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Abstract The effect of an inclined magnetic field in the peristaltic flow of a Jeffrey

fluid with variable thermal conductivity is discussed. The temperature dependent thermal

conductivity of fluid in an asymmetric channel is taken into account. A dimensionless

nonlinear system subject to a long wavelength and a low Reynolds number is solved.

The explicit expressions of the stream function, the axial velocity, the pressure gradient,

and the temperature are obtained. The effects of all physical parameters on peristaltic

transport and heat transfer characteristics are observed from graphical illustrations. The

behaviors of θ ∈ [0, π/2] and θ ∈ [π/2, π] on fluid flow and heat transfer are found to be

opposite. Further, the size of trapped bolus is greater for the case of the inclined magnetic

field (θ �= π/2) than that for the case of the transverse magnetic field (θ = π/2). The

heat transfer coefficient decreases when the constant thermal conductivity (Newtonian)

fluid is changed to the variable thermal conductivity (Jeffrey) fluid.
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1 Introduction

The study of peristaltic pumping of viscous and non-Newtonian fluids has received special
attention in recent years. The word peristaltic comes from a Greek word “peristaltikos” which
means clasping and compressing. The peristaltic transport is a mechanism of fluid transport
from a region of lower pressure to high pressure by means of wave of area contraction/expansion
travelling along a tube-like structure. Peristalsis is involved in the flow of urine from kidney
to bladder through ureter, movement of food bolus in the alimentary canal, ovum transport in
the female fallopian tube, transport of lymph in the lymphatic vessels, embryo motion in non-
pregnant uterus, movement of semen in the vas deferens, bile movement in a bile duct, transport
of spermatozoa in the cervical canal, and circulation of blood in the small blood vessels. In
addition, the design of several technological devices is based upon the principle of peristaltic
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pumping. Mention may be made to blood pumps in heart-lung machines and finger and roller
pumps for pumping of corrosive and toxic liquids in nuclear industry. Now, the literature on the
peristaltic flow of viscous fluid through different assumptions is quite extensive (see Refs. [1]–[5]
and some references therein).

It has been observed that many physiological and industrial fluids show a non-Newtonian
behavior. Since there is no universal model which can describe the properties of all non-
Newtonian fluids, several models have been proposed to explain the behavior of such fluids. The
peristaltic mechanism of non-Newtonian fluids is quite prevalent in many applications, especially
for intrauterine transport in non-pregnant uterus[6]. Radhakrishnamacharya[7] presented the
long wavelength analysis for peristaltic transport of power law fluid. Siddiqui and Schwarz[8]

studied the peristaltic pumping of a second-order fluid in tubes. Tsiklauri and Beresnev[9]

examined the non-Newtonian effects on peristaltic transport of Maxwell fluid. Mekheimer[10]

investigated the peristaltic flow of a couple-stress fluid in uniform and non-uniform channels.
Hayat et al.[11] considered a problem of peristaltic transport of Johnson-Segalman fluid in a
planar channel. A mathematical model for peristaltic transport of micropolar fluid in a tube
was given by Srinivasacharya et al.[12]. Vajravelu et al.[13] made an attempt which deals with
the peristalsis of Hershel-Bulkley fluid in an inclined tube. Tripathi[14] considered the Oldroyd-
B fluid model to study the peristaltic flow of chyme movement in small intestines. Ellahi et
al.[15] discussed peristaltic transport of the Carreau fluid in a rectangular duct.

Biomagnetic fluid dynamics is quite a hot research area amongst the recent investigators.
This is due to its applications in cancer tumor treatment, hyperthermia, reduction of blood
during surgeries, etc. Also, considering blood as a biomagnetic fluid, it is now possible to
control the blood pressure and its flow behavior by applying an appropriate magnetic field.
The influence of the magnetic field may also be utilized as a blood pump for cardiac operations
specifically for a disease in the stenosed artery. Hence, Mekheimer and El-Kot[16] examined the
effects of magnetic field and Hall currents on blood flow through stenotic arteries. Elshahed
and Haroun[17] studied the peristaltic transport of the magnetohydrodynamic (MHD) Johnson-
Segalman fluid. Hayat and Ali[18–19] investigated the MHD peristaltic flow of non-Newtonian
fluids in a tube. In another paper, Hayat et al.[20] documented the influence of an induced
magnetic field on the peristaltically induced flow of a Carreau fluid. Mekheimer et al.[21]

studied the influence of the magnetic field on the peristaltic flow of a compressible Maxwell
fluid in a microchannel with the porous medium. Peristaltic transport of the MHD Jeffrey
fluid in an asymmetric channel was addressed by Kothandapani and Srinivas[22]. Pandey and
Chaube[23] analyzed the effects of the magnetic field and the space porosity on the peristaltic
flow of micropolar fluid. Recently, Tripathi and Bég[24] presented a magnetohydrodynamical
study relevant to the digestive transport mechanism.

