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Abstract Comparisons of the common methods for obtaining the periodic responses
show that the harmonic balance method with alternating frequency/time (HB-AFT) do-
main technique has some advantages in dealing with nonlinear problems of fractional
exponential models. By the HB-AFT method, a rigid rotor supported by ball bearings
with nonlinearity of Hertz contact and ball passage vibrations is considered. With the
aid of the Floquet theory, the movement characteristics of interval stability are deeply
studied. Besides, a simple strategy to determine the monodromy matrix is proposed for
the stability analysis.
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1 Introduction

All periodic motion of linear dissipation system is stable. However, some periodic motion for
nonlinear dissipation system is unstable. There may be many different types of motion, such as
super-harmonic, sub-harmonic, and chaotic vibrations. The analysis of motion types and stable
regions of engineering system has important significance. It is common to use the fractional
exponential model to describe impact and contact problems in engineering[1]. However, the
dynamic response of this model is difficult for theoretical analysis[2]. Therefore, it is necessary
to find an effective method for these problems.

A semi-analytical method of implicit harmonic balance analysis named the harmonic balance
method with alternating frequency/time (HB-AFT) domain technique was first proposed by
Yamauchi in 1983[3]. Kim and Noah[4–6] developed this method to a complete solution strategy
for the periodic response of dynamic systems. The homotopy continuation scheme together
with the HB-AFT method was provided to compute hysteresis response by Groll and Ewins[7].
Tiwari and Gupta[8] first used the HB-AFT method to the bearing-rotor systems considering
ball passage vibrations to validate the steady response obtained by numerical integration. Villa
et al.[9] used a whole frequency domain method based on the HB-AFT and a perturbation
method to study the response characteristic in a flexible ball bearings-rotor system. However,
it should be noted that this whole frequency domain method in Ref. [9] cannot generate the
bifurcation mechanism of instability locations.
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In this paper, we present the advantage of the HB-AFT method for fractional exponential
problems. The global response of a two degree-of-freedom ball bearing-rotor structure is deeply
analyzed by the HB-AFT approach combined with the Floquet theory, and for the first time, we
attempt to estimate the dangerous unstable ranges of with this system via the above schemes.
2 Comparison of solving methods

There are many numerical and analytical methods for the study of steady state of differ-
ential dynamical systems. Usually, we take the problems as initial value problems of ordinary
differential equations and solve the systems with numerical integration. The Runge-Kutta
(R-K) method is among the most popular classes of formulas for the numerical integration
of initial value problems. Unlike the multi-step methods, it is a one-step method, and one
can change the step size of integration as often and by as much as required. Therefore, it is
usually effective for stiff equations[10], although a higher-order R-K method requires more func-
tion evaluations per integration step. However, the R-K method only can obtain asymptotic
steady-state response, and it may take a long time of integration for a system with a smaller
damping[4]. Furthermore, the initial value problems cannot be used to obtain the unstable pe-
riodic response[11]. This brings difficulties for the analysis of the bifurcation characteristics of
periodic motion. The resolution of the responses of dynamic systems can also be converted to
a boundary-value problem. Then, one can use the shooting method or finite-difference schemes
to solve the problem. The shooting algorithm and its modified methods[12–14] are widely used
in engineering[15–16]. However, the initial value and the integration step-size have a great effect
on the convergence and the convergent speed[17–18]. Moreover, a heavy computation is often
needed, especially when the period of the system’s response is very large, e.g., in some cases
dealing with multiple-input frequencies[19].

In terms of analytical methods, the common methods, such as the small parameter method,
the average method, and the multi-scale method, are effective for characteristics investigation
of weakly nonlinear systems. When dealing with strong nonlinearity, the harmonic balance
method is usually used. However, the calculation accuracy is hard to ensure[17,20].

