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Abstract This article presents a numerical solution for the flow of a Newtonian fluid
over an impermeable stretching sheet embedded in a porous medium with the power
law surface velocity and variable thickness in the presence of thermal radiation. The
flow is caused by non-linear stretching of a sheet. Thermal conductivity of the fluid
is assumed to vary linearly with temperature. The governing partial differential equa-
tions (PDEs) are transformed into a system of coupled non-linear ordinary differential
equations (ODEs) with appropriate boundary conditions for various physical parameters.
The remaining system of ODEs is solved numerically using a differential transformation
method (DTM). The effects of the porous parameter, the wall thickness parameter, the
radiation parameter, the thermal conductivity parameter, and the Prandtl number on
the flow and temperature profiles are presented. Moreover, the local skin-friction and the
Nusselt numbers are presented. Comparison of the obtained numerical results is made
with previously published results in some special cases, with good agreement. The results
obtained in this paper confirm the idea that DTM is a powerful mathematical tool and
can be applied to a large class of linear and non-linear problems in different fields of
science and engineering.
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Nomenclature

A, b, constants;
Cf, skin friction coefficient;
cp, specific heat at constant pressure;
D, porous parameter;
f(η), similarity variable;
k, permeability of porous medium;
k∗, mean absorption coefficient;

k0, permeability parameter;
m, velocity power index;
Nu, Nusselt number;
Pr, Prandtl number;
qr, radiative heat flux;
qeff , effective conduction-radiation flux;
R, radiation parameter;
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Rex, local Reynolds number;
T , temperature of fluid;
Tw, temperature of sheet;
T∞, free-stream temperature;
u, velocity component in x-direction;
v, velocity component in y-direction;

U , stretching velocity;
U0, reference velocity;
vw, suction or injection velocity;
x, coordinate measured along surface;
y, coordinate normal to surface.

Greek symbols
α, thickness of wall parameter;
η, similarity variable;
ε, thermal conductivity parameter;
κ, fluid thermal conductivity;
κeff , effective thermal conductivity;
ψ, stream velocity function;

ρ, fluid density;
σ∗, Stefan-Boltzmann constant;
θ, dimensionless temperature;
μ, fluid viscosity;
ν, kinematic viscosity of the fluid.

Subscripts

∞, free stream condition; w, condition at surface.

1 Introduction

The study of flow and heat transfer of a Newtonian fluid over a stretching surface issuing
from slit has gained considerable attention of many researchers due to its importance in many
industrial applications, such as extraction of polymer sheet, wire drawing, paper production,
glass-fiber production, hot rolling, solidification of liquid crystals, petroleum production, con-
tinuous cooling and fibers spinning, and exotic lubricants and suspension solutions. Much work
on the boundary-layer Newtonian fluids has been carried out both experimentally and theoreti-
cally. Crane[1] was the first one who studied the stretching problem taking into account the fluid
flow over a linearly stretched surface. There has been a great deal of the work done on Newto-
nian fluid flow and heat transfer over a stretching surface, but only a few recent studies are cited
here. Gupta and Gupta[2] analyzed the stretching problem with a constant surface tempera-
ture, while Soundalgekar and Ramana[3] investigated the constant surface velocity case with a
power-law temperature variation. Grubka and Bobba[4] have analyzed the stretching problem
for a surface moving with a linear velocity and with a variable surface temperature. Chen and
Char[5] investigated the heat transfer characteristics over a continuous stretching sheet with
variable surface temperature. Using the homotopy analysis method (HAM), series solutions
were obtained by Hayat et al.[6] for the stretching sheet problem with mixed convection.

