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Abstract Three-dimensional elasticity solutions for static bending of thick functionally

graded plates are presented using a hybrid semi-analytical approach-the state-space based

differential quadrature method (SSDQM). The plate is generally supported at four edges

for which the two-way differential quadrature method is used to solve the in-plane varia-

tions of the stress and displacement fields numerically. An approximate laminate model

(ALM) is exploited to reduce the inhomogeneous plate into a multi-layered laminate, thus

applying the state space method to solve analytically in the thickness direction. Both the

convergence properties of SSDQM and ALM are examined. The SSDQM is validated by

comparing the numerical results with the exact solutions reported in the literature. As an

example, the Mori-Tanaka model is used to predict the effective bulk and shear moduli.

Effects of gradient index and aspect ratios on the bending behavior of functionally graded

thick plates are investigated.
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1 Introduction

Functionally graded material (FGM) is a new generation of composites which was proposed
by materials scientists in the early 1980s and used in thermal barriers[1]. FGM is tailored
commonly by controlling the volume fractions, microstructure, porosity, etc. of the material
constituents during manufacturing, thus resulting in spatial gradient of macroscopic material
properties, such as mass density, Young’s modulus, Poisson’s ratio, mechanical strength, and
thermal conductivity. This makes FGMs possess various advantages over conventional laminate
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composites in mechanical behavior including thermal stresses, stress concentrations, intensity
factors, or attenuation of stress waves, etc. As a result, FGMs have seen wide applications in
modern engineering and attracted intensive research focus during the past decades.

As extended applications, various two-dimensional (2D) plate theories have been used to
investigate the static bending of functionally graded plates in the past years, such as the thin
plate theory with Kirchhoff hypothesis[2], the first-order shear deformation theory[3–4], the third-
order plate theories[5–7], and the refined higher-order theories[8–10]. Due to the hypotheses and
simplification concerning the deformation field along the thickness direction, the applicability
of the 2D plate theories is always confined to the plates with lower thickness-to-length ratios.
To account for the deformation field as complete as possible, three-dimensional (3D) elasticity
solutions were widely exploited for FGM plates[11–20]. Since the spatial variation of material
properties, it is rather difficult to derive analytical solutions for FGM plate based on the 3D
elasticity theory. The common treatment was to assume z-dependent material properties and
dealt with the through-thickness and in-plane direction separately. For example, the series
expansions were used to derive an asymptotic solution in the thickness direction[11–13], while
the exponential law was also widely used to describe the variation of stiffness constants in the
thickness direction and thus decouple the z-dependence from the governing equation[14–18]. The
former encounters a large number of recurrence manipulations which causes low efficiency of
calculation, while the synchronous exponential-law variations of all material properties are no
more than the theoretical meaning. To consider FGM plates with arbitrarily varying material
properties through the thickness, Chen et al.[19] combined the approximate laminate model
(ALM) and the state space method to obtain an asymptotic solution. It is noted that the above
exact or asymptotic solutions[11–19] were all for fully simply supported plates by expanding all
physical quantities into double Fourier series in both in-plane directions. For plates with non-
simple supports, say clamped or free edges, the general solution cannot be expanded into Fourier
series. Hence, analytical solutions are impossible. Recently, Vaghefi et al.[20] used the meshless
local Petrov-Galerkin (MLPG) method to derive a 3D elasticity solution for bending of generally
supported FGM plates. However, their solution is restricted to exponential law variations of
Young’s modulus. In addition, the performing of MLPG in both three directions makes the size
of the final equation very large and hence high computational cost.

For the purpose of treating generally supported plates with high computational efficiency,
the semi-analytical solution may be an alternative. Fortunately, the state space method (SSM)
was successfully combined with the generalized differential quadrature method (DQM), the
so-called state-space based differential quadrature method (SSDQM), by Chen and his co-
workers[21–25] for laminated beams and plates, functionally graded beams, and continuously
multi-span plates, etc. In this paper, the SSDQM is used to obtain the semi-analytical three-
dimensional elasticity solutions for generally supported functionally graded thick plates. The
volume fraction of each constituent phase is assumed to vary through the thickness according
to a power-law function, and the material properties are determined by the micromechanics-
based Mori-Tanaka model[26]. The DQM is used to approximate the variables along the in-plane
direction, while the thickness domain of the plates is solved asymptotically using the ALM[19,27]

combined with on the SSM. Convergence studies are performed to examine the effectiveness
of both SSDQM and ALM by comparing the present results to exact solutions for plates with
exponential law variations. Numerical examples are performed to investigate the effects of
gradient index and aspect rations on the stress distributions in thick plates with non-fully
simple supports.

