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Abstract A new numerical manifold (NMM) method is derived on the basis of quartic
uniform B-spline interpolation. The analysis shows that the new interpolation function
possesses higher-order continuity and polynomial consistency compared with the conven-
tional NMM. The stiffness matrix of the new element is well-conditioned. The proposed
method is applied for the numerical example of thin plate bending. Based on the prin-
ciple of minimum potential energy, the manifold matrices and equilibrium equation are
deduced. Numerical results reveal that the NMM has high interpolation accuracy and
rapid convergence for the global cover function and its higher-order partial derivatives.
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1 Introduction

The numerical manifold method (NMM) based on topological manifold was originally pro-
posed by Shi[1]. It combines the widely used finite element method (FEM) and the joint or
block oriented discontinuous deformation analysis (DDA) in a unified form[2]. This method
assimilates the advantages of the DDA and the FEM[2–3]. Based on the capabilities of the
NMM in modeling continuous and discontinuous problems, various studies for the theory and
application of the NMM were developed over the last few years. Most of the previous studies
focused on the problems associated with rock failure[4] and crack propagation[5–8]. Recently,
some researchers have successfully applied the NMM to other fields such as fatigue failure[9–10],
seepage flow[11], and fluid field computation[12]. Present 2D manifold elements and 3D mani-
fold elements mainly adopt the shape functions in the finite element analysis as their weight
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functions, while the continuity and interpolation accuracy are uniformly enhanced by the use
of different forms of basis functions for the local cover function[13–14]. It is noteworthy that the
higher-order local cover functions related to global coordinates increase the condition number of
stiffness matrices and even lead to ill-conditioned or singular equations. To enhance the quality
of stiffness matrices and avoid the numerical instability caused by ill-conditioned matrices, Lin
et al.[15] presented an improved local cover function that could effectively ameliorate the quality
of stiffness matrices and enhance the stress precision. However, the number of the unknown
degrees of freedom (DOFs) is still huge. Actually, for most conventional NMMs, increasing
the polynomial order of local cover functions can induce the linear dependence (LD) among all
shape functions of the manifold element, while the LD problem makes the rank of the stiffness
matrix deficient and further causes failure in solving the ultimate equation[16–17]. In the conven-
tional NMM, some problems that stem from the construction and generation of meshes cannot
be ignored. In view of this consideration, Li and Cheng[18] studied the meshless numerical man-
ifold method (MNMM) on the basis of the NMM and partition of unity (PU). By comparison
with the conventional NMM, this method is more flexible in the selection of finite covers and
can get rid of the disadvantages of the mesh in the NMM. The prepossession of the MNMM is
simple. However, the above advantages are at the expense of low computational efficiency and
dealing with a large number of nodes. Subsequently, the complex variable meshless manifold
(CVMM) was put forward by Gao and Cheng[19]. This method can significantly reduce the
number of nodes and is bound to improve computational efficiency. However, there is a lot of
computation needed for the complex matrix inversion that to a great extent limits the further
application of this method. Considering the disadvantages of the current manifold methods,
this paper proposes a novel NMM with a concept of fixed uniform mesh. The new NMM utilizes
the quartic uniform B-spline basis functions to construct the global cover function. The new
manifold element possesses higher-order compatibility. The proposed NMM is applied for the
numerical example of a thin plate bending to verify its calculation efficiency, and the concrete
manifold formulations are also derived in this paper.

2 Fundamental theory of NMM

2.1 Basic concepts of NMM

The NMM employs two sets of separate and independent cover (mesh) systems, i.e., math-
ematical covers and physical covers. The mathematical covers that present small regions of
the whole field can be arbitrarily selected regardless of shapes and sizes. The mathematical
covers can be overlapped with each other either partially or totally and need not conform to
physical covers. However, the total mathematical meshes should be large enough to cover the
whole material volume. In contrast, the physical covers describe the geometry of the integration
domain or the whole material volume. Hence, the selection of physical covers is not arbitrary
and determined by material characteristics such as interior and exterior boundaries, cracks,
voids, and interfaces of different material zones. In the finite cover system, overlapping the two
meshes provides a manifold description. The intersection of the mathematical cover and the
physical cover or the common region of the two systems defines the region of physical covers. A
common area of the overlapped covers corresponds to an element in the manifold method. For
convenience, the conventional NMM usually adopts finite element meshes or regular structures
to generate mathematical covers and constructs the associated weight functions. The selection
of suitable local cover functions and weight functions is very important for successful applica-
tions of the NMM. The global cover function is the weighted average of local cover functions on
the common part of the associated covers (or manifold elements). Further details of geometrical
aspects of the NMM were deliberately elucidated in the work of Shi[1].
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2.2 Generation of global cover function
In the NMM, the cover weight functions are practically equivalent to the shape functions

