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Abstract Based on the theory of complex function and the principle of homoge-

nization, harmonic dynamics stress of a radially infinite inhomogeneous medium with a

circular cavity is investigated. Due to the symmetry, wave velocity is assumed to have

power-law variation in the radial direction only, and the shear modulus is constant. The

Helmholtz equation with a variable coefficient is equivalently transformed into a standard

Helmholtz equation with a general conformal transformation method (GCTM). The dis-

placements and stress fields are proposed. Numerical results show that the wave number

and the inhomogeneity parameter of the medium have significant effects on the dynamic

stress concentration around the circular cavity. The dynamic stress concentration factor

(DSCF) becomes singular when the inhomogeneity parameter of medium is close to zero.
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1 Introduction

The problem of elastodynamics for inhomogeneous medium is of great interest in the wave
motion field. On the basis of complicated mathematical derivations, a great number of works
have appeared, with the inhomogeneity of medium varing continuously along one-dimensional
direction only, i.e., the depth-dependent variation, axial symmetric variation, and radial varia-
tion according to an exponential or a power law. Axially symmetric problems of inhomogeneous
medium have attracted growing attention in recent years due to their wide applications in many
fields such as electromagnetism, acoustics, and elastic mechanics. Meanwhile, axially symmet-
ric problems are typical cases for inhomogeneous hollow cylinder, circular functionally graded
material (FGM) disk, circular tube with inhomogeneous coating, infinite plate with a circular
hole, etc.

Axially symmetric problems of inhomogeneous medium in electromagnetic field were stud-
ied by Van and Wood[1] by using the time-domain finite element method. The static Maxwell
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system with an axially symmetric dielectric permittivity and complete systems of its solution
was constructed in Ref. [2]. Additionally, for acoustic propagation, a polynomial approach[3–4]

was adopted to discuss guided waves in an inhomogeneous elastic body with the material
properties varying in the direction of the thickness according to a known radial variation law.
Baron[5] studied the influence of a tubular waveguide on the propagation of elastic waves in
an anisotropic hollow cylinder with elastic properties (stiffness coefficients and mass density)
continuously varying in the radial direction. While the density and shear modulus vary ex-
ponentially along the x-direction in the same form, the dynamic stress concentration by the
anti-plane SH waves around the circular cavity in a semi-infinite FGM was investigated by
Fang et al[6]. The same method was extended to study the scattering problems by a cylindrical
inclusion in the functionally graded or piezoelectric materials[7–8]. Furthermore, the boundary
element method (BEM) was an efficient numerical method to study the anti-plane dynamic
analysis around the hole and crack under SH waves in the functionally graded piezoelectric
medium[9], which was first developed by Monalis[10] for the problems of scattering of elastic
waves by circular cavities in inhomogeneous elastic medium.

The analogous problems for radially inhomogeneous medium are part of what is known to
deal with elastic mechanic problems. Greif and Chou[11] investigated the transient response of a
thick-walled cylinder or plate subjected to an axially symmetric time-dependent pressure at an
internal or external surface. Rvachev et al.[12] evaluated axially symmetric problem of elasticity
theory for an inhomogeneous cylinder by employing the R-functions in order to find approximate
solutions for inhomogeneous finite bodies. Wang and Gong[13] obtained a theoretical solution for
the basic equation of axisymmetric problems in elastodynamics, which satisfies inhomogeneous
boundary conditions. An axially symmetric contact problem of pressing an absolutely rigid
ball into an inhomogeneous half space formed by a homogeneous base and an inhomogeneous
surface layer was presented in Ref. [14]. Tarn and Chang[15] studied the torsion of elastic circular
bars of radially inhomogeneous, cylindrically orthotropic materials. When shear modulus and
the wave speed were different in radial and regular directions, Boström et al.[16] considered
the propagation of horizontally polarized shear waves in a radially inhomogeneous anisotropic
medium under a point source or a plane wave.