Despite the practical importance of the flow in a porous medium, all the above-mentioned
works do not however consider the situations where the flow in fluid-saturated porous me-
dia arises. The study of the flow in fluid-saturated porous media due to a stretching sheet
is important in engineering problems, such as the design of building components for energy
consideration, soil science, mechanical engineering, control of pollutant spread in groundwater,
thermal insulation systems, compact heat exchangers, solar power collectors, and food indus-
tries. Because of such important practical applications, many investigators have modeled the
behavior of a boundary layer flow embedded in a porous medium. Then, extensive studies were
conducted by many researchers[7–10]. In all the previous investigations, the effects of radiation
on the flow and heat transfer have not been provided. Radiative heat transfer flow is very
important in manufacturing industries for the design of reliable equipments, nuclear plants,
gas turbines, and various propulsion devices for aircraft, missiles, satellites, and space vehicles.
Also, the effects of thermal radiation on the forced and free convection flows are important in
the context of space technology and processes involving high temperature. Based on these ap-
plications, Hossain et al.[11–12] and Elbashbeshy and Demain[13] studied the thermal radiation
of a gray fluid which is emitting and absorbing radiation in non-scattering medium. Abel and
Mahesha[14] studied the effect of radiation in different situations. Recently, Battaler[15] studied
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the effect of thermal radiation on the laminar boundary layer about a flat plate. Historically,
the study on boundary layer flows over a stretching sheet with variable thickness was studied by
Fang et al.[16]. However, so far no attention has been given to the effects of the non-flatness on
the stretching sheet problems considering a variable sheet thickness. The purpose of the present
paper is to investigate the numerical solution for the variable thermal conductivity effect on the
flow and heat transfer of a Newtonian fluid-saturated porous medium over a stretching sheet
with variable thickness in the presence of thermal radiation.

Most non-linear differential equations do not have exact solutions, so approximate and nu-
merical techniques[17–22] must be used. The differential transformation method (DTM) is a
semi-numerical-analytic-technique that formalizes the Taylor series in a totally different man-
ner. It was first introduced by Zhou in a study about electrical circuits[23]. Borhanifar and
Abazari[24–25] used it for solving of the linear and non-linear problems. In this paper, we ex-
tended DTM for applying to the search for the numerical solutions of the introduced problem.
The DTM plays an important rule in recent researches in this field. It has been shown that
this procedure is a powerful tool for solving various kinds of problems[26–30]. This technique
reduces the problem to a system of algebraic equations. In this work, we will use the Newton
iteration method to solve the resulting system of algebraic equations.

2 Formulation of problem

Consider a steady, two-dimensional boundary layer flow of an incompressible Newtonian fluid
over a continuously impermeable stretching sheet embedded in a porous medium. The origin is
located at a slit, through which the sheet (see Fig. 1) is drawn through the fluid medium. The
x-axis is chosen along the sheet and y-axis is taken normal to it. The stretching surface has the
velocity Uw = U0(x + b)m, where U0 is the reference velocity. We assume that the sheet is not
flat in which it is specified as y = A(x + b)

1−m
2 , where A is a very small constant so that the

sheet is sufficiently thin and m is the velocity power index. We must observe that our problem
is valid only for m �= 1, because for m = 1, the problem reduces to a flat sheet. Likewise,
the fluid properties are assumed to be constant except for thermal conductivity variations in
the temperature. Making the usual boundary layer approximations for the Newtonian fluid,
the steady two-dimensional boundary-layer equations taking into account the thermal radiation
effect in the energy equation can be written as

∂u

∂x
+
∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− μ

ρk
u, (2)

ρcp

(
u
∂T

∂x
+ v

∂T

∂y

)
=

∂

∂y

(
κ
∂T

∂y

)
− ∂qr
∂y

, (3)

where u and v are the velocity components in x- and y-directions, respectively. ρ and κ are the
fluid density and the thermal conductivity, respectively. T is the temperature of the fluid, ν is
the fluid kinematic viscosity, cp is the specific heat at constant pressure, μ is the fluid viscosity,
k is the permeability of the porous medium, and qr is the radiative heat flux. The radiative
heat flux qr is employed according to Rosseland approximation[31] such that

qr = −4σ∗

3k∗
∂T 4

∂y
, (4)

where σ∗ is the Stefan-Boltzmann constant, and k∗ is the mean absorption coefficient. Following
Raptis[23], we assume that the temperature differences within the flow are sufficiently small such
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Fig. 1 Schematic of stretching sheet with variable sheet thickness

that T 4 may be expressed as a linear function of the temperature. Expanding T 4 in a Taylor
series about T∞ and neglecting higher-order terms, we have

T 4 ∼= 4T 3
∞T − 3T 4

∞. (5)

