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Abstract A charged spacecraft is subject to the Lorentz force when it orbits a central

body with a magnetic field. The induced Lorentz force provides a new mean of propel-

lantless electromagnetic propulsion for orbital control. Modeling the Earth magnetic field

as a tilted dipole that co-rotates with the Earth, this paper develops a nonlinear dynami-

cal model that describes the relative motion of the Lorentz spacecraft about an arbitrary

reference orbit. Based on the proposed dynamical model, feasibility of Lorentz-propelled

rendezvous with no restrictions on the initial states is investigated. The rendezvous

problem is then formulated as an optimal control problem, and solved with the Gauss

pseudospectral method (GPM). Numerical simulations substantiate the validity of pro-

posed model and method, and results show that the propellantless rendezvous is achieved

at both fixed and free final time.
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1 Introduction

Traditional spacecraft are generally propelled by thrusters using chemical fuels. The dura-
tions of most space missions are therefore constrained by the amount of propellant on board.
To extend the orbital lifetime of the spacecraft, propellantless means of orbital control would
be preferable. A Lorentz spacecraft is an artificially charged spacecraft that could modulate the
surface charge to induce Lorentz force as it travels through the planetary magnetic field. This
induced Lorentz force can be utilized as propellantless maneuvers to perform orbital control.
Despite the restriction that the Lorentz force could only act in the direction perpendicular to
the local magnetic field and the velocity of the spacecraft relative to the local magnetic field, the
application of Lorentz force in space missions is still promising. Actually, various applications
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of Lorentz force as propellantless propulsion for orbital control have been proposed, including
drag compensation[1], orbital inclination control[2], propellantless rendezvous[3–5], spacecraft
hovering[6–7], formation flying[8–10] and so on.

As to the research on the relative motion of Lorentz spacecraft, Pollock et al.[3] derived
approximate analytical solutions to the orbital motion of Lorentz spacecraft with respect to
near-circular reference orbit based on the Hill-Clohessy-Wiltshire equations. A propellantless
rendezvous strategy is designed using the linearized relative dynamics model. In this strategy,
restrictions are imposed on the initial relative states so that the Lorentz spacecraft nearly flies
in the same circular equatorial orbit of the target spacecraft, initially lagging or leading the
target spacecraft by some distance in the in-track direction with zero relative velocity. Then,
maintaining a constant specific charge could achieve rendezvous with corresponding maneuver
duration. Besides, the maneuver duration should equal an integer number of reference orbit
periods and an integer number of rotation periods of the Earth to allow the relative distances
in the radial direction and normal direction to return to zero. Yamakawa et al.[4] developed
linearized dynamical models that describe the relative motion of Lorentz spacecraft in the
vicinity of both circular and elliptic reference orbit by assuming that the Earth’s magnetic field
can be modeled as a nontilted magnetic dipole aligned with true north. Likewise, strategies for
in-plane rendezvous in equatorial orbits are designed. However, the Earth’s magnetic dipole is
tilted by nearly 11.3◦ with respect to the rotation axis of the Earth, which is not sufficiently
small to be negligible especially for inclined orbits. Thus, present linearized models may be less
precise when applied in inclined Earth orbit.

Modeling the Earth’s magnetic field as a perfect tilted dipole located at the center of the
Earth that co-rotates with Earth, a dynamical model that characterizes the relative motion of
Lorentz spacecraft in the vicinity of arbitrary reference orbit is derived. Based on the proposed
nonlinear dynamical model, this paper investigates the feasibility of only using Lorentz force
as propulsion for rendezvous in inclined Earth orbit with no aforementioned restrictions on the
initial relative states as those of previous work, aiming to develop the optimal trajectory that
minimizes the required control energy for rendezvous. The resulting optimal control problem
is then solved by a direct transcription method called Gauss pseudospectral method (GPM).
Pseudospectral method has been widely applied in trajectory optimization problem in aerospace
engineering. For example, Wu et al.[11] developed fuel-optimal low-thrust trajectories for space-
craft formation using Legendre pesudospectral method (LPM). Huntington and Rao[12] solved
the optimal reconfiguration problem of spacecraft formations by GPM.

The remainder of this paper is organized as follows. First, the nonlinear dynamical model
that describes the relative motion of Lorentz spacecraft is introduced in Section 2. Then, the
propellantless rendezvous trajectory optimization problem is formulated in Section 3, followed
by a brief review of GPM in Section 4. Classic examples are numerically simulated in Section 5
to demonstrate the validity of the proposed method. Section 6 gives the conclusions and future
research work.