The radial stress distribution for axisymmetric problems around the inhomogeneous cylin-
der, where the medium properties vary in the radial direction, has been received considerable
attention in recent years. For exponential or power law Young’s modulus and constant Poisson’s
ratio, the plane axisymmetric problem for a radially inhomogeneous circular was analyzed in
Ref. [17]. When Young’s modulus varies in the radial direction with power law and Poisson’s
ratio was constant, Sburlati[18] presented the stress concentration factor around an inhomoge-
neous annular ring made of FGM in an isotropic homogeneous plate. By assuming that material
properties (including the mechanical and electrical properties) vary in the thickness direction,
an analytical-numerical method was presented by Han and Liu[19] for analyzing dispersion and
characteristic surface of waves in a circular cylinder made of functionally graded piezoelectric
material. Considering the power law variation of elastic and viscoelastic parameters, Acharya
et al.[20] investigated radial displacement and relevant stress components in inhomogeneous,
isotropic and viscoelastic medium.

Recently, interests on stress concentration analysis around circular cavity in graded function-
ally material varying radially have significantly increased. With regard to a functional graded
material plate with a circular cavity, Zhang et al.[21] provided an exact thermal stress solution
for the material properties and applied temperature varying arbitrarily in the radial direction.
Afsar and Go[22] studied the thermoelastic field in a thin circular FGM disk with material
properties exponentially varying in radial direction only by using the finite element method.
Kubair and Bhanu-Chandar[23] investigated the effect of the material property inhomogeneity
on the stress concentration factor due to a circular hole in functionally graded panels. Moham-
madi et al.[24] discussed the stress concentration factor around a hole subjected to the uniform
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biaxial tension and pure shear. There was a constrain condition that both Yong’s modulus and
Passion’s ratio were exceptional functions. In case of variation of radial arbitrary elastic prop-
erties, Yang et al.[25–26] investigated the two-dimensional (dynamic) stress distribution around
a circular hole under arbitrary loads by using the method of piece-wise homogeneous layers.

This paper aims to present an analytical solution for the dynamic stress concentration around
a circular cavity in a radially inhomogeneous medium. Here, the inhomogeneity of medium is
reflected by the variable wave number which varies along the radial direction with a power
law variation and the shear modulus is constant. Based on the homogenization principle, the
Helmholtz equation with a variable coefficient can be converted to the standard Helmholtz
equation by using the general conformal transformation method (GCTM). The dynamic dis-
placement and stress fields are determined in the complex coordinate systems by using the
complex function method[27]. Numerical results are given to discuss the effects of wave number
and inhomogeneity parameter of medium on the dynamic stress distribution around the circular
cavity.

2 Description of inhomogeneity

An infinite inhomogeneous medium with a circular cavity of radius a is shown in Fig. 1.
The origin of the polar coordinate system is assumed to be located at the center of the cavity.
The elastic medium is inhomogeneous and isotropic. The inhomogeneity of medium varies
continuously in the radial direction and approaches uniform values at distance far away from the
circular cavity and the shear modulus is constant. The time harmonic elastic waves propagate
with the incident angle α in radially inhomogeneous medium. According to a power law, the
variable wave velocity is assumed as

c(r) =
c0

2β
r1−2β , (1)

where c0 is the reference wave velocity, and β is the inhomogeneity parameter of medium which
stands for the spatial variation of velocity in the radially inhomogeneous medium.

Fig. 1 Model of radially inhomogeneous elastic medium with circular cavity
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3 Governing equation

By supposing harmonic response and neglecting body force, the governing equation for
elastic waves problem is a Helmholtz equation with a variable coefficient

∇2ϕ(x ) + k2(x )ϕ(x ) = 0, (2)

where x = (x, y) is the position vector, ∇2 is the Laplacian, k = ω/c, c =
√

μ/ρ, k is the wave
number, ω is the circular frequency of the displacement ϕ, c is the shear wave velocity, and ρ
and μ are the mass density and the shear modulus of the inhomogeneous medium, respectively.