All methods developing from the classic harmonic balance (HB) method, e.g., the incre-
mental harmonic balance (IHB) method, the HB-AFT method, and the generalized harmonic
balance (GHB) method, can provide periodic solutions in form of trigonometric series. The IHB
method was first proposed by Lau and Cheung in 1981[21]. The basic idea of the approach is
as follows: first, suppose the solution to the system is harmonic; then, deduce the incremental
equation of the harmonic coefficients; finally, obtain the result by the iteration of the incremen-
tal equation. The IHB method is very effective in analyzing the periodic behaviors of smooth
dynamics[22], and it can be used to deal with piecewise-linear problems[23–24]. However, because
of the incremental equation of the system usually obtained by Taylor series expansion[25], this
method is difficult to deal with nonlinear systems with piecewise discontinuity from the math-
ematical definition[26–27]. In recent years, the GHB method has been developed by Luo[28–29].
The authors, by the averaging idea, set the solution to the system with harmonic terms and
supposed that the coefficients of these terms vary slowly with time. The algebraic equations
of the coefficients were obtained by harmonic balance process, and the solutions were derived
by any iteration strategy. These solutions and their bifurcation behaviors could be determined
from the analysis of the stability about the equilibrium point by a perturbation of the harmonic
terms. The GHB method provides an analysis tool for chaos systems[28]. However, because of
the average idea[30], the nonlinear function should be integrated in the process of computation,
which makes it a challenge for the problem with complicated integration.

For nonlinear systems, the main idea of the HB-AFT is as follows:

ẍ(t) = f(ẍ, ẋ, x, t). (1)

To analyze its periodic solution property, it is assumed that x(t) = x(t+T ), where T represents
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the period of x(t). Then, x(t) and f(·) can be written as two groups of Fourier series expansions
with the same orthogonal basis. According to Eq. (1), one can get an implicitly nonlinear
algebraic relationship between the harmonic coefficients of x(t) and f(·). With the aid of
the discrete Fourier transform (DFT) and the inverse discrete Fourier transform (IDFT), the
information used to iterate the implicitly algebraic can be obtained. Thus, it can be seen that
the HB-AFT method is different from the IHB method and the GHB method. It establishes
relationships of each order harmonic term directly from the discrete time frequency features,
and there is little integration and analytical work required during the solving processe of the
HB-AFT method. Thus, this method can be considered to be more versatile for the strong
nonlinear problems with piecewise fractional exponential.

3 Model and methods

3.1 Bearing-rotor model
For the ball bearing, as shown in Fig. 1, when only consider the effects of Hertz contact and

ball passage vibrations on the bearing-rotor system, the classical 2-DOF model of ball bearing
is enough for the qualitative analysis[31]. Thus, the constitutive equation of a rigid rotor with
the ball bearing is expressed as

m

[
ẍ

ÿ

]
+ C

[
ẋ

ẏ

]
+ Cb

Nb∑
i=1

G(δi)1.5

[
cos θi

sin θi

]
=

[
W

0

]
, i = 1, 2, · · · , Nb, (2)

where

δi(x, y, t) = x cos θi + y sin θi − δ0,

θi = 2π(i − 1)/Nb + ωct,

ωc = ωri/(ri + ro),

and G(·) is a Heaviside function. Here,

G(δi) =

{
δi if δi � 0,

0 if δi < 0.

Fig. 1 Schematic diagram of ball bearing model
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In the above equations, m is the mass of the rotor and the inner ring, C is the system
damping, Cb is the Hertz contact stiffness between the balls and the inner-outer rings, δi is the
ith small displacement between the ith ball and the bearing raceway, δ0 is the radial clearance
of the bearing, W is the weight supported by the outer ring, ω is the angular velocity of the
rotor shaft, θi is the instant angular location of the ith ball, ωc is the cage angular velocity,
Nb is the number of balls, ri and ro are the radii of the inner and the outer rings, and G(·)
takes · and 0 representing the contact and non-contact cases between a ball and the outer ring,
respectively.

According to the similarity theory[30], define τ = ωct and denote ()′ by differentiation with
respect to τ . Then, Eq. (2) can be transformed into

Ω2

[
x′′

y′′

]
+ C̃Ω

[
x′

y′

]
+

[
fx(x, y, τ)
fy(x, y, τ)

]
=

[
W̃

0

]
, (3)

where [
fx(x, y, τ)
fy(x, y, τ)

]
= C̃b

Nb∑
i=1

G(δ̃i)
1
2

[
cos θ̃i

sin θ̃i

]
. (4)

Here,

δ̃i(x, y, τ) = x cos θ̃i + y sin θ̃i − δ0, θ̃i = 2π(i − 1)/Nb + τ, i = 1, 2, · · · , Nb,

C̃b = Cb/m, Ω = ωc, C̃ = C/m.