2 Dynamical model

2.1 Equations of relative motion
Consider two spacecrafts subject to the gravity field of the Earth, which are referred to as the

chaser and target, respectively. The chaser is a charged Lorentz spacecraft whereas the target is
uncharged. To describe the relative motion between the chaser and the target, several relevant
coordinate frames are defined below, as shown in Fig. 1. OEXIYIZI is an Earth-centered inertial
(ECI) frame located at the center of the Earth, OE. OTxyz is the relative motion (RM) frame
fixed at the center of mass of the target, where x is along the radial direction, z is normal to
the target’s orbital plane, and y completes the Cartesian right-handed frame. OL is the center
of mass of the Lorentz spacecraft.
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Modeling the Lorentz spacecraft as point mass, the orbital motion equation of Lorentz
spacecraft is given by

R̈L = − μ

R3
L

RL + aL, (1)

where RL is the orbital radius vector of the Lorentz spacecraft. aL = [ax ay az]T refers to
the Lorentz acceleration experienced by the Lorentz spacecraft. μ is the gravitational parameter
of the Earth.

Fig. 1 Definition of reference frames

The position of the chaser with respect to the target is defined by ρ = [x y z]T. Therefore,
the equations of orbital motion for the target and the nonlinear translational dynamics of the
chaser with respect to the target can be written in the RM frame as follows[13]:{

R̈T − RTu̇2
T = −μ/R2

T,

RTüT + 2ṘTu̇T = 0,
(2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẍ = 2u̇Tẏ + u̇2
Tx + üTy +

μ

R2
T

− μ

R3
L

(RT + x) + ax,

ÿ = −2u̇Tẋ + u̇2
Ty − üTx − μ

R3
L

y + ay,

z̈ = − μ

R3
L

z + az,

(3)

where RT is the orbital radius of the target, and RL = ((RT + x)2 + y2 + z2)1/2. uT is the
argument of latitude of the target spacecraft.
2.2 Lorentz force

A charged particle is subject to the Lorentz acceleration as moving through a magnetic field,
given by

aL =
q

m
Vr × B, (4)
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where q is the charge, and m is the mass of the particle, and thus, q/m refers to the specific
charge of the particle (i.e., charge-to-mass ratio). Vr represents the velocity of the particle with
respect to the local magnetic field B.

To derive the expressions of Lorentz acceleration acting on the Lorentz spacecraft in the RM
frame, following assumptions are imposed throughout this study: (i) the Earth’s magnetic field
can be modeled as a perfect magnetic dipole located at the center of the Earth that co-rotates
with Earth; (ii) the magnetic dipole is tilted by angle α with respect to the rotation axis of the
Earth, as shown in Fig. 2.

Fig. 2 Definition of angles

The local magnetic field of the chaser spacecraft is

B = (Bx By Bz)T =
B0

R3
L

(3(n̂ · R̂L)R̂L − n̂), (5)

where B0 = 8 × 109 T · km3 is the magnetic dipole moment for the Earth. The superscript
“∧” denotes a unit vector. As illustrated in Fig. 2, n̂ is a unit vector in the direction of the
magnetic dipole moment, given by

n̂ = − cosΩM sin αX̂I − sinΩM sin αŶI − cosαẐI, (6)

or in the RM coordinates,

n̂ =

⎛
⎝ nx

ny

nz

⎞
⎠ =

⎛
⎜⎝

−(cosβ cosuT + sinβ cos iT sinuT) sin α − sin iT sin uT cosα

(cosβ sin uT − sinβ cos iT cosuT) sinα − sin iT cosuT cosα

sin β sin iT sin α − cos iT cosα

⎞
⎟⎠ , (7)

where iT is the orbital inclination of the target spacecraft. The angle β is defined by β = ΩM−Ω,
where Ω refers to the right ascension of the ascending node of the reference orbit, and ΩM is
defined as

ΩM = ωEt + Ω0, (8)

where ωE is the angular rotation rate of the Earth, and Ω0 is the initial phase angle of the
magnetic dipole.

R̂L refers to the unit orbital radius vector of the Lorentz spacecraft, which can be expressed
in the RM frame as

R̂L =
1

RL
[RT + x y z]T. (9)
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Substitution of (7) and (9) into (5) yields the local magnetic field of the Lorentz spacecraft
expressed in the RM frame.

The velocity of the Lorentz spacecraft with respect to the magnetic field is

Vr = V − ωE × RL, (10)

where V refers to the absolute velocity of Lorentz spacecraft, given by

V =
dRL

dt
=

dRT

dt
+

δρ

δt
+ u̇T × ρ. (11)

Thus, the relative velocity Vr can be expressed in the RM frame as

Vr =

⎛
⎝ Vx

Vy

Vz

⎞
⎠ =

⎛
⎜⎝

ṘT + ẋ − y (u̇T − ωE cos iT) − zωE sin iT cosuT

ẏ + (RT + x) (u̇T − ωE cos iT) + zωE sin iT sin uT

ż + (RT + x) ωE sin iT cosuT − yωE sin iT sin uT

⎞
⎟⎠ . (12)

Substitution of (5) and (12) into (4) yields the expressions of Lorentz acceleration in the
RM frame,

aL =

⎛
⎝ ax

ay

az

⎞
⎠ =

q

m

⎛
⎜⎝

VyBz − VzBy

VzBx − VxBz

VxBy − VyBx

⎞
⎟⎠ . (13)

The nonlinear relative translational dynamics of the Lorentz spacecraft is thus obtained by
substituting (13) into (3).