The physical and mathematical advantage of the Rosseland formula (5) consists of the fact that
it can be combined with Fourier’s second law of conduction to an effective conduction-radiation
flux qeff in the form

qeff = −
(
κ+

16σ∗T 3
∞

3k∗
)∂T
∂y

= −κeff
∂T

∂y
, (6)

where κeff = κ+ 16σ∗T 3
∞

3k∗ is the effective thermal conductivity. Thus, the steady energy balance
equation including the net contribution of the radiation emitted from the hot wall and absorbed
in the colder fluid, takes the form

ρcp

(
u
∂T

∂x
+ v

∂T

∂y

)
=

∂

∂y

(
κeff

∂T

∂y

)
. (7)

To obtain the similarity solutions, it is assumed that the permeability of the porous medium
k(x) is of the form

k(x) = k0(x+ b)1−m, (8)

where k0 is the permeability parameter. The boundary conditions can be written as

u
(
x,A(x+ b)

1−m
2

)
= U0(x+ b)m, v

(
x,A(x + b)

1−m
2

)
= 0, T

(
x,A(x + b)

1−m
2

)
= Tw, (9)

u(x,∞) = 0, T (x,∞) = T∞. (10)

The mathematical analysis of the problem is simplified by introducing the following dimension-
less coordinates:⎧⎪⎪⎨

⎪⎪⎩
ζ = y

√
U0(m+1

2 )
(

(x+b)m−1

ν

)
, ψ(x, y) =

√
νU0( 2

m+1 )(x + b)m+1F (ζ),

Θ(ζ) =
(
T−T∞
Tw−T∞

)
,

(11)

where ζ is the similarity variable, ψ(x, y) is the stream function which is defined in the classical
form as u = ∂ψ

∂y and v = −∂ψ
∂x , and Θ(ζ) is the dimensionless temperature.
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In this study, the equation for the dimensionless thermal conductivity κ is generalized for
the temperature dependence as follows[33–34]:

κ = κ∞(1 + εΘ), (12)

where κ∞ is the ambient thermal conductivity, and ε is the thermal conductivity parameter.
Upon using these variables, the boundary layer governing equations (1)−(3) can be written

in the following non-dimensional form:

F
′′′

+ FF
′′ − 2m

m+ 1
F

′2 −DF
′
= 0, (13)

(1 +R

Pr

)(
(1 + εΘ)θ

′′
+ εΘ

′2
)

+ FΘ
′
= 0, (14)

where D = 2ν
k0U0(m+1) is the porous parameter, Pr = μcp

κ∞
is the Prandtl number, and R =

16σ∗T 3
∞

3k∗κ∞ is the radiation parameter. The transformed boundary conditions are

F (α) = α
(1 −m

1 +m

)
, F

′
(α) = 1, Θ(α) = 1, (15)

F
′
(∞) = 0, Θ(∞) = 0, (16)

where α = A
√

U0(m+1)
2ν is a parameter related to the thickness of the wall, and η = α =

A
√

U0(m+1)
2ν indicates the plate surface. In order to facilitate the computation, we define F (ζ) =

F (η − α) = f(η) and Θ(ζ) = Θ(η − α) = θ(η). The similarity equations and the associated
boundary conditions become

f
′′′

+ ff
′′ − 2m

m+ 1
f

′2 −Df
′
= 0, (17)

(1 +R

Pr

)
((1 + εθ)θ

′′
+ εθ

′2) + fθ
′
= 0, (18)

f(0) = α
(1 −m

1 +m

)
, f

′
(0) = 1, θ(0) = 1, (19)

f
′
(∞) = 0, θ(∞) = 0, (20)

where the prime denotes differentiation with respect to η. Based on the variable transformation,
the solution domain will be fixed from 0 to ∞. The physical quantities of primary interest are
the local skin-friction coefficient Cf and the local Nusselt number Nu, which are defined as

Cf = −2

√
m+ 1

2
Re

−1
2
x f

′′
(0), Nu = −

√
m+ 1

2
Re

1
2
x θ

′
(0), (21)

where Rex = UwX
ν is the local Reynolds number, and X = x+ b.