(2) written in the cylindrical coordinates system (r, θ, z), where the z-axis is the axis of the
cylindrical cavity, takes the form

r2 ∂2ϕ

∂r2
+ r

∂ϕ

∂r
+

∂2ϕ

∂θ2
+ r2k2 (r, θ)ϕ = 0. (3)

In this work, we focus on a two-dimensional Helmholtz equation with the condition of axial
symmetry of the velocity about the z-axis. On the base of the relation between k and c, (1)
can be expressed as follows:

k (r) = k0 · 2βr2β−1, (4)

where k0 = ω/c0 is the reference wave number. Thus, (3) can be written as

∂2ϕ

∂r2
+

1
r

∂ϕ

∂r
+

1
r2

∂2ϕ

∂θ2
+ 4β2r2(2β−1)k2

0ϕ = 0. (5)

By introducing the complex variable system z = reiθ, (5) becomes

∂2ϕ

∂z∂z̄
+ β2 (zz̄)2β−1 k2

0ϕ = 0. (6)

In order to homogenize the Helmholtz equation with variable coefficient, the conformal
transformation relation is introduced,

ζ = z2β, ζ̄ = z̄2β. (7)

Substituting (7) into (6) yields the governing equation

∂2ϕ

∂ζ∂ζ̄
+

1
4
k2
0ϕ = 0. (8)

Note that the above equation corresponds to the standard the Helmholtz equation in the map-
ping plane.

4 Displacement fields and boundary condition

4.1 Forms of displacement fields
According to (8), the general solution of the scattered fields resulting from a circular cavity

in an inhomogeneous infinite medium can be written as follows:

ϕ(s)
(
ζ, ζ̄

)
=

∞∑
n=−∞

AnH(1)
n (k0 |ζ|)

( ζ

|ζ|
)n

e−iωt. (9)
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In the complex coordinate system (z, z̄), the form of scattering wave can be expressed as

ϕ(s) (z, z̄) =
∞∑

n=−∞
AnH(1)

n

(
k0

∣∣z2β
∣∣)( z2β

|z2β |
)n

e−iωt, (10)

where An are undetermined coefficients, and H
(1)
n (·) is the first kind Hankel function of the

nth order.
Due to the axially symmetry of the problem, we consider the case that α = 0 only. In the

complex coordinate system (ζ, ζ̄), the form of incident wave can be given by

ϕ(i) = ϕ0 exp(i(k0(ζ + ζ̄)/2 − ωt)), (11)

where ϕ0 is the amplitude of incident wave.
We note that (11), as an expression of incident waves, satisfies the transformed the Helmholtz

equation (e.g., (8)). The amplitude of ϕ(i) in inhomogeneous medium is equal to the reference
amplitude ϕ0, while the phase angle is different from that in reference homogeneous medium
due to the conformal transformation, which reflects the inhomogeneity of medium.

The whole wave field in an inhomogeneous infinite medium is the superposition of the
incident wave and the scattering wave, which can be written as

ϕ = ϕ(i) + ϕ(s). (12)

4.2 Expressions of stress components
In cylindrical coordinate systems (r, θ, z), the constitutive relations between stress compo-

nents and the displacement are shown to be

τrz = μ
∂ϕ

∂r
, τθz = μ

1
r

∂ϕ

∂θ
. (13)

In complex coordinate systems (z, z̄), the corresponding stress components can be expressed as

τrz = μ
(∂ϕ

∂z
eiθ +

∂ϕ

∂z̄
e−iθ

)
, (14)

τθz = iμ
(∂ϕ

∂z
eiθ − ∂ϕ

∂z̄
e−iθ

)
. (15)

Similarly, in the complex plane ζ, (14) and (15) can be written as

τrz = 2μβ
(∂ϕ

∂ζ
z2β−1eiθ +

∂ϕ

∂ζ̄
z̄2β−1e−iθ

)
, (16)

τθz = i2μβ
(∂ϕ

∂ζ
z2β−1eiθ − ∂ϕ

∂ζ̄
z̄2β−1e−iθ

)
. (17)

By substituting (11) into (14) and (15), the stress components of incident wave are