2 State space formulations

For an orthotropic FGM plate, with the length a, width b, and uniform thickness h, the
coordinate system (x, y, z) is established with the origin coincident with one corner of the
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place, which gives 0 � x � a, 0 � y � b, and 0 � z � h. In the absence of body forces, the
strain-displacement relation, and equations of equilibrium are
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where σi and τij (i, j = x, y, z) are the normal and shear stress components, respectively, cij

are the elastic stiffness constants which vary continuously and smoothly through the thickness
direction, i.e., cij ≡ cij(z).

Combining (1) and (2) and performing the routine derivation of SSM[19] lead to the following
state equation:
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(i, j = ξ, η, ζ) are the non-dimensional normal and shear stresses, respectively, (U , V , W )=(u,
v, w)/h are the non-dimensional displacement components, ξ=x/a, η=y/b, and ζ=z/h are
the non-dimensional coordinates, and c660 is the elastic constant at the surface of ζ=0. The
coefficients Ci are determined by the elastic stiffness constants cij as
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In the state equation (3), all variables are termed the state variables, by virtue of which the
induced variables are expressed as
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Generally, it is difficult to obtain an analytical solution of the partial differential equation (3)
for a plate with arbitrary boundary conditions. As for general supports, numerical techniques
are required. Here, we exploit the DQM[22] to approximate the derivatives about ξ and η on
the right side of (3). Hence, a system of ordinary differential state equation at an arbitrary
discrete point (ξi, gηj) is obtained as
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η, respectively. In addition, the coefficients X
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to the number Nx (or Ny) and the coordinates ξi (or ηj) of the sampling discrete points[22].
Accordingly, the induced variables at all discrete points are obtained as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Σξ,ij = −C4Σζ,ij + C1λa

Nx∑
k=1

X
(1)
ik Ukj + C3λb

Ny∑
k=1

Y
(1)
jk Vik,

Ση,ij = −C5Σζ,ij + C3λa

Nx∑
k=1

X
(1)
ik Ukj + C2λb

Ny∑
k=1

Y
(1)
jk Vik,

Tξη,ij = C6λb

Ny∑
k=1

Y
(1)
jk Uik + C6λa

Nx∑
k=1

X
(1)
ik Vkj .

(7)

By virtue of the discrete variables, the boundary conditions at four edges are expressed as

simple supported edge (S) : Σξ,ij = Vij = Wij = 0; (8a)
clamped edge (C) : Uij = Vij = Wij = 0; (8b)
fee edge (F) : Σξ,ij = Γξη,ij = Γξζ,ij = 0 (8c)
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for ξ=0 (i=1) or ξ=1 (i = Nx); and

S : Ση,ij = Uij = Wij = 0; (9a)
C : Uij = Vij = Wij = 0; (9b)
F : Ση,ij = Γξη,ij = Γηζ,ij = 0 (9c)

for η=0 (j=1) or η=1 (j = Ny).
In order to obtain the unique solution to (6), the boundary conditions in (8) and (9) should

be incorporated. In detail, all boundary conditions should be rearranged in terms of the state
variables, i.e., the state variables at four edges are either zero or algebraically related to other
state variables unknown with respect to ζ. Therefore, the differential equations of the state
variables at the edges should be eliminated[20]. Upon incorporating all boundary conditions,
the state equation (6) is further reduced to

d
dζ

δ(ζ) = M(ζ)δ(ζ), (10)

where δ and M are respectively the new global state vector and coefficient matrix obtained
according to the boundary conditions in (8) and (9).

3 Solutions with ALM

As mentioned at the very beginning, material constants vary continuously through the thick-
ness direction, due to which (10) is a differential equation with variant coefficient matrix and
is rather difficult to solve directly. Here, the ALM[15] is employed, in which the plate is divided
into p artificial layers, each with a small thickness hk. Each layer is thin enough so that it can
be regarded as homogeneous to have constant material properties which are the same as that
at the mid-plane, i.e., cij,k = cij
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)
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Based on this solution, the transfer relation between the state vectors at the two surfaces of
the kth layer is straightforward by setting ζ=ζk+1. Following this route, the transfer relation
between the state vectors at the top (ζ=1) and bottom (ζ=0) surfaces of the plate can be
obtained with the continuity conditions at the artificial interfaces, i.e.,

δ
(p)
t = Tδ

(1)
b , (13)

where T =
1∏

k=p

exp ((ζk+1 − ζk)Mk) is the global transfer matrix, and the subscripts ‘t’ and ‘b’
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the two lateral surfaces in (13), the displacement vectors at the bottom surface can be solved.
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where tij are the blocked matrices of the transfer matrix T . Once the displacement vectors
at the surface ζ = 0 are obtained, repeated performing of (12) together with the continuity
conditions will yield the state vectors at an arbitrary coordinate ζ. Note that the boundary
conditions at the two lateral surfaces are not necessarily limited to the normal traction but
arbitrary with both normal and shear tractions.