The study of heat transfer effect on peristaltic transport of blood has become quite interest-
ing both from theoretical and experimental points of view, because the quantitative prediction
of blood flow rate and heat generation is important for diagnosing blood circulation illness and
for the noninvasive measurement of blood glucose. Research interest in the peristaltic flow
of non-Newtonian fluids with heat transfer has increased substantially due to its numerous
applications such as oxygenation, separation process in chemical industries, petroleum produc-
tion, and polymer engineering. Some representative studies in this direction may be mentioned
through the attempts[25–28].

In all the studies mentioned above, the magnetic field is applied in a direction perpendicular
to the flow. Very little has been said yet to the peristaltic flow in the presence of an inclined
magnetic field[29–35]. Moveover, the peristaltic flow with heat transfer and an inclined magnetic
field has not been studied yet even for viscous fluids. Therefore, it is of great interest to study
the influence of an inclined magnetic field on peristaltic transport of a Jeffrey fluid with variable
thermal conductivity. The present problem considers the Jeffrey fluid model which is significant
among all other non-Newtonian models for physiological fluids, because it convertly reduces to
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a Newtonian model by taking λ1 = 0. The thermal conductivity of the fluid is assumed to
vary with the temperature in a linear manner. The heat transport equation has been modified
through viscous and Joule dissipations. The flow analysis has been conducted in the wave frame
subject to long wavelength, low Reynolds number, and small thermal conductivity parameter.
The effects of the inclination angle of magnetic field, the magnetic parameter, and the Jeffrey
fluid parameter on peristaltic transport are analyzed. The effects of the thermal conductivity
parameter, the inclination angle of magnetic field, the magnetic parameter, the Jeffrey fluid
parameter, and the Brinkman number on the heat transfer process are also analyzed. The
results obtained here are examined by plots and numerical values.

2 Mathematical model

Consider the two-dimensional flow of an incompressible Jeffrey fluid in an asymmetric chan-
nel. The channel walls are taken as flexible and non-conducting. It is further assumed that
sinusoidal waves of small amplitudes propagate along the channel walls (see Fig. 1). The geom-
etry of the walls is therefore given by

Y =

⎧
⎪⎨

⎪⎩

H1(X, t) = d1 + a1 cos
(2π
λ

(X − ct)
)

(upper wall), (1)

H2(X, t) = −d2 − a2 cos
(2π
λ

(X − ct) + φ
)

(lower wall), (2)

in which X and Y are the rectangular coordinates with X measured along the channel length,
and Y is in the direction normal to channel walls, t is the time, c is the wave speed, λ is the
wavelength, a1 is the upper wave amplitude, a2 is the lower wave amplitude, d1 + d2 is the
channel width, and φ ∈ [0, π] is the phase difference. Moreover, ai, di (i = 1, 2), and φ satisfy
the condition

a2
1 + a2

2 + 2a1a2 cosφ � (d1 + d2)2. (3)

It is assumed for the heat transfer process that the upper and lower channel walls are subject
to the constant temperatures T 0 and T 1, respectively, and the temperature of the upper wall
is less than that of the lower wall, i.e., T 0 < T 1. In addition, the fluid is electrically conducting
in the presence of a uniform magnetic field B0 applied in a direction which makes an angle θ
with the X-axis in the X Y -plane. The contribution of the induced magnetic field has been
ignored under the assumption of low magnetic Reynolds numbers. The effects of the imposed
and induced electric fields are negligible. In view of such assumptions, the current density
by Ohm’s law becomes J = σ[V × B0] (see Refs. [17], [36], and [37] for further details). If
V = [U(X,Y , t), V (X,Y , t), 0] is the velocity field vector, B0 = [B0 cos θ,B0 sin θ, 0] is the
magnetic flux density vector, and σ is the electrical conductivity of the fluid, then the Lorentz
force vector takes the form

J × B0 = (−σB2
0 sin θ(U sin θ − V cos θ), σB2

0 cos θ(U sin θ − V cos θ), 0). (4)