3 Basic definitions of DTM

In the DTM, the given differential equation and related initial conditions are transformed
into a recurrence equation that finally leads to the solution of a system of algebraic equations as
coefficients of a power series solution. This method is useful for obtaining exact and approximate
solutions of linear and nonlinear differential equations. There is no need for linearization or
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perturbations, and large computational work and round-off errors are avoided. It has been
used to solve a large class of linear and nonlinear differential equations with approximations
effectively, easily, and accurately.

The basic definitions of DTM are introduced as follows. With reference to the articles[26,28],
we introduce in this section the basic definitions of the one-dimensional DTM.

Definition 1 If f(η) is an analytic function in the domain Ω = [0, T ], then it will be
differentiated continuously with respect to time η,

dkf(η)
dηk

= φ(η, k), ∀ η ∈ Ω. (22)

For any point η = ηi in [0, T ], we have φ(η, k) = φ(ηi, k), where k belongs to the set of non-
negative integers N0. Therefore, (22) can be written as

F (k) = φ(ηi, k) =
(dkf(η)

dηk
)
η=ηi

, ∀ k ∈ N0, (23)

where F (k) ∈ R
n×n is called the spectrum of f(η) at η = ηi in the domain N0. Also, F (k) is

called the differential transform of the function f(η).
Definition 2 If f(η) can be expressed by Taylor’s series about the fixed point ηi, then f(η)

can be represented as

f(η) =
∞∑
k=0

f (k)(ηi)
k!

(η − ηi)k. (24)

If fn(η) is the n-partial sums of Taylor’s series (24), then

fn(η) =
n∑
k=0

f (k)(ηi)
k!

(η − ηi)k +Rn+1(η), (25)

where fn(η) is called the nth Taylor polynomial for f(η) about ηi, and Rn+1(η) is the remainder
term. Now, using (23), (24) reduces to

f(η) =
∞∑
k=0

F (k)(η − ηi)k, (26)

and the n-partial sum of Taylor’s series (25) reduces to

fn(η) =
n∑
k=0

F (k)(η − ηi)k +Rn+1(η). (27)

For simplicity, we assume the particular case ηi = 0 (Maclaurin). Then, (26) reduces to

f(η) =
n∑
k=0

F (k)ηk +Rn+1(η). (28)

It is clear that the concept of differential transformation is based upon the Taylor series ex-
pansion. The values of function F (k) at values of argument k are referred to as discrete, i.e.,
F (0) is known as the zero discrete, F (1) as the first discrete, etc. The more discrete available,
the more precise it is possible to restore the unknown function. The function f(η) consists of
the transformed function F (k), and its value is given by the sum of the transformed function
with ηk as its coefficient. In real applications, at the larger values of argument k, the discrete
of spectrum reduces rapidly.

From the above definitions, it can be found that the concept of the one-dimensional differen-
tial transform is derived from the Taylor series expansion. With (23) and (26), the fundamental
mathematical operations performed by one-dimensional differential transform can readily be
obtained and listed in Table 1.
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Table 1 Fundamental operations of one-dimension DTM

Original function Transformed function

w(η) = u(η) ± v(η) W (k) = U(k) ± V (k)

w(η) = c u(η) W (k) = c U(k)

w(η) = d
dη

u(η) W (k) = (k + 1)U(k + 1)

w(η) = d2

dη2 u(η) W (k) = (k + 1)(k + 2)U(k + 2)

w(η) = dm

dηm u(η) W (k) = (k + 1) · · · (k + m)U(k + m)

w(η) = u(η)v(η) W (k) = U(k) ⊗ V (k) =
kP

l=0
U(l)V (l − k)

4 Solution procedure using DTM

Our aim in this paper is to use the DTM to solve numerically (17)–(18) at the bounded
domain (0, η∞) with the boundary conditions (19)−(20). Using the DTM on (17)−(18), and
from Table 1, we get

(k + 1)(k + 2)(k + 3)F (k + 3)

= −
k∑
r=0

(k − r + 1)(k − r + 2)F (r)F (k − r + 2)

+
( 2m
m+ 1

) k∑
r=0

(r + 1)(k − r + 1)F (r + 1)F (k − r + 1) +D(k + 1)F (k + 1), (29)

(k + 1)(k + 2)Θ(k + 2)

=
k∑
r=0

−ε(k − r + 1)(k − r + 2)Θ(r)Θ(k − r + 2)

− ε(r + 1)(k − r + 1)Θ(r + 1)Θ(k − r + 1)

−
( Pr

1 +R

)
(k − r + 1)F (r)Θ(k − r + 1), (30)

where F (k) and Θ(k) are the differential transforms of f(η) and θ(η), respectively.