It should be pointed out that the numerical difficulties would be encountered if the plate is
thick. In detail, numerical instabilities will occur when performing the inverse manipulation of
the matrix in (14) if the plate is in thick configurations. This problem was well clarified and
successfully removed by Lü et al.[23] when treating continuous plates and generally supported
thick laminated plates[25]. In the current work, we will also use the combined transfer matrix
method and the joint coupling matrix proposed in [23] to obtain numerical results with satisfying
accuracy for thick plates.

4 Numerical examples

4.1 Validation analysis
To examine the effectiveness of both SSDQM and ALM, the convergence study is performed

first. Here, for representative illustration, we consider an SSSS supported FGM plate with
the Young’s modulus varying exponentially through thickness, i.e., E(z) = E0eαz/h, where
α = ln (Eh/E0) is the gradient index, and E0 and Eh are Young’s moduli at the bottom and
top surfaces, respectively. For this problem, we can derive a strictly exact solution using the
SSM with double Fourier series expansions, which is similar to that for elastic FGM plates on
elastic foundations[15].

Fig. 1 Convergence study of present SSDQM and ALM for SSSS FGM square plate (h/a = 0.2 and
Eh/E0 = 0.5)

For the implementation of the differential quadrature procedure, the unequally spaced sam-
pling points in cosine pattern[28] are exploited in this paper. The relative error of the present
SSDQM solution δ against the exact solution δ0 is defined as (δ − δ0)/δ0 × 100%, where δ de-
notes a certain variable. Taking an SSSS FGM plate with h/a = 0.2, Eh/E0 = 0.5 and applied
uniform load at the lower surface for example, the decaying of this relative error for the maximal
transverse displacement wmax and in-plane normal stress σx,b(0.5a, 0.5b, 0) versus the number
of artificial layers using various discrete sampling points in the x- and y-directions are plotted
in Fig. 1. It is confidence that the choosing 30 layers in the ALM and 9 × 9 discrete points for
the in-plane domain will deliver sufficiently accurate results.

To further validate the effectiveness of SSDQM, the transverse displacement and in-plane
normal stress for FGM square plates (h/a=0.3) with various boundary conditions and various
Eh/E0 are computed using 30 layers in the ALM and 9 × 9 discrete points and presented in
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Table 1, where the exact solutions[15] for SSSS plate, 3D MLPG, and finite element method
(FEM) results[20] for all plates are also listed. Apparently, the present results coincide very well
with these 3D solutions. Hence, the effectiveness of SSDQM with 9× 9 discrete points and the
ALM with 30 layers for generally supported FGM plates is also validated.

Table 1 Comparisons between present SSDQM results and other methods (h/a=0.3)