The expressions of the Cauchy and the extra stress tensors τ and S in a Jeffrey fluid are
given, respectively, by

τ = −PI + S, (5)

S =
μ

1 + λ1

(
A1 + λ2

( ∂

∂t
+ V · ∇

)
A1

)
, (6)

in which P is the pressure, λ1 is the ratio of the relaxation time to the retardation time, λ2

is the retardation time, and μ is the fluid dynamic viscosity. The definition of the involved
Rivlin-Ericksen tensor A1 is

A1 = ∇V + (∇V )T.
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Fig. 1 Physical model

The continuity and momentum equations for the flow of the MHD Jeffrey fluid are

∂U

∂X
+
∂V

∂Y
= 0, (7)

ρ
( ∂

∂t
+U

∂

∂X
+V

∂

∂Y

)
U =− ∂P

∂X
+

∂

∂X
(SX X)+

∂

∂Y
(SX Y )

− σB2
0 sin θ(U sin θ−V cos θ), (8)

ρ
( ∂

∂t
+U

∂

∂X
+V

∂

∂Y

)
V = −∂P

∂Y
+

∂

∂X
(SX Y ) +

∂

∂Y
(SY Y )

− σB2
0 cos θ(U sin θ−V cos θ). (9)

The energy equation including viscous and Joule dissipation effects is

ρξ
( ∂

∂t
+ U

∂

∂X
+ V

∂

∂Y

)
T = ∇ · (k(T )∇T ) + Σ1 + Σ2 (10)

with

Σ1 =
μ

1 + λ1

(
1 + λ2

(
U

∂

∂X
+ V

∂

∂Y

))

·
(
2
(( ∂U

∂X

)2

+
(∂V

∂Y

)2)
+

(∂U

∂Y
+
∂V

∂X

)2)
,

Σ2 = σB2
0(U sin θ − V cos θ)2.

In Eqs. (7)–(10), U and V are the velocity components in the axial and transverse directions,
respectively, ρ is the fluid density, T is the absolute temperature, ξ is the specific heat, SXX ,
SX Y , and SY Y are the components of the extra stress tensor, Σ1 is the viscous dissipation
term, Σ2 is the Joule dissipation term, and k(T ) is the thermal conductivity of the fluid. It
is found that the thermal conductivity of many physiological fluids varies linearly with the
temperature. Thus, the thermal conductivity of the fluid is taken in the following form[38]:

k(T ) = k0[1 + β(T − T 0)], (11)

in which k0 is the dynamic thermal conductivity at the constant temperature T = T0, and β is
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a constant. We define
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = X − ct,

y = Y ,

u(x, y) = U(X,Y , t) − c,

v(x, y) = V (X,Y , t),

p (x, y) = P (X,Y , t),

(12)

in which u, v, and p are the velocities and the pressure in the wave frame (x, y).
Introducing the following dimensionless variables:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x =
x

λ
, y =

y

d1
, u =

u

c
, v =

v

c
, p =

d2
1

μλc
p, T =

T − T 0

T 1 − T 0

,

t =
ct

λ
, δ =

d1

λ
, M2 =

σB2
0d

2
1

μ
, S =

d1S

μc
, Re =

ρcd1

μ
,

Pr =
μξ

k0
, Ec =

c2

cp(T 1 − T 0)
, k =

k

k0
, ε = β(T 1 − T 0)

(13)

and writing u= ∂ψ
∂y and v=−δ(∂ψ∂x ) with ψ=ψ(x, y) as the stream function, the incompress-

ibility condition (7) vanishes automatically, while Eqs. (8)–(10) yield

Reδ
(∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2

)
= − ∂p

∂x
+ δ

∂

∂x
(Sxx) +

∂

∂y
(Sxy)

−M2
((∂ψ

∂y
+ 1

)
sin2 θ +

1
2
δ
∂ψ

∂x
sin(2θ)

)
, (14)

Reδ3
(∂ψ

∂x

∂2ψ

∂x∂y
− ∂ψ

∂y

∂2ψ

∂x2

)
= −∂p

∂y
+ δ2

∂

∂x
(Sxy) + δ

∂

∂y
(Syy)

−M2δ
(1

2

(∂ψ

∂y
+ 1

)
sin(2θ) + δ

∂ψ

∂x
cos2 θ

)
, (15)

Reδ
(∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y

)
=

1
Pr

(
δ2

∂

∂x

(
k(T )

∂T

∂x

)
+

∂

∂y

(
k(T )