in the finite element analysis. The selected cover weight functions must satisfy the properties
of the PU. The local cover function can be of various forms such as a constant basis function,
a linear basis function, and a higher-order polynomial basis function. With regard to the 2D
case, we denote the local cover function of any cover Ui as

ui(x, y), vi(x, y), (x, y) ∈ Ui. (1)

The local cover function (ui, vi) in Ui can be constructed by a linear combination of mutually
independent functions fi,j of a given order m and the constant coefficients di,2j−1 and di,2j .
Therefore, Eq. (1) can be written in a matrix form as

[
ui(x, y)
vi(x, y)

]
=

m∑
j=1

[
fi,j(x, y) 0

0 fi,j(x, y)

] [
di,2j−1

di,2j

]
= fiDi, (2)

where Di is called the local degree of the freedom vector.
Assume that any manifold element e presents the common part of several overlapped covers

Ue(i) (i = 1, 2, · · · , q), and the function Ne(i)(x, y) is the weight function corresponding to the
cover Ue(i). The displacement function (u, v) of the manifold element e can be approximated
as [

u(x, y)
v(x, y)

]
=

q∑
i=1

Ne(i)(x, y)
[

ui(x, y)
vi(x, y)

]

=
q∑

i=1

m∑
j=1

[
Ne(i)(x, y)fe(i),j(x, y) 0

0 Ne(i)(x, y)fe(i),j(x, y)

] [
de(i),2j−1

de(i),2j

]

=
q∑

i=1

Ne(i)(x, y)fiDe(i) = TeDe. (3)

3 2D manifold method with quartic uniform B-spline interpolation

3.1 Quartic uniform B-spline basis functions
There are a lot of ways to define the B-spline basis functions. We use a recurrence formula to

define the B-spline basis functions since it is the most used one for computer implementation[20].
Let {x1, x2, · · · , xp} be a nondecreasing sequence of real numbers, i.e., xi � xi+1 with i =
0, 1, · · · , p − 1. Here, xi are called the B-spline knots. The ith B-spline function of k-degree,
denoted by Bi,k(x), is defined as

Bi,0(x) =

{
1, xi � x < xi+1,

0, otherwise,
(4)

Bi,k(x) =
x − xi

xi+k − xi
Bi,k−1(x) +

xi+k+1 − x

xi+k+1 − xi+1
Bi+1,k−1(x), (5)

where the half-open interval [xi, xi+1) is called the ith B-spline knot span. Equation (5) can
yield the quotient 0:0. We define this quotient to be zero.

Bi,k(x) = 0 if x is outside the interval [xi, xi+1) (the local support property). Bi,k(x) is
positive only for x ∈ (xi, xi+1). For an arbitrary B-spline knot span [xi, xi+1), the B-spline
basis functions satisfy the PU for all x ∈ [xi, xi+1)[21] as follows:

∑
i

Bi,4(x) = 1. (6)
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When all the B-spline knots are uniformly distributed, we can let (x − xi) / (xi+1 − xi) = ξi.
By the definition of the B-spline basis function, the quartic uniform B-spline basis function can
be expressed as

Bi,4(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x /∈ [xi, xi+5],
1
4!

ξ4
i , x ∈ [xi, xi+1],

1
4!

(−4(ξi − 1)4 + 4(ξi − 1)3 + 6(ξi − 1)2 + 4(ξi − 1) + 1),

x ∈ [xi+1, xi+2],
1
4!

(6(ξi − 2)4 − 12(ξi − 2)3 − 6(ξi − 2)2 + 12(ξi − 2) + 11),

x ∈ [xi+2, xi+3],
1
4!