3 Problem formulation

Trajectory optimization can generally be defined as finding the optimal control profile of a
dynamical system subject to several constraints that minimizes given objective functional. The
propellantless rendezvous trajectory optimization problem can be formulated as follows.

Denote the specific charge of Lorentz spacecraft λ = q/m as the single control input. De-
termine the charge time (i.e., maneuver time) and profile of specific charge to minimize an
energy-optimal objective function, given by

J =
1
2

∫ tf

t0

λ2dt. (14)

The dynamic constraints of this optimization problem are presented in (2) and (3). Other
constrains, including boundary constraints and path constraints, are summarized in the follow-
ing subsections.
3.1 Boundary constraint

Boundary constraints for this problem contain initial state constraints and final state con-
straints. The initial state constraints are the initial states of the chaser with respect to the
target, given by {

x(t0) = x0, y(t0) = y0, z(t0) = z0,

ẋ(t0) = ẋ0, ẏ(t0) = ẏ0, ż(t0) = ż0.
(15)

To achieve rendezvous, it is required that both vehicles reach the same state at the final
time. Thus, the final state constraints can be written as{

x(tf) = 0, y(tf) = 0, z(tf) = 0,

ẋ(tf) = 0, ẏ(tf) = 0, ż(tf) = 0.
(16)
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3.2 Path constraint
As presented in Ref. [1] by Peck, a specific charge of 0.03 C/kg seems to be the maximum

that could be achievable in the near-term future. Hence, the path constraint on the specific
charge is given by

−0.03 � λ � 0.03. (17)

4 GPM

The pseudospectral method, as a kind of direct method for trajectory optimization prob-
lem, transcribes the optimal control problem to nonlinear programming problem (NLP) by
parameterizing state and control variables using global orthogonal polynomials and approxi-
mating dynamics at Gauss quadrature collocation points. In the GPM, Legendre polynomial
and Legendre-Gauss (LG) points are used[14]. The resulting NLP is then solved by appropriate
numerical methods. Detailed descriptions and comparisons of different kinds of pesudospectral
methods can be found in Refs. [15]–[21]. The GPM is adopted in this paper.

5 Numerical simulation

5.1 Scenario 1
In this subsection, two examples are simulated to testify the validity of pesudospectral

method in solving the aforementioned trajectory optimization problem. Both examples are
solved by utilizing the open source code package called GPOPS [22] and the NLP solver SNOPT
[23] using default optimality and feasibility tolerance. The target spacecraft is assumed to be
flying in a near-circular inclined low Earth orbit with an orbital period of 1.6 hour. The initial
orbital elements of the target spacecraft are given in Table 1. The initial phase angle of the
magnetic dipole Ω0 is set as 40◦. In the first example, the final time tf is fixed whereas it is
free in the second example. In both examples, the number of LG points is 50 and the initial
boundary constrains are chosen as{

x0 = −250 m, y0 = −1 000 m, z0 = −200 m,

ẋ0 = −0.020 m/s, ẏ0 = 0.545 m/s, ż0 = 0.090 m/s.
(18)

Table 1 Initial orbit elements of target spacecraft

Orbit element Value

Semi-major axis/km 6 945.034
Eccentricity 0.000 2
Inclination/deg 30
Right ascension of ascending node/deg 30
Argument of perigee/deg 10
True anomaly/deg 10

The final time is fixed at tf=5000 s. Figure 3 shows the time history of specific charge, from
which it is clear that the specific charge is on the order of 10−3 and is less than the maximum
0.03 C/kg. The solid line in Fig. 3 is the result of the Lagrange polynomial interpolation of
the specific charges at the LG points and the cost function is J = 5.74 × 10−3. Figures 4
and 5 show, respectively, the time histories of relative position and relative velocity. To prove
the validity of the results derived by GPM, the interpolated trajectory of specific charge is
then substituted into the nonlinear dynamical model and the actual trajectory is generated by
integrating the nonlinear equations ((2) and (3)) using the 4th order Runge-Kutta method, as
shown by the solid lines in Figs. 4 and 5. It can be seen that the relative states obtained from



Pseudospectral method for optimal propellantless rendezvous using geomagnetic Lorentz force 615

numerical integration nearly coincide with the results derived via the GPM, and propellantless
rendezvous is achieved at the given final time. The terminal relative position errors in the
radial, in-track, and normal direction are, respectively, 0.52 m, 0.43 m, and 0.008 m. The
terminal relative velocity errors in each component are 1.15× 10−4 m/s, 1.10× 10−3 m/s, and
5.20 × 10−6 m/s. Using more LG points can further reduce these errors. These errors partly
result from the interpolation of the specific charge and the numerical integration method, which
will be analyzed in the future research.