∂T

∂y

))

+ Ec
( 1

1 + λ1

(
1 +

λ2cδ

d1

(∂ψ

∂y

∂

∂x
− ∂ψ

∂x

∂

∂y

))

·
(
4δ2(

∂2ψ

∂x∂y
)2 +

(∂2ψ

∂y2
− δ2

∂2ψ

∂x2

)2)

+M2
((∂ψ

∂y
+ 1

)
sin θ + δ

∂ψ

∂x
cos θ

)2)
(16)

with

Sxx =
2δ

1 + λ1

(
1 +

λ2cδ

d1

(∂ψ

∂y

∂

∂x
− ∂ψ

∂x

∂

∂y

)) ∂2ψ

∂x∂y
, (17)

Sxy =
1

1 + λ1

(
1 +

λ2cδ

d1

(∂ψ

∂y

∂

∂x
− ∂ψ

∂x

∂

∂y

))(∂2ψ

∂y2
− δ2

∂2ψ

∂x2

)
, (18)

Syy = − 2δ
1 + λ1

(
1 +

λ2cδ

d1

(∂ψ

∂y

∂

∂x
− ∂ψ

∂x

∂

∂y

)) ∂2ψ

∂x∂y
. (19)
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Here, δ is the wave number, M is the magnetic parameter, ε is the thermal conductivity
parameter, Re is the Reynolds number, Pr is the Prandtl number, Ec is the Eckert number,
and Br = PrEc is the Brinkman number.

Invoking the long wavelength (δ → 0) and the low Reynolds number (Re → 0) approxima-
tions into Eqs. (14)–(16), we arrive at

∂p

∂x
=

∂

∂y

( 1
1 + λ1

∂2ψ

∂y2

)
−M2 sin2 θ

(∂ψ

∂y
+ 1

)
, (20)

∂p

∂y
= 0, (21)

∂

∂y

(
k(T )

∂T

∂y

)
+Br

( 1
1 + λ1

(∂2ψ

∂y2

)2

+M2 sin2 θ
(∂ψ

∂y
+ 1

)2)
= 0, (22)

where k(T ) is the dimensionless thermal conductivity function.
The dimensionless boundary conditions are

ψ =
F

2
,

∂ψ

∂y
= −1 at y = h1(x), (23)

ψ = −F
2
,

∂ψ

∂y
= −1 at y = h2(x), (24)

{
T = 0 at y = h1(x),
T = 1 at y = h2(x),

(25)

where F is the dimensionless time mean flow rate in the wave frame, which is defined by

F =
∫ h1(x)

h2(x)

∂ψ

∂y
dy, (26)

which can be further related with the dimensionless time mean flow rate in the fixed frame Q
through

Q = F + 1 + d. (27)

The peristaltic walls in the dimensionless form can be written as

h1(x) = 1 + α1 cos(2πx), h2(x) = d+ α2 cos(2πx+ φ), (28)

in which α1 and α2 are the amplitude ratios, and d is the channel width ratio given by

α1 =
a1

d1
, α2 =

a2

d1
, d =

d2

d1
. (29)

Now, we have

α2
1 + α2

2 + 2α1α2 cosφ � (1 + d)2. (30)

3 Mathematical results

Equations (20) and (21) yield the compatibility equation of the form

∂2

∂y2

( 1
1 + λ1

∂2ψ

∂y2

)
−M2 sin2 θ

(∂2ψ

∂y2

)
= 0. (31)
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Solving Eq. (31) subject to the boundary conditions (23) and (24), one has

ψ(x, y) = A1 +A2y +A3 cosh(M sin θ
√

1 + λ1y) +A4 sinh(M sin θ
√

1 + λ1y). (32)

The expression for the axial velocity is

u(x, y) = A2 +M sin θ
√

1 + λ1(A3 sinh(M sin θ
√

1 + λ1y)

+A4 cosh(M sin θ
√

1 + λ1y)). (33)

The pressure rise per wavelength ΔPλ can be computed through

ΔPλ =
∫ 1

0

(dp
dx

)
dx, (34)

in which dp/dx is the axial pressure gradient. It is given by

dp
dx

= − (F + h1 − h2)M3 sin3 θ
√

1 + λ1L1

M sin θ(h1 − h2)
√

1 + λ1L1 − 2L2

. (35)

It is clear that the closed form solution of the nonlinear equation (22) seems difficult. Therefore,
it is of interest to construct the series solution (perturbation solution) in powers of small thermal
conductivity parameter ε. For this purpose, we write