From Eqs. (3) and (4), one can see the problem, dealt with in this article, is a parametrically
excited system with the multiple piecewise G(δ̃i), where G(δ̃i) is also a complicated function.
Therefore, the common analytical method is not available for this problem[32].
3.2 HB-AFT scheme

Firstly, do the process of harmonic balance to Eq. (3).
The periodic solution forms of x and y can be represented as[

x

y

]
=

[
ax0

ay0

]
+

K∑
k=1

[[
axk

ayk

]
cos(kτ) −

[
bxk

byk

]
sin(kτ)

]
. (5)

The nonlinear restoring forces of fx(x, y, τ) and fy(x, y, τ) can be also written as[
fx

fy

]
=

[
cx0

cy0

]
+

K∑
k=1

[[
cxk

cyk

]
cos(kτ) −

[
dxk

dyk

]
sin(kτ)

]
. (6)

In Eqs. (5) and (6), K represents the maximum number of the considered harmonic terms.
Substituting Eqs. (5) and (6) into Eq. (3) and balancing the coefficients of each order har-

monic, one can obtain the algebraic equations g. For the constant terms,[
g(1)
g(2)

]
=

[
cx0

cy0

]
−

[
W̃

0

]
= 0. (7a)

For the cosine terms,[
g(4k − 1)

g(4k)

]
= k2Ω2

[
axk

ayk

]
+ kΩC̃

[
bxk

byk

]
−

[
cxk

cyk

]
. (7b)
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For the sine terms,[
g(4k + 1)
g(4k + 2)

]
= kΩC̃

[
axk

ayk

]
− k2Ω2

[
bxk

byk

]
+

[
dxk

dyk

]
. (7c)

In the above equations, k = 1, 2, · · · , K.
Let [

P
Q

]T

=

[
ax0 ay0 ax1 ay1 bx1 by1 · · · axK ayK bxK byK

cx0 cy0 cx1 cy1 dx1 dy1 · · · cxK cyK dxK dyK

]T

, (8)

where P and Q represent the coefficients of harmonics of displacements and nonlinear restore
forces, respectively.

Take P as an unknown variable. Using Eqs. (5)–(7), one can iterate to find the fix point P .
Here, the Newton-Raphson method is taken for the iteration, that is,

J (i)(P (i+1) −P(i)) + g (i), (9)

where J is the Jacobian matrix, i.e., J = ∂g
∂P .

After the process of harmonic balance, the values of Q and J in each step of iterations can
be obtained by the alternating frequency/time (AFT) technique.

For a supposed P , an IDFT is first used to obtain discrete values of x(τ) and y(τ),[
x(n)
y(n)

]
=

[
ax0

ay0

]
+

K∑
k=1

[[
axk

ayk

]
cos

2πkn

N
−

[
bxk

byk

]
sin

2πkn

N

]
, (10)

where n = 0, 1, · · · , N . Here, x(n) and y(n) denote the sampled points at the nth discrete time,
i.e., x(nΔT ) and y(nΔT ), where ΔT = 2π/N , and N is the number of samples in the time
domain.

According to Eqs. (4) and (10), the nonlinear restoring forces fx(x, y, τ) and fy(x, y, τ) can
be discreted into [

fx(n)
fy(n)

]
=

[
fx(x(n), y(n), 2πn/N)
fy(x(n), y(n), 2πn/N)

]
. (11)

The discrete values of fx(x, y, τ) and fy(x, y, τ) in the frequency domain can be obtained by
the DFT as Q , that is, [

cx0

cy0

]
=

1
N

N−1∑
n=0

[
fx(n)
fy(n)

]
, (12a)

[
cxk

cyk

]
=

2
N

N−1∑
n=0

[
fx(n)
fy(n)

]
cos

2πkn

N
, (12b)

[
dxk

dyk

]
= − 2

N

N−1∑
n=0

[
fx(n)
fy(n)

]
sin

2πkn

N
, (12c)

where k = 1, 2, · · · , K.
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According to Eq. (7) and Eqs. (10)–(12), the elements of J in Eq. (9) can be deduced into⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂g(1)
∂p(1)

=
∂cx0

∂ax0
=

3
2N

C̃b

N−1∑
n=0

Nb∑
i=1

G(δi(n))0.5 cos2 θ̃i,n,

∂g(1)
∂p(2)

=
∂cx0

∂ay0
=

3
2N

C̃b

N−1∑
n=0

Nb∑
i=1

G(δi(n))0.5 sin θ̃i,n cos θ̃i,n,

...