Fig. 3 Time history of specific charge (tf=5 000 s)

Fig. 4 Time history of relative position
(tf=5 000 s)

Fig. 5 Time history of relative velocity
(tf=5 000 s)

Different from the example above, the final time is free and constrained less than 104 s in
this example. The time history of specific charge is plotted in Fig. 6. It can be seen that the
specific charge is mainly on the order of 10−4, which is less than the specific charge in the first
example and is of course below the allowed maximum. Lagrange polynomial interpolation is
also used to estimate the specific charges between the LG points, as denoted by the solid line
in Fig. 6. The propellantless rendezvous is achieved at final time tf = 9 984.25 s and the cost
function is J = 1.60 × 10−3. Compared with the first example, 72.12% of the control energy
is saved if the final time could be nearly doubled. The time histories of relative position and
relative velocity during rendezvous process are shown in Figs. 7 and 8, respectively. Likewise,
the trajectory of specific charge is substituted into the nonlinear dynamical model to evaluate
the precision of the GPM, as shown by the solid lines in Figs. 7 and 8. The numerical results
are also nearly coincided with the results obtained by the GPM, substantiating the validity
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and applicability of the GPM. The terminal relative position errors are 0.45 m, 0.13 m, and
0.002 m in each axis, and the terminal relative velocity errors are, respectively, 7.00×10−4 m/s,
9.52 × 10−4 m/s, and 3.97 × 10−5 m/s.

Fig. 6 Time history of specific charge (tf< 104 s)

Fig. 7 Time history of relative position
(tf< 104 s)

Fig. 8 Time history of relative velocity
(tf< 104 s)

5.2 Scenario 2
In this subsection, comparisons are made between the optimal solutions to the Lorentz-

propelled rendezvous under different initial conditions. The initial orbital elements of the target
spacecraft are selected as those shown in Table 1 and the initial phase angle of the tilted dipole
is also set as 40◦. The final time is fixed at tf = 5 000 s and the number of the LG points is
50. The chaser is assumed to initially lead or trail the target in the in-track direction with no
relative velocity. Therefore, the initial boundary constraints are given by

x(0) = 0, y(0) = y0, z(0) = 0, ẋ(0) = 0, ẏ(0) = 0, ż(0) = 0. (19)

Denote |λ|mean and |λ|max as the mean and maximal absolute values of the required specific
charge for rendezvous, respectively. Figure 9 illustrates the required values of |λ|mean, |λ|max,
and J with different initial in-track relative distances. As can be seen, both mean and maximal
specific charges increase with increasing initial in-track relative distances, and a similar trend
is followed by the control-energy objective function. It can be concluded that the near-term
maximal charging levels allow a rendezvous mission in low Earth orbit with the duration of
nearly one orbital period and the initial in-track relative distance within several kilometers.
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Furthermore, numerical simulations indicate that the proposed method is more efficient for cases
when the initial relative position is purely in-track due to the characteristics of the Lorentz-
propelled relative motion, as those analyzed in our previous works[5,24].

Fig. 9 Required mean and maximal absolute values of specific charge and objective functions for
rendezvous with different initial in-track relative distances

6 Conclusions

An energy-optimal strategy for spacecraft rendezvous in an inclined Earth orbit using a
geomagnetic Lorentz force as the single propellantless propulsion is developed in this paper.
Different from the previous Lorentz-force-propelled rendezvous strategies, this method is not
limited to in-plane rendezvous in on equatorial orbit with restrictions on the initial relative
states. The proposed nonlinear relative translational dynamics model of the Lorentz space-
craft, which incorporates both the inclination of the reference orbit and the magnetic dipole
tilt angle, is more accordant with the actual property of the geomagnetic field. Thus, results
derived from this model would be more precise than those obtained by the previous linearized
models. Formulating the rendezvous trajectory optimization problem as an optimal control
problem, it is then transformed into an NLP by the GPM and finally solved numerically by
the SNOPT. Numerical simulation results validate the feasibility of the GPM in solving the
Lorentz-force-propelled rendezvous with either fixed or free final time. Current research work
is based on a two-body orbital model, future work would take the Earth oblateness effects and
atmospheric drag into consideration to derive a more accurate rendezvous trajectory. Besides,
a closed-loop controller remains to be designed to track the optimal reference trajectory.
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