Boundary
Variable Solution

Eh/E0

condition 0.1 0.5 1 2 10

SSSS

c66hwmax

hq0

SSDQM 0.973 5 2.140 5 2.979 5 4.133 2 8.734 3

Exact[15] 0.973 1 2.140 2 2.979 5 4.132 0 8.730 3

FEM[20] 0.973 2 2.140 7 2.979 2 4.133 3 8.729 3

3D MLPG5[20] 0.968 8 2.149 8 2.960 3 4.109 8 8.692 3

σx

„
a

2
,
b

2
, 0

«
/q0

SSDQM −7.149 3 −4.322 7 −3.471 0 −2.785 3 −1.675 9

Exact[15] −7.455 5 −4.414 9 −3.517 6 −2.804 1 −1.672 4

3D FEM[20] −7.263 9 −4.337 8 −3.468 1 −2.767 3 −1.649 9

3D MLPG5[20] −7.203 4 −4.294 3 −3.495 9 −2.755 6 −1.656 6

SCSC

c66hwmax

hq0

SSDQM 0.666 1 1.527 9 2.148 3 2.994 9 6.407 6

3D FEM[20] 0.665 5 1.526 9 2.148 1 2.989 0 6.371 3

3D MLPG5[20] 0.667 5 1.528 6 2.155 5 3.006 6 6.350 6

σx

„
a

2
,
b

2
, 0

«
/q0

SSDQM −4.796 3 −3.055 3 −2.501 4 −2.043 2 −1.279 4

3D FEM[20] −4.864 0 −3.048 4 −2.479 4 −2.012 5 −1.246 6

3D MLPG5[20] −4.878 4 −3.031 1 −2.469 2 −2.008 5 −1.241 2

σy

„
a

2
,
b

2
, 0

«
/q0

SSDQM −5.464 7 −3.366 1 −2.726 6 −2.209 9 −1.372 4

3D FEM[20] −5.555 8 −3.334 7 −2.660 8 −2.143 5 −1.307 3

3D MLPG5[20] −5.567 2 −3.343 7 −2.655 5 −2.154 3 −1.310 3

CCCC

c66hwmax

hq0

SSDQM 0.498 9 1.173 0 1.666 8 2.352 1 5.158 2

3D FEM[20] 0.498 5 1.170 2 1.662 6 2.336 8 5.106 5

3D MLPG5[20] 0.501 6 1.175 3 1.652 1 2.346 9 5.135 0

σx

„
a

2
,
b

2
, 0

«
/q0

SSDQM −4.172 9 −2.655 6 −2.184 2 −1.799 1 −1.164 7

3D FEM[20] −4.229 3 −2.612 0 −2.109 7 −1.727 7 −1.097 4

3D MLPG5[20] −4.202 9 −2.595 0 −2.094 4 −1.731 8 −1.104 0

4.2 Effective material properties
There have been proposed various methods to determine the locally effective material proper-

ties including the exponential law, power law, and micromechanical models, etc. The exponen-
tial or power law functions are often able to facilitate analytical solutions for FGM structures.
In contrast, micromechanical models, such as Mori-Tanaka[26], self-consistent[29], and Viogt
model (rule of mixture)[30] are the widely acceptable models for predicting the locally effective
elastic moduli of FGM since they account for the interactions between constituent phases based
on solving the average local stress and strain fields. It has been reported that the Voigt and
Mori-Tanaka models have the same accuracy in predicting the buckling and vibration charac-
teristics of functionally graded ceramic-metal beams, plates, and shells[31–34]. Here, we consider
an FGM plate composed of two-phase composite reinforced by spherical particles in the plate
plane, and the effective material properties are predicted by the Mori-Tanaka model[26], in
which the effective bulk modulus Ke and the effective shear modulus μe are given by

Ke − K1

K2 − K1
=

V2

1 + V1(K2 − K1)/(K1 + 4μ1/3)
, (14a)

μe − μ1

μ2 − μ1
=

V2

1 + V1(μ2 − μ1)/(μ1 + μ1(9K1 + 8μ1)/6(K1 + 2μ1))
, (14b)
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where K, μ, and V (z) are the bulk modulus, shear modulus, and volume fraction of individual
material constituent, and the subscripts “1” and “2” denote two different material phases. The
bulk and shear moduli of the material are determined by Young’s modulus E and Poisson’s
ratio ν as K = E

3(1−2ν) and μ = E
2(1+ν) .

Here, we assume that the FGM plate is made of an aluminum alloy (Al) for metal phase and
zirconia (ZrO2) for ceramic phase. The corresponding materials are respectively Em=70GPa
and νm=0.3 for Al[8], and Ec=168.06GPa and νc=0.3 for ZrO[35]

2 . The volume fraction of ZrO2

is given by the power law V2=(z/h)α, where α is the gradient index indicating the variation
through the thickness. This scheme of volume fraction indicates that the bottom surface is pure
Al and the top pure ZrO2. Figure 2 exhibits the through-thickness variation of the normalized
effective Young’s moduli Ee/Em of the Al/ZrO2 plate. It is obvious that when the gradient
index is very small (e.g., α=0.2) or very large (e.g., α=5), the effective Young’s modulus varies
drastically within the metal-rich or ceramic-rich area.

Fig. 2 Through-thickness variation of normalized effective Young’s moduli of Al/ZrO2 plate for vari-
ous gradient index α (insert shows schematic spatial distribution of Al and ZrO2 phases along
thickness direction)

4.3 Parametric study
Generally supported FGM square plate (a = b) subjected to a uniform pressure q0 on the

ZrO2 surface is considered in this section. The deflection w, the in-plane normal stress σx, and
the shear stress τxy are normalized as

w =
100Dmw

q0a4
, (σx, τxy) =

h2

q0a2
(σx, τxy),

where Dm = Emh3

12(1−ν2
m) is the bending rigidity of an aluminum plate.