∂g(4k + 2)
∂p(4j + 1)

=
∂dyk

∂bxj
=

3
N

C̃b

N−1∑
n=0

Nb∑
i=1

(G(δi(n))0.5 sin θ̃i,n cos θ̃i,n) sin
2πjn

N
sin

2πkn

N
,

∂g(4k + 2)
∂p(4j + 2)

= −k2Ω2 +
∂dyk

∂byj

= −k2Ω2 +
3
N

C̃b

N−1∑
n=0

Nb∑
i=1

(G(δi(n))0.5 cos2 θ̃i,n) sin
2πjn

N
sin

2πkn

N
,

(13)

where

k, j = 1, 2, · · · , K, δ̃i(n) = x(n) cos θ̃i,n + y(n) sin θ̃i,n − δ0,

θ̃i,n =
2π(i − 1)

Nb
+

2πn

N
.

By combining the process of harmonic balance and AFT, the iterations of Eq. (9) can readily
yield P in proper accuracy. The procedure is as follows:

(i) For a supposed P(0), obtain Q(0) and J (0) by using Eqs. (10), (12), and (13).
(ii) Iterate Eq. (9) once, and get P (1).
(iii) Continue (i) and (ii) until the norm of P (m) −P (m−1) is less than an allowed ε.

3.3 Stability analysis
In order to make a systematic study on the bifurcation characteristics of the system, one

needs to analyze the stability of the periodic solutions obtained by the HB-AFT. In this study,
the Floquet theory is employed[17,20,25], and the method developed by Hsu is applied for approx-
imating the monodromy matrix. Here, from the characteristics of the HB-AFT, a simplified
strategy on the base of Hsu’s method can be proposed[33].

Let
U =

[
x x′ y y′]T =

[
x1 x2 x3 x4

]T
.

Then, Eq. (3) can be transformed into

U ′(τ) =

⎡⎢⎢⎢⎢⎣
x2

(W̃ − fx(x1, x3, τ))/Ω2 − C̃x2/Ω
x4

−fy(x1, x3, τ)/Ω2 − C̃x4/Ω

⎤⎥⎥⎥⎥⎦ = F (τ, U(τ)). (14)

Define A(τ, U(τ)) as

A(τ, U(τ)) =
∂F

∂U
=

⎡⎢⎢⎣
0 1 0 0

A21 A22 A23 0
0 0 0 1

A41 0 A43 A44

⎤⎥⎥⎦ , (15)
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where

A22 = A44 = C̃/Ω,

A21 = −3C̃b

2Ω2

Nb∑
i=1

G(δi(n))0.5 cos2 θ̃i,

A43 = −3C̃b

2Ω2

Nb∑
i=1

G(δi(n))0.5 sin2 θ̃i,

A23 = A41 = −3C̃b

2Ω2

Nb∑
i=1

G(δi(n))0.5 sin θ̃i cos θ̃i.

For the system of Eq. (14), give ΔU to perturb the assumed equilibrium U∗ and have

ΔU ′ = F (τ, U∗ + ΔU). (16)

Then, the stability of U∗ can be obtained by the linear stability of ΔU in the following system:

ΔU ′ =
∂F (τ, U∗)

∂U∗ ΔU = A(τ, U∗(τ))ΔU. (17)

According to Hsu’s method, the approximating monodromy matrix can be expressed as[22]

M = Ψ(T ) =
1∏

n=N

exp(AnΔT ) =
1∏

n=N

(
I +

nj∑
j=1

(AnΔT )j

j!

)
. (18)

Here, I denotes the identity matrix, and a constant matrix An substitutes the time-varying
matrix A(τ, U(τ) in the nth time interval, that is,

An =
1

ΔT

∫ τn

τn−1

A(τ, U∗(τ))dτ, (19)

where

τn = nΔT/N, n = 1, 2, · · · , N.

Combining the HB-AFT process, we get

An ≈ A(τn, U∗(τn)). (20)

The substitution has been done for two reasons. First, some of the systems have complicated
equation forms. Taking Eq. (20) rather than Eq. (19) can avoid the difficulties of complicated
integrations. For instance, the problem of Eq. (15) studied here has multiple piecewise irrational
functions of G(δi(n))0.5, where i = 1, 2, · · · , Nb. These functions are very hard to integrate.
Second, this simplification can maintain internal consistency of discretization of the HB-AFT
scheme. The elements of A(τ, U(τ)) are components of the elements of the Jacobian matrix
elements (see Eq. (13)), which can reduce the work of the programming calculation.