T (x, y) = T0(x, y) + εT1(x, y) +O(ε2), (36)

where ε is the perturbation quantity. Collection of the coefficients of like powers of ε after
inserting Eq. (36) into Eqs. (22) and (25) yields the following systems at zeroth- and first-orders.
3.1 Zeroth-order system

The zeroth-order problem is

∂

∂y

(∂T0

∂y

)
+Br

( 1
1 + λ1

∂2ψ

∂y2
+M2 sin2 θ

(∂ψ

∂y
+ 1

)2)
= 0, (37)

{
T0 = 0 at y = h1(x),
T0 = 1 at y = h2(x).

(38)

Using Eq. (32) and solving Eq. (37) subject to the conditions (38), we get

T0(x, y) = A5 +A6y − f0(x, y) (39)

with

f0(x, y) =L5y
2 + L6 cosh(M sin θ

√
1 + λ1y) + L7 sinh(M sin θ

√
1 + λ1y)

+ L8 cosh(2M sin θ
√

1 + λ1y) + L9 sinh(2M sin θ
√

1 + λ1y).

3.2 First-order system
The problem at this order is

∂

∂y

(∂T1

∂y

)
+

∂

∂y

(
T0
∂T0

∂y

)
= 0, (40)

{
T1 = 0 at y = h1(x),
T1 = 0 at y = h2(x).

(41)
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The solution of the above problem is

T1(x, y) = A7 +A8y − f1(x, y), (42)

where

f1(x, y) = L10y
2 − (L13 + L6(A8 − L5y)y) cosh(M sin θ

√
1 + λ1y)

+ L11y
3 − (L14 + L7(A8 − L5y)y) sinh(M sin θ

√
1 + λ1y)

+ L12y
4 + (L15 − L8(A8 − L5y)y) cosh(2M sin θ

√
1 + λ1y)

+ (L16 − L9(A8 − L5y)y) sinh(2M sin θ
√

1 + λ1y)

+ L17 cosh(3M sin θ
√

1 + λ1y) + L18 sinh(3M sin θ
√

1 + λ1y)

+ L19 cosh(4M sin θ
√

1 + λ1y) + L20 sinh(4M sin θ
√

1 + λ1y).

The constants A1, A2, · · · , A8 and L1, L2, · · · , L20 are given in Appendix A.
The heat transfer coefficient at the upper wall is

Z =
∂h1

∂x

∂T

∂y
. (43)

4 Numerical results and discussion

This section is aimed to study the important features of peristaltic mechanism and heat
transfer under the influence of involved parameters such as θ (the inclination angle of magnetic
field), M (the magnetic parameter), λ1 (the Jeffrey fluid parameter), ε (the thermal conductivity
parameter), andBr (the Brinkman number). For this purpose, we prepare Fig. 2 for the pressure
rise per wavelength ΔPλ, Fig. 3 for the axial pressure gradient dp/dx, Fig. 4 for the velocity field
u, Fig. 5 for the temperature field T , and Figs. 6–8 for trapping. Note that we have performed
numerical integration to compute the pressure rise per wavelength ΔPλ. The values of geometric
parameters are fixed as α1 = 0.5, α2 = 0.5, d = 1, and φ = π/2 in all the graphs and tables.

Figure 2 is prepared to analyze the effects of θ, M , and λ1 on the pressure rise per wavelength
ΔPλ versus Q. The effects of the inclination of magnetic field θ can be seen through Fig. 2(a).
It is clear that the pumping rate in the peristaltic pumping region (ΔPλ > 0) increases by
increasing θ ∈ [0, π/2]. However, it starts to decrease after appropriately choosing ΔPλ > 0.
In the augmented pumping region (ΔPλ < 0), the pumping rate decreases when θ ∈ [0, π/2]
increases. It is interesting to mention here that the inclined magnetic field for θ ∈ [0, π/2] shows
an opposite effect on the pumping performance when compared with θ ∈ [π/2, π]. The intervals
for the flow rate Q where ΔPλ > 0 and ΔPλ < 0 are given in Table 1–3. Here, we notice that
the length of the interval of Q where ΔPλ > 0 decreases for θ ∈ [0, π/2], while it increases for
θ ∈ [π/2, π]. Figure 2(b) elucidates the effect of the magnetic parameter M on ΔPλ. It is noted
that, in the peristaltic pumping region (ΔPλ > 0), the pumping rate is an increasing function
of M , whereas it becomes a decreasing function of M after appropriately choosing ΔPλ > 0.
The later behavior of pumping performance remains true in the augmented pumping region
(ΔPλ < 0). An increase in M decreases the length of interval of Q against which ΔPλ > 0.
However, the length of interval of Q against which ΔPλ < 0 increases when M increases (see
Table 2). The influence of the Jeffrey fluid parameter λ1 on ΔPλ is shown through Fig. 2(c). It
is observed that the pumping rate fluid parameter λ1 is increased. In this case, the length of
the interval for the flow rate Q where ΔPλ > 0 decreases when changing from Newtonian fluid
to Jeffrey fluid (see Table 3).
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Fig. 2 Pressure drop ΔPλ vs. Q