Firstly, the effectiveness of the SSDQM for FGM plates with Mori-Tanaka type material
properties and various boundary conditions is studied. To compare the current results with the
HOPT[8] solutions, the Young’s modulus for ZrO2 in this example is taken as Ec= 200GPa.
Figures 3–5 exhibit the numerical results for through-thickness distributions of normalized de-
flection w and in-plane normal stress σx of SSSS, SCSC, and CCCC square plates with h/a=0.2
and gradient index α=1 and α=2. In the figures, the solid square markers denote the HOPT
results[8] obtained using the MLPG method based on the higher-order shear and normal de-
formable plate theory. It is seen that the present results agree well with the HOPT results. It
is also shown that the larger the gradient index is, the smaller deflection is of the plate. This is
mainly due to the fact that the volume fraction of ZrO2 with larger Young’s modulus increases
with the gradient index α.
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Fig. 3 Through-thickness distributions of non-dimensional transverse displacement and in-plane nor-
mal stress of SSSS square at x=a/2 and y = b/2 (h/a=0.2)

Fig. 4 Through-thickness distributions of
non-dimensional transverse displace-
ment and in-plane normal stress of
SCSC square at x=a/2 and y = b/2
(h/a=0.2)

Fig. 5 Through-thickness distributions of non-
dimensional transverse displacement and
in-plane normal stress of CCCC square
at x=a/2 and y = b/2 (h/a=0.2)

Next, the effects of gradient index on the stress distributions of FGM plates are studied.
In practical applications, the gradient index α should not be too small or too large, otherwise,
the tailored FGM will contain too much of one constituent phase and too little of the other.
Nakamura et al.[36] suggested 1/3<α<3 so that the volume fraction of each constituent phase
takes 25%–75%. Here, we consider a metal rich FGM plate with α=1, 2, or 5 for representatively
theoretical illustrations. Figure 6 plots the through-thickness distributions of the in-plane
normal stress σx and in-plane shear stress τxy of a CCCC square plate (h/a=0.2) for various
α. It is observed that the nonlinear distributions of σx and τxy become increasingly obvious
as α increases. The fibers at the vicinity of Al rich surface bear an increasing tensile stress
as the volume fraction of ZrO2 becomes increases. Similar trends are also observed for the
compressive stress near the ZrO2 rich surface, and the in-plane shear stress at the vicinity of
the two surfaces.

Finally, to investigate the effects of aspect ratio h/a on the stress distributions in FGM
plates, we consider the SCSC and CCCC plates with α = 3 as illustrative examples. The
through-thickness distributions of in-plane normal stress σx and shear stress τxy for various
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Fig. 6 Effects of gradient index α on through-thickness distributions of in-plane normal and shear
stresses of CCCC plates (h/a=0.2)

aspect ratio h/a are shown in Figs. 7 and 8. It is seen that, for a given gradient index (α=3),
the distributions of in-plane normal and shear stresses become increasingly drastic as the plate
gets thicker regardless of the boundary conditions. Both Figs. 7 and 8 show that the existence
of material gradient will shift the neutral plane. For the case of α=3, the neutral plane moves
toward the lower surface, i.e., the soft phase with rich Al.

Fig. 7 Effects of aspect ratio h/a on
through-thickness distributions of in-
plane normal and shear stresses of
SCSC plate (α=3)

Fig. 8 Effects of aspect ratio h/a on through-
thickness distributions of in-plane nor-
mal and shear stresses of CCCC plate
(α=3)

5 Conclusions

Bending analysis of FGM thick plates is carried out via the newly developed SSDQM. Di-
rectly based on the 3D theory of elasticity, no assumptions of the distributions of displacement
and stress are introduced, which enables the current method applicable for plates with arbi-
trary thickness. The current semi-analytical method has two merits: (i) the introduction of
differential quadrature makes it possible to extend the SSM to plates with arbitrary boundary
conditions, thus expanding the application of the traditional SSM for FGM plates; (ii) to imple-
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ment the differential quadrature in the state space formalism avoids forcing some of the inner
discrete points to satisfy higher-order boundary conditions, since all boundary conditions are
now expressed by stress or displacement components at the edges. That is, physical approxima-
tions commonly encountered during performing DQM for higher-order differential equations are
avoided. On the other hand, although the Mori-Tanaka method is not appropriate enough to
determine the effective material properties for FGM especially at location where the inclusion
is rich, the approximate laminate model is universal for arbitrarily through-thickness variations
of material properties once the effective properties are predicted precisely.

Numerical results indicate that for two-phase functionally graded plates, the in-plane normal
and shear stresses will vary more gently through the thickness direction for rich volume fraction
of hard phase. It is also shown that the stress level is lower for thin plates than that for thick
plate. In addition, the neutral plane of the plate will shift as the volume fraction of hard
phase varies for two-phase functionally grade plate. All these findings may render theoretical
references for the design of functionally graded materials for various application purposes in
practical engineering.
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