(−4(ξi − 3)4 + 12(ξi − 3)3 − 6(ξi − 3)2 − 12(ξi − 3) + 11),

x ∈ [xi+3, xi+4],
1
4!

(1 − (ξi − 4)4), x ∈ [xi+4, xi+5].

(7)

3.2 2D manifold element with quartic uniform B-spline interpolation
Assume that (i, j) presents the rectangular element [xi, xi+1] × [yj , yj+1]. Using the anal-

ogous method as the construction of B-spline surfaces, the global cover function of any given
rectangular manifold element (i, j) can be written in a matrix form as

Wi,j(x, y) =[Bi−4,4(x) Bi−3,4(x) Bi−2,4(x) Bi−1,4(x) Bi−3,4(x)]

·

⎡
⎢⎢⎢⎢⎣

di,j di,j+1 di,j+2 di,j+3 di,j+4

di+1,j di+1,j+1 di+1,j+2 di+1,j+3 di+1,j+4

di+2,j di+2,j+1 di+2,j+2 di+2,j+3 di+2,j+4

di+3,j di+3,j+1 di+3,j+2 di+3,j+3 di+3,j+4

di+4,j di+4,j+1 di+4,j+2 di+4,j+3 di+4,j+4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Bj−4,4(y)
Bj−3,4(y)
Bj−2,4(y)
Bj−1,4(y)
Bj,4(y)

⎤
⎥⎥⎥⎥⎦

=
∑

i

∑
j

Bi−4,4(x)Bj−4,4(y)di,j = Ti,jD i,j , (8)

where Di,j is the generalized displacement DOF vector of the manifold element (i, j), and Ti,j

is called the generalized weight function corresponding to the manifold element (i, j). The
concrete forms of D i,j and Ti,j are

Di,j = [di,j di,j+1 di,j+2 di,j+3 di,j+4 di+1,j · · · di+4,j+4]T, (9)

Ti,j = [Bi−4,4(x)Bj−4,4(y) Bi−4,4(x)Bj−3,4(y)
Bi−4,4(x)Bj−2,4(y) · · · Bi+4,4(x)Bj+4,4(y)]. (10)

Assume that each entry of Ti,j is (Ti,j)k. According to Eq. (6), we have the following relation-
ship:

25∑
k=1

(Ti,j)k =
4∑

k1=0

Bi−k1,4(x)
4∑

k2=0

Bi−k2,4(y) = 1. (11)

In other words, Ti,j satisfies the properties of the PU.
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Based on the assumption of Eq. (7), for all x ∈ (xi, xi+1), the mathematical expressions of
the quartic uniform B-spline functions can be given as

Bi−4,4(x) =
1
4!

(1 − ξi)4, (12)

Bi−3,4(x) =
1
4!

(−4ξi
4 + 12ξi

3 − 6ξi
2 − 12ξi + 11), (13)

Bi−2,4(x) =
1
4!

(6ξi
4 − 12ξi

3 − 6ξi
2 + 12ξi + 11), (14)

Bi−1,4(x) =
1
4!

(−4ξi
4 + 4ξi

3 + 6ξi
2 + 4ξi + 1), (15)

Bi,4(x) =
1
4!

(ξi)4. (16)

In the same way, we can obtain the quartic uniform B-spline functions for all y ∈ (yi, yi+1).
The proposed B-spline basis functions are illustrated in Figs. 1 and 2. It can be observed that
the quartic uniform B-spline functions have the terrific local support property that makes the
generated global stiffness matrix symmetric. Meanwhile, all weight functions of any mani-
fold element are linearly independent with each other. Therefore, the proposed B-spline basis
functions can enhance the computational precision and efficiency greatly. According to the con-
tinuous property of quartic uniform B-spline basis functions[19], the proposed manifold element
is C3 compatible with respect to x and y, respectively.