Table 1 Intervals for flow rate Q for different values of θ

θ Interval for Q where ΔPλ > 0 Interval for Q where ΔPλ < 0

0 0 < Q < 0.352 9 0.352 9 < Q < 0.5
π/4 0 < Q < 0.196 6 0.196 6 < Q < 0.5
π/2 0 < Q < 0.172 8 0.172 8 < Q < 0.5
2π/3 0 < Q < 0.181 5 0.181 5 < Q < 0.5
5π/6 0 < Q < 0.229 5 0.229 5 < Q < 0.5

Table 2 Intervals for flow rate Q for different values of M

M Interval for Q where ΔPλ > 0 Interval for Q where ΔPλ < 0

0 0 < Q < 0.352 9 0.352 9 < Q < 0.5
2 0 < Q < 0.214 9 0.214 9 < Q < 0.5
3 0 < Q < 0.181 5 0.181 5 < Q < 0.5
4 0 < Q < 0.165 4 0.165 4 < Q < 0.5

Table 3 Intervals for flow rate Q for different values of λ1

λ1 Interval for Q where ΔPλ > 0 Interval for Q where ΔPλ < 0

0 0 < Q < 0.313 4 0.313 4 < Q < 0.5
1 0 < Q < 0.286 1 0.286 1 < Q < 0.5
2 0 < Q < 0.266 2 0.266 2 < Q < 0.5
6 0 < Q < 0.221 6 0.221 6 < Q < 0.5
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Figure 3 presents the variation of pressure gradient dp/dx over one wavelength x ∈ [−0.5, 0.5]
for various values of θ, M , and λ1. The graphs of pressure gradient dp/dx for different values
of θ are displayed in Fig. 3(a). It is evident that, as θ increases from 0 to π/2, the pressure
gradient dp/dx decreases in the interval x ∈ [−0.4, 0.15], whilst it increases in the interval
x ∈ [−0.5,−0.4] ∪ [0.15, 0.5]. This behavior of dp/dx becomes opposite when θ increases from
π/2 to π. The plots of dp/dx for various values of magnetic parameterM are drawn in Fig. 3(b).
It discloses that an increment in M results in a decrease in dp/dx for x ∈ [−0.4, 0.15] and an
increase for x ∈ [−0.5,−0.4]∪ [0.15, 0.5]. Figure 3(c) is made to study the behavior of dp/dx via
various values of the Jeffrey fluid parameter λ1. This graph clearly indicates that the pressure
gradient dp/dx is an increasing function of λ1 for x ∈ [−0.4, 0.15]. However, it is a decreasing
function of λ1 for x ∈ [−0.5,−0.4]∪ [0.15, 0.5].

Fig. 3 Axial pressure gradient dp/dx vs. x ∈ [−0.5, 0.5] for Q=0.1

Figure 4 is made to see the variations of θ, M, and λ1 on the axial velocity u versus y.
Figure 4(a) shows the variation in u via the inclination θ of the magnetic field. It is observed
that the amplitude of the velocity u decreases when θ lies in 0 < θ < π/2 and increases when
θ lies in π/2 < θ < π. We observe that the contribution of the second term on the left-hand
side of Eq. (28), towards the velocity, depends upon the value of sin θ in the range 0 < θ < π.
For increasing values of θ in 0 < θ < π/2, sin θ increases, and the value of this term decreases
(because of the negative sign). Hence, the velocity decreases in this range of angle θ. However,
when π/2 < θ < π, sin θ decreases, and the value of this term increases. Thus, the velocity
increases in this range of angle θ. The effect of the magnetic parameter M on the velocity u
is displayed in Fig. 4(b). This graph illustrates that an increase in M leads to a reduction in
the amplitude of velocity u. The velocity profiles u for different values of λ1 are sketched in
Fig. 4(c). It is clear that the effect of the Jeffrey fluid parameter λ1 is to decrease the amplitude
of velocity u.