We choose suitable initial conditions

F (0) = α
(1 −m

1 +m

)
, F (1) =

1
2
, F (2) =

1
6
c0, Θ(0) = 1, Θ(1) =

1
2
c1 (31)
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for arbitrary constants c0 and c1. From (29)−(30), for k = 0, 1, · · · , and using (31), we get
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (3) =
1
6

(
− 2F (0)F (2) +

( 2m
m+ 1

)
(F (1))2 +DF (1)

)

=
1
6

(
− 1

3
αc0

(1 −m

1 +m

)
+

0.5m
m+ 1

+ 0.5D
)
,

Θ(2) =
1
2

(
− 2εΘ(0)Θ(2)− ε(Θ(1))2 −

( Pr

1 +R

)
F (0)Θ(1)

)

=
1
2

(
− 2εΘ(2)− 0.25ε c21 −

(0.5αc1Pr
1 +R

)(1 −m

1 +m

))
,

F (4) =
1
24

(
− 6F (0)F (3) − 2F (1)F (2) +

( 8m
1 +m

)
F (1)F (2) + 2DF (2)

)

=
1
24

(
− 6α

(1 −m

1 +m

)
F (3) − 1

6
c0 +

2m
3(1 +m)

c0 +
1
3
Dc0

)
,

Θ(3) =
1
6

(
− 6Θ(0)Θ(3)− (2ε+ 4)Θ(1)Θ(2) +

( Pr

1 +R

)
(2F (0)Θ(2) + F (1)Θ(1))

)

=
1
6

(
− 6Θ(3) − (εc1 + 2c1)Θ(2) +

( Pr

1 +R

)
(2α

(1 −m

1 +m

)
Θ(2) + 0.25c1)

)
,

...

(32)

In the same manner, the rest of components can be obtained using the MATHEMATICA
package. Substituted the quantities listed on (32) in (28), when η0 = 0, the approximate
solution in a series form of the proposed problems (17)−(18) is given by

f(η) ∼=
n∑
k=0

F (k)ηk = F (0) + F (1)η + F (2)η2 + F (3)η3 + F (4)η4 + · · · + F (n)ηn, (33)

θ(η) ∼=
n∑
k=0

Θ(k)ηk = Θ(0) + Θ(1)η + Θ(2)η2 + Θ(3)η3 + Θ(4)η4 + · · · + Θ(n)ηn. (34)

Now, we find the constants c0 and c1 using the boundary conditions (19)−(20), where we take
the values α = 0.2, m = 0.5, D = 0.5, R = 0.5, P r = 1, and ε = 0.2. These values are
c0 = 0.143 818 606 and c1 = −0.236 093 966. Having F (k), Θ(k), k = 0, 1, · · · , n, the solution
are the same as (33).

5 Results and discussion

Tables 2 and 3 clearly reveal that present solution namely DTM shows excellent agreement
with the existing solutions in the literature [16]. This analysis shows that DTM suits for
the problems of boundary layer flow in fluid-saturated porous medium. This section provides
the behavior of parameters involved in the expressions of heat transfer characteristics for the
stretching sheet. Numerical evaluation for the solutions of this problem is performed and the
results are illustrated graphically in Figs. 2−10. The study of flow in porous media is very
important in approximating the shape of spherical particles or cylindrical fibers which better
fit the model of permeability assumed for the analysis. Effects of the porous parameter D on
velocity and temperature profiles are shown in Figs. 2 and 3, respectively. It is observed that
the velocity decreases for increasing values of porous parameter. Furthermore, the momentum
boundary layer thickness decreases as porous parameter D increases. Figure 3 elucidates that
the fluid temperature enhances with an increase in the porous parameter.
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Table 2 Comparison of numerical value of −f ′′(0), obtained by DTM for α = 0.5, D = 0 with Fang

et al.[16]

m 10.00 9.00 7.00 5.00 3.00 2.00 1.00 0.50 0.00 −0.50

−f ′′(0) 1.060 3 1.058 9 1.055 0 1.048 6 1.035 9 1.023 4 1.000 0 0.979 9 0.957 6 1.166 7
Present