4 Results and discussion

The rotor bearing system under analysis is shown in Eq. (3). The reference values in the
equation are from Ref. [8] as follows:

Nb = 9, δ0 = 2 × 10−5 m, Cb = 7.055× 109 N/m3/2
,

m = 0.6 kg, W = 6 N, C = 200 N · s/m.
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From Eq. (3), one can see that the studied model is a parametrical excited system, and T = 2π/Ω
is the excited period, where Ω is the revolution angular velocity of the balls. When K = 36 (in
Eq. (5)), N = 144 (in Eq. (10)), ε = 10−19, and Ω = 500 rad/s, the analytical approximation
of the period-1 solution obtained by the HB-AFT method is (here, the harmonic terms, whose
coefficients are less than 10−18, are not presented)

x(t) = 2.102 506 128 4× 10−5

+ 6.845 418 049 7× 10−7 cos(Ωvct)

− 5.301 357 462 4× 10−8 sin(Ωvct)

+ 4.593 165 428 9× 10−8 cos(2Ωvct)

− 3.850 990 157 2× 10−9 sin(2Ωvct)

− 2.347 191 184 2× 10−9 cos(3Ωvct)

− 5.821 683 258 2× 10−10 sin(3Ωvct)

− 7.833 122 168 1× 10−11 cos(4Ωvct)

+ 1.277 043 417 1× 10−10 sin(4Ωvct),

where Ωvc = NbΩ. The above expression of x(t) suggests that the period-1 motion of the system
is affected by the ball passage vibrations. Actually, the minimum period of the motion is Tvc

rather than T , where Tvc = 2π/Ωvc. Here, fvc = 1/Tvc is usually called the varying compliance
frequency [16].

As shown in Fig. 2, the HB-AFT results agree well with the numerical solutions of the
fourth-order R-K method. The calculation of the HB-AFT has a fast convergence and a large
convergent region, which can be seen in Fig. 3. In Fig. 3, the HB-AFT with initial iterative
values of P(0) = [0] except P (0)(1) = 1.0 via the 5th iteration has arrived at a solution close to
the R-K integration corresponding to the round markers.

Fig. 2 Phase portrait of period-1 solution
when Ω = 500 rad/s

Fig. 3 Convergence of HB-AFT results under
increasing iteration times

In order to analyze system’s global periodic characteristics, taking Ω as a control parameter,
using the HB-AFT method, search the period-1 solutions between 480 rad/s and 1 000 rad/s
with a step-size of 10 rad/s. By the simplified method shown in Section 3.3, the stability of the
obtained solutions of period-1 is analyzed by the Floquet theory. It is found that the Floquet
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multipliers keep a convergent accuracy to 0.01 with N = 2 × 104 and nj = 5 (in Eq. (18)).
Calculations show that the leading multipliers are inside the unit circle at Ω = 480 rad/s to
690 rad/s, and the corresponding period-1 solutions are stable. From 700 rad/s to 950 rad/s, the
leading multipliers are less than −1. Hence, the corresponding period-1 solutions are unstable.
Until Ω = 960 rad/s, the leading multipliers come back to the unit circle from the negative real
axis. Table 1 further indicates that the period doubling bifurcations occur in the angular veloc-
ity ranges of Ω from 697 rad/s to 698 rad/s and from 953 rad/s to 954 rad/s, which is basically
consistent with the numerical result shown in Fig. 4.

Table 1 Leading multipliers of period-1 solutions in velocity range of period-doubling bifurcation
developing

Ω/(rad·s−1) 696 697 698 699 952 953 954 955

Leading multipliers −0.841 −0.943 −1.048 −1.156 −1.167 −1.080 −0.993 −0.906

Fig. 4 Bifurcation diagrams versus parameter Ω and bifurcation locations of period-1 motion ob-
tained by HB-AFT with Floquet theory

Note the fact that the period doubling bifurcation induces the instability of period-1 motion.
Hence, in order to do deep investigation for dynamical behaviors of the system, it is necessary
to analyze the response of period-2 motion in the range from 700 rad/s to 950 rad/s, which
is unstable for period-1 motion. For example, when K = 36, N = 144, ε = 10−19, and
Ω = 930 rad/s, the analytical approximation of the period-2 solution obtained by the HB-AFT
method is (here the harmonic terms, whose coefficients are less than 10−18, are not presented)

x(t) = 2.116 112 472 8× 10−5

− 7.233 511 078 2× 10−7 cos
(1

2
Ωvct

)
+ 1.002 821 189 9× 10−7 sin

(1
2
Ωvct

)
+ 1.403 582 154 0× 10−7 cos(Ωvct)

− 5.503 670 942 4× 10−9 sin(Ωvct)

− 1.361 807 888 1× 10−8 cos
(3

2
Ωvct

)
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+ 3.888 988 506 2× 10−9 sin
(3