Fig. 1 Quartic uniform B-spline curve in
piecewise form

Fig. 2 Quartic uniform B-spline curve within
element i

4 Analysis of thin plate bending with NMM

4.1 Strain energy with NMM
Assume that W (x, y) is the displacement (deflection) function of thin plate bending, h is the

thickness of the thin plate, E is Young’s modulus (stress-strain) matrix, μ is Poisson’s ratio,
and Ω is the domain of integration. ϕx and ϕy are the rotation angles of a line, which are
normal to the mid surface before the deformation about the x- and y-axes, respectively. κx and
κy represent the bending curvatures in the x- and y-directions, respectively. κxy represents the
twist curvature. εx, εy, and γxy are the stresses. Mx and My are the bending moments, and
Mxy is the twisting moment. Qx and Qy are the shear forces. According to the Kirchhoff plate
theory, the stresses and strains in the xz-plane and the yz-plane are negligible[22]. Thus, the
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above physical variables can be rewritten in a column vector form as follows:

ϕ = [ϕx ϕy]T, (17)

ε = [εx εy γxy]T, (18)

κ = [κx κy κxy]T, (19)

M = [Mx My Mxy]T, (20)

Q = [Qx Qy]T. (21)

For small strains and small rotations, Eqs. (17)–(21) can be represented by the displacement
function as

ϕ = G1W, (22)
κ = G2W, (23)
ε = zκ = zG2W, (24)
M = D4κ = D4G2W, (25)
Q = G3M = G3D4G2W, (26)

where

G1 =
[

∂

∂x

∂

∂y

]T

, (27)

G2 =
[
− ∂2

∂x2
− ∂2

∂y2
− 2

∂2

∂x∂y

]T

, (28)

G3 =

⎡
⎢⎢⎣

∂

∂x
0

∂

∂y

0
∂

∂y

∂

∂x

⎤
⎥⎥⎦ , (29)

D4 =
Eh3

12(1 − μ2)

⎡
⎣ 1 μ 0

μ 1 0
0 0 (1 − μ)/2

⎤
⎦ . (30)

The strain energy stored in the thin plate can be expressed as
∏

U
=

∫∫
Ω

1
2
κTMdxdy =

∫∫
Ω

1
2
κTD4κdxdy. (31)

Substituting Eqs. (23) and (25) into Eq. (31) can yield the following discrete form of the
strain energy:

∏∗
U

=
N1∑
i=1

N2∑
j=1

∫∫
Ωi,j

1
2
κTD4κdxdy

=
N1∑
i=1

N2∑
j=1

1
2
DT

i,jK
(i,j)
U Di,j , (32)

in which the subscripts i and j are the corresponding identities of the manifold elements, related
to the x- and y-directions, respectively. K

(i,j)
U can be expressed as

K
(i,j)
U =

1
2

∫∫
Ωi,j

(G2Ti,j)TD4(G2Ti,j)dxdy. (33)
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For convenience, a new matrix Ci,j is introduced for the entire assembly of all element
stiffness matrices. It can be defined by

Di,j = Ci,jD, (34)

where D is the overall degree of the freedom vector.
In particular, for the proposed B-spline manifold element in Eq. (8), the matrix Ci,j can be

explicitly expressed as

Ci,j =

⎡
⎢⎢⎢⎢⎣

05×((i−1)(N1+4)+j−1) I5×5 05×((N1+4)(N2+5−i)−j−4)

05×(i(N1+4)+j−1) I5×5 05×((N1+4)(N2+4−i)−j−4)

05×((i+1)(N1+4)+j−1) I5×5 05×((N1+4)(N2+3−i)−j−4)

05×((i+2)(N1+4)+j−1) I5×5 05×((N1+4)(N2+2−i)−j−4)

05×((i+3)(N1+4)+j−1) I5×5 05×((N1+4)(N2+1−i)−j−4)

⎤
⎥⎥⎥⎥⎦

25×((N1+4)(N2+4))

, (35)

where the submatrix I 5×5 is the identity matrix of size 5×5. N1 and N2 are the corresponding
numbers of the manifold elements, related to the x- and y-directions, respectively.