Heat transfer analysis in peristaltic flow of MHD Jeffrey fluid with variable thermal conductivity 509

Fig. 4 Velocity distribution u vs. y for x = 0 and Q = 1.2

The effects of θ, M, ε, λ1, and Br on the heat transfer process can be analyzed through
Fig. 5. It is clear from Fig. 5(a) that the temperature T increases for θ ∈ [0, π/2], whilst it
decreases for θ ∈ [π/2, π]. Figure 5(b) is made to observe the effect of the magnetic parameter
M on the temperature T. Here, an increase in M shows an enhancement in the temperature
T , which leads to a conclusion that the temperature in the hydromagnetic fluid is higher than
that in the hydrodynamic fluid. The effect of the thermal conductivity parameter ε on the
temperature T is depicted in Fig. 5(c). It reveals that an increase in ε yields a decrease in T .
Figure 5(d) discusses the behavior of the Jeffrey fluid parameter λ1 on the temperature T . This
graph illustrates that the temperature T decreases as a result of increasing λ1. The variation
of temperature T with increasing Br is shown in Fig. 5(e). It is obvious from Fig. 5(e) that
the temperature T increases when the effects of viscous and Joule dissipations are taken into
account.

Tables 4–7 present the values of the heat transfer coefficient Z at the upper wall for various
values of θ, M , ε, λ1, and Br. These tables witness that the effect of inclined magnetic field for
θ ∈ [0, π/2] is to increase the heat transfer coefficient Z for both constant and variable thermal
conductivity fluids. However, the opposite is true for θ ∈ [π/2, π]. The value of the heat transfer
coefficient Z is greater for the hydromagnetic fluid in comparison to the hydrodynamic fluid.
The value of the heat transfer coefficient Z decreases when we move from the constant thermal
conductivity fluid to the variable thermal conductivity fluid. We further observe that the value
of the heat transfer coefficient Z is smaller for the Jeffrey fluid in comparison to the Newtonian
fluid. Moreover, the consideration of the viscous and Joule dissipations amounts to an increase
in the value of the heat transfer coefficient Z.
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Fig. 5 Temperature distribution T vs. y for x = 0 and Q = −1.2

Table 4 Variation of heat transfer coefficient Z at upper wall when x = 0.1, Q = −1.2, M = 2, λ1 = 1,
and Br = 0.5

ε
θ

0 π/4 π/2 2π/3 5π/6

0.0 1.224 5 1.836 4 2.432 3 2.135 9 1.533 0
0.1 1.268 3 1.880 2 2.476 1 2.179 7 1.576 7
0.2 1.312 0 1.923 9 2.519 8 2.223 4 1.620 5

Figures 6–8 are given to discuss the variations in the size of the trapped bolus for various
values of θ, M , and λ1. Figure 6 concludes that an increase in the inclination angle of magnetic
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Table 5 Variation of heat transfer coefficient Z at upper wall when x = 0.1, Q = −1.2, θ = π/4, λ1 =
1, and Br = 0.5

ε
M

0 1 2 3 4

0.0 1.224 5 1.379 5 1.836 4 2.579 5 3.595 8
0.1 1.268 3 1.423 2 1.880 2 2.623 2 3.639 5
0.2 1.312 0 1.467 0 1.923 9 2.667 0 3.683 3

Table 6 Variation of heat transfer coefficient Z at upper wall when x = 0.1, Q = −1.2, θ = π/4, M =
3, and Br = 0.5

ε
λ1

0 1 2 3 4

0.0 2.948 4 2.579 5 2.448 5 2.378 8 2.334 6
0.1 2.992 1 2.623 2 2.492 2 2.422 5 2.378 3
0.2 3.035 9 2.667 0 2.536 0 2.466 3 2.422 0

Table 7 Variation of heat transfer coefficient Z at upper wall when x = 0.1, Q = −1.2, θ = π/4, M =
1, and λ1 = 1

ε
Br

0.0 0.5 1.0 1.5 2.0

0.0 0.874 9 1.379 5 1.884 1 2.388 6 2.893 2
0.1 0.918 7 1.423 2 1.927 8 2.432 4 2.937 0
0.2 0.962 4 1.467 0 1.971 5 2.476 1 2.980 7