1.061 1 1.058 6 1.054 8 1.048 4 1.035 8 1.023 3 0.998 9 0.979 9 0.957 6 1.166 5
work

Table 3 Comparison of numerical value of −f ′′(0), obtained by DTM for α = 0.25, D = 0 with Fang

et al.[16]

m 10.00 9.00 7.00 5.00 3.00 1.00 0.50 0.00 −1/3 −0.50

−f ′′(0) 1.143 3 1.140 4 1.132 3 1.118 6 1.090 5 1.000 0 0.933 8 0.784 39 0.500 0 0.083 3
Present

1.143 2 1.141 1 1.132 1 1.118 4 1.090 1 0.997 9 0.933 43 0.784 10 0.499 9 0.083 2
work

Fig. 2 Behavior of velocity distribution for
various values of D

Fig. 3 Behavior of temperature distribution for
various values of D

Fig. 4 (a) Behavior of velocity distribution for various values of α with m = 0.5 and (b) behavior of
velocity distribution for various values of α with m = 5.0

The effects of wall thickness parameter on the fluid flow and the temperature distribution
have been analyzed and the results are presented in Figs. 4−5. From Fig. 4, it is clear that the
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velocity at any point near to the plate decreases as the wall thickness parameter increases for
m < 1 and the reverse is true for m > 1. Also, it is obvious from these figures that the thickness
of the boundary layer becomes thinner for a higher value of α when m < 1 and becomes thicker
for a higher value of α when m > 1.

Figure 5 displays that the wall thickness parameter decreases the thickness of the thermal
boundary layer and enhances the rate of heat transfer for m < 1 whereas reverse trend is
observed as m > 1. Physically, increasing the value of α when m < 1 will decrease the flow
velocity, because under the variable wall thickness, not all the pulling force of the stretching
sheet can be transmitted to the fluid causing a decrease for both friction between the fluid layers
and temperature distribution for the fluid. However, when m > 1 the velocity of the flow layers
will increase causing an enhance for the friction force between this layers and thus increasing
its temperature. Likewise, for a higher value of α, the thermal boundary layer becomes thinner
when m < 1 compared with the case of m > 1.

Fig. 5 (a) Behavior of temperature distribution for various values of α with m = 0.5 and (b) behavior
of temperature distribution for various values of α with m = 5.0

Figure 6 shows that the velocity rises with a decrease in the values of the velocity power
index m. This implies the momentum boundary thickness becomes thinner as m increases along
the sheet, and the reverse is true away from it.

Fig. 6 Behavior of velocity distribution for various values of m

Figure 7 displays the influence of the velocity power index parameter m on the temperature
profiles. It is clearly seen from this figure that increasing the value of m produces an increase
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in the temperature profiles. It further shows that the larger the value of m, the higher the
magnitude of the thermal boundary thickness will be.

Fig. 7 Behavior of temperature distribution for various values of m

In Fig. 8, we have varied the thermal conductivity parameter ε keeping the values of all other
parameters fixed. Figure 8 reveals that the temperature profile as well as the thickness of the
thermal boundary layer increases when ε increases.

Fig. 8 Behavior of temperature distribution for various values of ε

Figure 9 illustrates the effects of radiation parameter R on the temperature profiles when other
parameters hold constant. It is depicted that the temperature field and the thermal boundary
layer thickness increase with the increase in R.

It is observed from Fig. 10 that an increase in the Prandtl number results in decreasing the
heat transfer profiles. The reason is that increasing values of Prandtl number is equivalent
to decreasing the thermal conductivities, and therefore heat is able to diffuse away from the
heated sheet more rapidly. Hence, in the case of increasing Prandtl number, the boundary layer
is thinner and the heat transfer is reduced.