2
Ωvct

)
− 8.183 985 232 5× 10−10 cos(2Ωvct)

+ 2.697 575 219 3× 10−11 sin(2Ωvct),

y(t) = 1.849 316 343 4× 10−7

+ 2.140 536 071 2× 10−9 cos
(1

2
Ωvct

)
− 5.800 466 765 8× 10−8 sin

(1
2
Ωvct

)
+ 1.000 975 497 7× 10−9 cos(Ωvct)

+ 2.454 074 292 3× 10−8 sin(Ωvct)

− 9.131 516 590 8× 10−10 cos
(3

2
Ωvct

)
− 5.546 233 711 3× 10−9 sin

(3
2
Ωvct

)
+ 1.161 585 592 0× 10−11 cos(2Ωvct)

+ 1.195 165 426 6× 10−9 sin(2Ωvct).

The result is close to the numerical simulation (see Fig. 5(a)), and this indicates that the system
has period-2 motion at Ω = 930 rad/s. As displayed in the above expressions of x(t) and y(t),
the period-2 motion of the system is also affected by the ball passage vibrations. Actually, the
minimum period of the motion is 2Tvc rather than T , which coincides with the power spectra
shown by Fig. 5(b).

Fig. 5 Orbit of system and power spectra of x(t) with Ω = 930 rad/s

Using the present method, we continue to investigate the stability of the global period-
2 motion of the system. The analysis indicates that the dynamical characteristics of period-2
motion are also interval stability, and the period doubling bifurcation is also a way to instability.
However, Table 2 presents the case that two complex conjugate Floquet multipliers leave the
unit circle, which indicates that the Neimark bifurcation[11,25] occurs from Ω = 925 rad/s to
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928 rad/s. Figure 6 shows that the Poincaré maps are built by the R-K method at Ω = 926 rad/s,
927 rad/s, and 928 rad/s. It is clear that the motion changes from quasi-periodic to periodic
gradually, which is a strong evidence for the Neimark bifurcation in the period-2 motion.

Table 2 Leading multipliers of period-2 solutions in velocity range of Neimark bifurcation developing

Ω/(rad·s−1) 925 926 927 928

Leading multipliers −0.341 + 1.041i −0.218 + 1.000i −0.107 + 0.944i −0.010 + 0.876i

Fig. 6 Poincaré maps of x(t) at 926 rad/s, 927 rad/s, and 928 rad/s

Figure 7(a) presents the global peak value characteristics of the period-1 and period-2 solu-
tions by Ω as the horizontal axis. The peak of x(t) is calculated by the HB-AFT as a function,
where the square markers and the round markers correspond to the solutions to period-1 and
period-2, respectively. In Fig. 7(a), the area of A-A denotes the unstable velocity range of
period-1 motion, and the three darker areas, i.e., B-B, C-C, and D-D, signify the unstable
velocity ranges of period-1 and period-2 simultaneously. In these three areas, one can predict
that the forms of motion are more complicated, and the chaotic motion may occur. The rotor
bearing system would avoid working in these ranges. In fact, the largest Lyapunov exponent
curve in Fig. 7(b) clearly indicates that the chaotic motion exists in the ranges of B-B, C-C,
and D-D. Figure 8 affirms the existence of chaos in these ranges to be right further. It can be
seen that the above process is an effective way to estimate the dangerous ranges of the system’s
motion.
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5 Conclusions

Compared with other common methods, the HB-AFT method requires fewer analysis, es-
pecially the studies of integration and series expansion, during the solving processes. Thus,

Fig. 7 Peak diagrams of global period-1 solution and period-2 solution, obtained by HB-AFT and

largest Lyapunov exponent curve calculated by Wolf method[34]

Fig. 8 Poincaré maps of x(t) response at 710 rad/s, 820 rad/s, and 910 rad/s
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this method is well-suited for the fractional exponential problems, even the problem with
piecewise-irrational nonlinearities. It is also an efficient method because of its property of
fast convergence in a large range.

Using the HB-AFT method, a rigid rotor-ball-bearing system is analyzed. The analysis
indicates that the dynamical characteristics of periodic motion are interval stability, and the
period doubling bifurcation and the Neimark bifurcation are two ways to instability for the
system.

Besides, combining the treatment of the HB-AFT method, a simplified strategy to determine
the Floquet multipliers is proposed. A way to give a fast estimation of the dangerous motion
range is presented, which may be significant for the global response analysis and the dynamic
optimal design of the nonlinear systems.
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