Fig. 6 Influence of θ on trapping with Q = 1.48, M = 1.2, and λ1 = 0.5
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Fig. 7 Influence of M on trapping with Q = 1.48, θ = π/4, and λ1 = 1

Fig. 8 Influence of λ1 on trapping with Q = 1.48, θ = π/4, and M = 1
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field θ from 0 to π/2 shows a decrease in the size of trapped bolus. Moreover, the size of
trapped bolus increases as we increase the value of θ from π/2 to π. Figure 7 portrays that the
trapped bolus is less in size for the hydromagnetic fluid in comparison to the hydrodynamic
fluid. In fact, the hydromagnetic characteristics arises because of an applied magnetic field.
Consequently, the Lorentz force acts as a retarding force. This helps in reducing the size of
trapped bolus. It is clearly shown in Fig. 8 that the trapped bolus decreases in size when
the Jeffrey fluid parameter λ1 increases. The trapped bolus is smaller for the Jeffrey fluid in
comparison to the Newtonian fluid.

5 Concluding remarks

The heat transfer analysis in a peristaltically induced flow of a Jeffrey fluid with variable
thermal conductivity is performed under the influence of an inclined magnetic field. The pres-
sure rise per wavelength is studied numerically. The effects of the involved parameters are
analyzed and discussed with the help of graphs. The main points are listed below.

(i) The behavior of the inclined magnetic field for θ ∈ [π/2, π] is opposite compared with
that of θ ∈ [0, π/2].

(ii) The length of interval for the flow rate Q against which ΔPλ > 0 decreases by increasing
θ ∈ [0, π/2], M , and λ1.

(iii) The magnitude of dp/dx increases as a result of increasing θ ∈ [0, π, 2] and M , whilst
it decreases when λ1 increases.

(iv) An increase in θ ∈ [0, π/2], M , and λ1 yields a decrease in the amplitude of velocity u.
(v) The effect of the inclined magnetic field for θ ∈ [0, π/2] is to increase the temperature

T. However, it decreases by increasing ε. The temperature in the hydromagnetic (Newtonian)
fluid is greater in comparison to the hydrodynamic (Jeffrey) fluid.

(vi) The value of the heat transfer coefficient Z increases due to an increase in θ ∈ [0, π/2],
M, ε, and Br, whereas it decreases as λ1 increases.

(vii) The trapped bolus is greater in size for the case of the inclined magnetic field (θ �= π/2)
when compared with the transverse magnetic field (θ = π/2). Moreover, the size of the trapped
bolus decreases as a result of increasing M and λ1.
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Appendix A

Here, we include the values of Ai (i = 1, 2, · · · , 8) and Li (i = 1, 2, · · · , 20).

A1 = − (h1 + h2)(FM sin θ
√

1 + λ1L1 + 2L2)

2(M sin θ(h1 − h2)
√

1 + λ1L1 − 2L2)
, A2 =

FM sin θ
√

1 + λ1L1 + 2L2

M sin θ(h1 − h2)
√

1 + λ1L1 − 2L2

,

A3 =
(F + h1 − h2)L4

M sin θ(h1 − h2)
√

1 + λ1L1 − 2L2

, A4 = − (F + h1 − h2)L3

M sin θ(h1 − h2)
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1 + λ1L1 − 2L2

,

A5 =
h1(1 + g0(x, h2)) − h2g0(x, h1)

h1 − h2
, A6 = −1 − g0(x, h1) + g0(x, h2)

h1 − h2
,

A7 = −h2g1(x, h1) − h1g1(x, h2)

h1 − h2
, A8 =

g1(x, h1) − g1(x, h2)

h1 − h2
,

L1 = cosh
“1

2
M sin θ

√
1 + λ1(h1 − h2)

”
, L2 = sinh

“1

2
M sin θ

√
1 + λ1(h1 − h2)

”
,

L3 = cosh
“1

2
M sin θ
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”
, L4 = sinh
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2
M sin θ

√
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”
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L5 =
(1 + A2)

2M2 sin2 θBr

2
, L6 =

2(1 + A2)A4M sin θBr√
1 + λ1

,
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1 + λ1
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(A2

3 + A2
4)M

2 sin2 θBr

4
,
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A3A4M

2 sin2 θBr

2
, L10 =

A2
8 − 2A7L5

2
, L11 = −A8L5,
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L12 =
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5

2
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2
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2
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L2
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7

4
,

L16 =
L6L7 − 2A7L9

2
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2
,

L18 =
L7L8 + L6L9

2
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