Table 4 shows the influence of the porous parameter D, wall thickness parameter α, the
velocity power index parameter m, the radiation parameter R, the Prandtl number Pr, and
thermal conductivity parameters ε on the local skin friction coefficient and the local Nusselt
number. It is noticed that increasing the wall thickness parameter leads to an increase in
both the local skin-friction coefficient and the local Nusselt number. Likewise, the local Nusselt
number is reduced but the skin-friction coefficient is increased with increasing for both values of
porous parameter and velocity power index parameter. Also, an increase in the Prandtl number
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Fig. 9 Behavior of temperature distribution
for various values of R

Fig. 10 Behavior of temperature distribution
for various values of Pr

causes an increase in the local Nusselt number. This is because a fluid with larger Prandtl
number possesses larger heat capacity, and hence intensifies the heat transfer. Moreover, it is
observed that the values of the local Nusselt number decrease with increase in both the thermal
conductivity parameter and the radiation parameter.

Table 4 Values of −f ′′(0) and −θ′(0) for various values of D,α,m, ε,R, and Pr

D α m ε R Pr −f ′′(0) −θ(0)

0.0 0.2 0.5 0.1 0.5 1.0 0.924 134 0.441 845 1
0.5 0.2 0.5 0.1 0.5 1.0 1.168 475 0.401 814 8
1.0 0.2 0.5 0.1 0.5 1.0 1.369 671 0.372 276 5
0.5 0.0 0.5 0.1 0.5 1.0 1.133 980 0.375 123 1
0.5 0.25 0.5 0.1 0.5 1.0 1.177 211 0.408 650 4
0.5 0.5 0.5 0.1 0.5 1.0 1.222 213 0.443 231 2
0.5 1.0 0.5 0.1 0.5 1.0 1.316 454 0.515 111 9
0.5 0.2 0.0 0.1 0.5 1.0 1.044 345 0.472 759 0
0.5 0.2 0.5 0.1 0.5 1.0 1.168 209 0.401 889 7
0.5 0.2 5.0 0.1 0.5 1.0 1.327 408 0.303 387 3
0.5 0.2 0.5 0.0 0.5 1.0 1.168 209 0.434 831 0
0.5 0.2 0.5 0.2 0.5 1.0 1.168 209 0.373 923 1
0.5 0.2 0.5 0.5 0.5 1.0 1.168 209 0.310 607 6
0.5 0.2 0.5 0.1 0.0 1.0 1.168 209 0.547 710 4
0.5 0.2 0.5 0.1 0.5 1.0 1.168 209 0.401 856 9
0.5 0.2 0.5 0.1 1.0 1.0 1.168 209 0.319 519 0
0.5 0.2 0.5 0.1 0.5 0.7 1.168 209 0.302 223 4
0.5 0.2 0.5 0.1 0.5 1.0 1.168 209 0.401 843 5
0.5 0.2 0.5 0.1 0.5 3.0 1.168 209 0.896 387 6

6 Conclusions

Here, we use the DTM to solve the resulting non-linear system of ordinary differential
equations (ODEs) of the problem of flow and heat transfer in a quiescent Newtonian fluid
flow caused solely by a stretching sheet, which embedded in a porous medium with variable
thickness, variable thermal conductivity, and thermal radiation. The fluid thermal conductivity
is assumed to vary as a linear function of temperature. Comparison with previously published
work is performed and the results are found to be in excellent agreement. Asystematic study
on the effects of the various parameters on flow and heat transfer characteristics is carried out.
It is found that increasing values of the porous parameter, the velocity power index parameter,
thermal conductivity parameter, and the radiation parameter reduces the local Nusselt number.
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On the other hand, it is observed that the local Nusselt number increases as the Prandtl number
and the wall thickness parameter increase. Moreover, it is interesting to find that increasing
the porous parameter, wall thickness parameter, and the velocity power index parameter in
magnitude, causes the fluid to slow down past the stretching sheet and the increasing of skin-
friction coefficient in magnitude. Summarizing these results, we can say that the DTM in its
general form gives a reasonable calculation, easy to use, and can be applied for the differential
equations in general form.
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