τ (i)
rz = iμβk0ϕ0

(
z2β−1eiθ + z̄2β−1e−iθ

)
exp

( ik0

2
(
ζ + ζ̄

))
, (18)

τ
(i)
θz = −μβk0ϕ0

(
z2β−1eiθ − z̄2β−1e−iθ

)
exp

( ik0

2
(
ζ + ζ̄

))
. (19)

Substitution of (9) into (16) and (17) leads to the stress components of scattering wave

τ (s)
rz =μβk0

∞∑
n=−∞

An

(
H

(1)
n−1(k0 |ζ|)

( ζ

|ζ|
)n−1

z2β−1eiθ−H
(1)
n+1 (k0 |ζ|)

( ζ

|ζ|
)n+1

z̄2β−1e−iθ
)
, (20)

τ
(s)
θz =iμβk0

∞∑
n=−∞

An

(
H

(1)
n−1(k0 |ζ|)

( ζ

|ζ|
)n−1

z2β−1eiθ+H
(1)
n+1 (k0 |ζ|)

( ζ

|ζ|
)n+1

z̄2β−1e−iθ
)
. (21)
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4.3 Boundary condition
Without loss of generality, the case that the circular cavity is free of traction is investigated.

The boundary condition is that the radial shear stress is equal to zero, i.e.,

τrz = τ (i)
rz + τ (s)

rz = 0, |z| = a. (22)

Substituting (18) and (20) into (22) yields

∞∑
n=−∞

AnEn = E, (23)

where

En = H
(1)
n−1 (k0 |ζ|)

( ζ

|ζ|
)n−1

z2β−1eiθ − H
(1)
n+1 (k0 |ζ|)

( ζ

|ζ|
)n+1

z̄2β−1e−iθ, (24)

E = −iϕ0

(
z2β−1eiθ + z̄2β−1e−iθ

)
exp

( ik0

2
(
ζ + ζ̄

))
. (25)

Multiplying both sides of (23) with e−imθ and integrating on the interval (−π, π), we find An

defined infinity algebraic equation set as follows:

∞∑
n=−∞

AnEmn = Em, m = n = 0,±1,±2, · · · , (26)

where

Emn =
1
2π

∫ π

−π

Ene−imθdθ, Em =
1
2π

∫ π

−π

Ee−imθdθ. (27)

5 Dynamic stress concentration factor (DSCF)

In this paper, the DSCF is defined as the ratio of the stress τθz (induced by total displacement
field) to the stress τ0 (induced by incident wave). For elastic waves, the DSCF is given by

τ∗
θz = |τθz/τ0| , (28)

where

τ0 = μβk0ϕ0. (29)

Substituting (19) and (21) into (28) yields the final expression as follows:

τ∗
θz = − (

z2β−1eiθ − z̄2β−1e−iθ
)
exp

( ik0

2
(
ζ + ζ̄

))

+
i

ϕ0

∞∑
n=−∞

An

(
H

(1)
n−1 (k0 |ζ|)

( ζ

|ζ|
)n−1

z2β−1eiθ

+ H
(1)
n+1 (k0 |ζ|)

( ζ

|ζ|
)n+1

z̄2β−1e−iθ
)
.

(30)
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6 Numerical results and discussion

In order to highlight the capability of the present approach for dynamic stress concentration
around a circular cavity in the radially inhomogeneous medium, the numerical calculations are
provided by truncating the set of infinite algebraic equations. Obviously, the accuracy of the
numerical results is dependent on the choice of n. Here, we truncate the infinite matrix to
n = 9, where the accuracy can reach 10−18. Meanwhile, the following dimensionless variables
are adopted: the reference wave number is k0a, and the inhomogeneity parameter of medium
is βa.

The distributions of the DSCF around the circular cavity in radially inhomogeneous medium
are shown in Figs. 2–5 for different inhomogeneity parameter of medium βa = 0.1, 0.2, 0.3, and
0.4. It shows that the maximum of the DSCF is at θ = π when inhomogeneity parameter
of medium tends to zero and the hoop stress distributions are symmetric with respect to the
x-axis. As inhomogeneity parameter of medium increases, the maximum of the DSCF gets close
to θ = ±π/2 except the case that dimensionless wave number k0a = 2. It is interesting that the
fluctuation of the DSCF appears with the inhomogeneity parameter of medium βa increasing
in the illumination region.

