planas!*®! pointed out that the phason tractions at the sur-
face of the QC are null because we do not know any loading device that is able to use non-zero
phason tractions at the external boundary of a quasicrystalline body. In this work, we only
consider the phason tractions similar to the phonon tractions from the theoretical point of view.

For an antiplane shear crack in other 1D QCs, the solutions can be obtained to utilize the
rigorous operator theory!3% 39

6 Conservative integral

Let us define an energy function F' defined by

1
F = 2(Uij5ij + Hijwij — DZEZ) (64)
Substituting Eq. (3) into Eq. (64), we have
1 1 1
F = _Circijens + Kijniwijwr — _XNijEiE;
2 2 2
+ Rijricijwr — ekij€ij Br — diijwij Eg. (65)

If the QC material is homogeneous and is free of any defects, then Eq. (65) becomes
Fp = Cijruijpuk + Kijriwi jpwrg — NijEi pEj + Rijrati jpwe

+ Rijki Wi, jWk,ip — €kijWi,jp Lk — €ijuij By p

- dkijwi,jpEk - dkijwi,jEk,p- (66)
With the help of Eq. (3), Eq. (66) can be further written as
Fp = oijuijp + Hijwi jp — DiEip. (67)

Now, let us consider the following integral:

I, = / (Féjp — oijuip — Hijwip + DjEy) ;dV, (68)
Q
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where I, denotes the pth component of the conservation integral, and d;, is the Kronecker delta.
With Eq. (1), we can rewrite Eq. (68) as follows:

I, = /Q (Fp = 0ijtip; — Hijwip; + DiEp ;)dV. (69)
Moreover, according to the divergence theorem, Eq. (68) turns into
I, = / (F(Sjp - crl-jui’p - Hijwi,p + DjEp)TLde, (70)
s

where n; denotes the nj-direction component of the unit normal vector n of a closed surface
S (n directs towards the environment). It is found from Egs. (68) and (70) that I, = 0. Thus,
for any closed surface S in a homogeneous material, the following relation holds:

I, = / (F(SJ — OijUip — Hijwi,p + DjEp)TLde =0. (71)
S

Therefore, Eq. (71) is called the path-independent integral for the linear piezoelasticity of QCs.
The z-component of I, is the J-integral of fracture mechanics of the piezoelasticity of QCs.

It is seen from Eq. (65) that the energy function F is not positive definite. We further define
an internal energy density W that represents the internal energy per unit volume as follows:

1
W = 2<Uij5ij + Hijwij + Di E;)
— F + D,E

1 1 1
= 2Cijkl5ij5kl + 2Kijklwijwkl + 2)\ijEiEj + Rijricijwi. (72)

7 Energy release rate

The path-independent integral derived earlier can be used to obtain the energy release rate
for the mode III piezoelasticity fracture problem of QCs. Denote J to be the x-component of
the conservation integral I,. Then, the path-independent integral takes the following form:

J=1,= / (FTL;E — OijNjUj e — Hijnjwi)m + DJTLJE;E)dS (73)
S

Using the solution obtained previously, the J-integral can be obtained by evaluating Eq. (73)
on a vanishingly small contour at a crack tip as follows:
111 7S 7S _
:KH Kj+K['K? - KpKg (74)
5 .
This result can also be obtained by considering the virtual crack closure integral as follows:

1 9
G = lim / (oyz(x +a, O)u.(zr+a—0, 0)
§—0 6 0

+Hy.(x+a, Owi(z+a—96, 0)+ Dy(z+a, 0)p(z+a—24, 0))de

1
= 2(KﬁHKﬁ+KiHKJS_ —KDKE). (75)
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It is clear that due to the linear piezoelasticity of QCs, for the purely elastic and piezoelectroe-
lastic cases, the value of the J-integral is identical to the energy release rate G, i.e.,

J=G. (76)

Substituting Eq. (63) into Eq. (75), the energy release rate can be expressed by the field intensity
factors as follows:

1 Cu Rz —eis
G = 2(K|$, K%, Kg)| Rs Ky —dis | (K], K}, Kg)"
—e15 —dis  —A11
-1
oo Cu Bz e I g0 T
SO K Ko) [ Ry Ko dig (K", K1, Kp)", (77)
ers dis  —Arl

which indicates that the energy release rate depends not only on the field intensity factors
but also on the material constants. Thus, the energy release rate can be used as the fracture
criterion for the piezoelasticity of QCs. If there is no applied electric loading at infinity, i.e.,
D> =0 or E*® = 0, Eq.(77) reduces to the results of 1D hexagonal QCs6l. If there is no
applied phason field at infinity, i.e., HS® = 0 or w® = 0, Eq.(77) reduces to the results of

2y
piezoelectric materials!4.

8 Conclusions

Based on the fundamental equations of piezoelasticity of QCs, the governing equations of
plane piezoelasticity problems for 1D QCs with all point groups are investigated systematically
with the symmetry operations of point groups. The equilibrium problem of piezoelasticity of
1D QCs is more complicated than that of 3D classical elasticity, 1D QC elasticity, and purely
piezoelectric materials. When the electric field is neglected, the obtained governing equations
in this paper are identical to the governing equations of the plane elasticity problems for the
corresponding QCs!. If the phason field is not considered, the present governing equations
can be reduced to the results of piezoelectric materials!®*®). The general solutions of the plane
piezoelasticity problems for 1D QCs with all point groups are derived by the operator method
and the complex variable function method. For some special QC systems such as orthorhombic
QCs, tetragonal QCs, and hexagonal QCs, the plane piezoelasticity problem can be decomposed
into two uncoupled problems, i.e., the classical plane strain elasticity problem of conventional
crystals and the phonon-phason-electric coupling anti-plane elasticity problem of 1D QCs.

As an application, a mode III piezoelasticity fracture is formulated, and the solutions of the
phonon, phason, and electric fields near the crack tip are obtained by the semi-inverse method
for the case of out-of-plane mechanical and in-plane electrical loadings. The stresses of the
phonon field, the phason field, and the electric displacements at the crack tip show traditional
square root singularities. Among the phonon field, the phason field, and the electrical field, any
applied load alone cannot cause the singularities for the other two fields. The path-independent
integral derived from the conservation integral equals the energy release rate, which can be used
as the fracture criterion. The present results can be reduced to the earlier theories of elasticity
of QCs and piezoelectric materials, which pave the way to the forthcoming study of dislocation,
fracture, interface, and similar problems of both elasticity and piezoelasticity of QCs.
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