Fig. 2 Distribution of DSCF around circu-
lar cavity with inhomogeneity pa-
rameter of medium (βa=0.1)

 

Fig. 3 Distribution of DSCF around circular
cavity with inhomogeneity parameter of
medium (βa=0.2)

 

Fig. 4 Distribution of DSCF around circu-
lar cavity with inhomogeneity pa-
rameter of medium (βa=0.3)

Fig. 5 Distribution of DSCF around circular
cavity with inhomogeneity parameter of
medium (βa=0.4)

Figure 6 indicates the distribution of the DSCF around the circular cavity in radially in-
homogeneous medium with inhomogeneity parameter of medium βa = 0.5, which corresponds
to the case of homogeneous reference medium. The numerical results agree with the results of
Pao and Mow[28] perfectly.
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As mentioned in Figs. 7–9, the distributions of the DSCF around the circular cavity in
radially inhomogeneous medium with inhomogeneity parameter of medium βa = 0.6, 0.7, and
0.8 are described. As expected, the hoop stress distributions are symmetric with respect to
the x-axis. The DSCF increases with reference wave number k0a increasing and the increasing
degree of the DSCF at the position 2π/3 < θ < 4π/3 is more evident than that at the position
−π/2 < θ < π/2. It is interesting to note that the fluctuation of the DSCF appears with the
inhomogeneity parameter of medium βa increasing in the illumination region.

Fig. 6 Distribution of DSCF around circu-
lar cavity with inhomogeneity pa-
rameter of medium (βa=0.5)

Fig. 7 Distribution of DSCF around circular
cavity with inhomogeneity parameter of
medium (βa=0.6)

Fig. 8 Distribution of DSCF around circu-
lar cavity with inhomogeneity pa-
rameter of medium (βa=0.7)

Fig. 9 Distribution of DSCF around circular
cavity with inhomogeneity parameter of
medium (βa=0.8)

Figure 10 demonstrates the DSCFs versus inhomogeneity parameter of medium at θ = π/2.
The distribution of the DSCF achieves the maximum when inhomogeneity parameter of medium
βa = 0.65. It is interesting that the fluctuation of the DSCF appears sequentially for different
k0a with βa increasing. Note that the greater the reference wave number is, the more evident
the fluctuation is.

Analogously, Fig. 11 shows the DSCFs versus dimensionless wave number at θ = π/2. The
fluctuation of the DSCF is evident while inhomogeneity parameter of medium vary in the range
0 < βa < 0.5. On the contrary, the fluctuation of the DSCF is slight for 0.5 < βa < 0.8. It is
interesting to note that for inhomogeneity parameter of medium βa = 0.8, the fluctuation trend
of the DSCF is similar to the case of βa = 0.5 corresponding to the homogeneous reference
medium.
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Fig. 10 DSCFs versus inhomogeneity pa-
rameter of media (θ = π/2)

Fig. 11 DSCFs versus dimensionless wave num-
bers (θ = π/2)

7 Conclusions

Based on the complex function theory, the present paper evaluates the dynamic stress con-
centration around a circular cavity in a radially inhomogeneous medium subjected to elastic
wave by using the GCTM. The medium is assumed to have power variation of inhomogeneity in
radial direction only and the shear modulus is constant. According to the homogenization prin-
ciple, the Helmholtz equation with a variable coefficient is reduced into the standard Helmholtz
equation. The general solutions of the scattering field are obtained and the dynamic stress
distribution induced by a circular cavity is discussed. The numerical results reveal that inho-
mogeneity parameter of medium and wave number have great influence on the DSCF around
the circular cavity. Thus, the wave fields in radially inhomogeneous medium can be controlled
and optimized by controlling these parameters.
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