Substituting Eq. (34) into Eq. (32), we get

∏∗
U

=
1
2
DTKUD, (36)

where

KU =
N1∑
i=1

N2∑
j=1

CT
i,jK

(i,j)
U Ci,j . (37)

4.2 Boundary conditions with NMM
It is assumed that n and s present the outward normal direction and the tangential direction

of the material boundary, respectively. θ is the angle from the x-direction to the n-direction.
ϕn, Mn, and Qn present the rotation angle, the bending moment, and the shear force in the
outward normal direction, respectively. Mns is the twist moment. For the convenience of the
following analysis, we let l = cos θ and m = sin θ. Some matrices are introduced as follows:

A1 = [l m], (38)

A2 = [l2 m2 2lm], (39)

A3 = [−lm lm l2 − m2], (40)
A4 = [−m l]. (41)

It can be easily verified that

ϕn = A1ϕ = A1G1W, (42)
Qn = A1Q = A1G3D4G2W, (43)
Mn = A2M = A2D4G2W, (44)
Mns = A3M = A3D4G2W, (45)
∂Mns

∂s
= A4G1Mns = A4G1A3D4G2W. (46)

With the higher-order continuity and compatibility of the proposed manifold element, all the
essential boundary conditions can be explicitly or implicitly represented by the displacement
function, and the displacement can be adopted as the only unknown variable. Herein, the
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penalty method is used for the imposition of boundary conditions, and the generalized energy
form corresponding to these boundary conditions can be expressed as

∏
B

=
∫

S1

1
2
β1(ϕn − ϕn)2ds +

∫
S1+S2

1
2
β2(W − W )

2
ds +

∫
S2+S3

1
2
β3(Mn − Mn)

2
ds

+
∫

S3

1
2
β4

(
Qn +

∂Mns

∂s
− V n

)2

ds +
∑
JW

1
2
β5

(
W − W

)2
, (47)

where β1, β2, β3, β4, and β5 are the given positive penalty parameters, S presents the whole
boundary of the thin plate, S1 is the clamped boundary, S2 is the simply supported boundary,
S3 is the free boundary, JW is the supported corner point with the prescribed displacement, W
is the prescribed displacement, ϕn is the prescribed normal angle, Mn is the prescribed normal
bending moment, and V n is the prescribed transverse load (per unit length).

Substituting Eqs. (42)–(46) into Eq. (47) and applying Eqs. (8) and (34) can yield the discrete
form of the generalized potential energy associated with the boundary conditions as follows:

∏∗
B

=
N1∑
i=1

N2∑
j=1

1
2

( ∫
Si,j

1

β1(H
(i,j)
1 D − ϕn)T(H(i,j)

1 D − ϕn)ds

+
∫

Si,j
1 +Si,j

2

β2(H
(i,j)
2 D − W )T(H(i,j)

2 D − W )ds

+
∫

Si,j
2 +Si,j

3

β3(H
(i,j)
3 D − Mn)T(H(i,j)

3 D − Mn)ds

+
∫

Si,j
3

β4(H
(i,j)
4 D − V n)T(H(i,j)

4 D − V n)ds

+
∑
JW

β5(H
(i,j)
2 D − W )T(H(i,j)

2 D − W )
)
, (48)

where

H
(i,j)
1 = A1G1Ti,jCi,j , (49)

H
(i,j)
2 = Ti,jCi,j , (50)

H
(i,j)
3 = A2D4G2Ti,jCi,j , (51)

H
(i,j)
4 = (A1G3A4G1A3)D4G2Ti,jCi,j . (52)

For convenience, Eq. (48) can be written in the simplified form as

∏∗
B

=
1
2
DTKBD + DTFB + H0, (53)
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where

KB =
N1∑
i=1

N2∑
j=1

(
β1

∫
Si,j

1

(H(i,j)
1 )TH

(i,j)
1 ds + β2

∫
Si,j

1 +Si,j
2

(H(i,j)
2 )TH

(i,j)
2 ds

+ β3

∫
Si,j

2 +Si,j
3

(H(i,j)
3 )TH

(i,j)
3 ds +

∫
Si,j

3

β4(H
(i,j)
4 )TH

(i,j)
4 ds

+
∑
JW

β5(H
(i,j)
2 )T (H(i,j)

2 )
)
, (54)

FB =
N1∑
i=1

N2∑
j=1

(
β1

∫
Si,j

1

ϕn(H(i,j)
1 )Tds + β2

∫
Si,j

1 +Si,j
2

W (H(i,j)
1 )Tds

+ β3

∫
Si,j

2 +Si,j
3

Mn(H(i,j)
3 )Tds + β4

∫
Si,j

3

V n(H(i,j)
4 )Tds

+
∑
JW

β5W (H(i,j)
2 )T(H(i,j)

2 )
)
, (55)

H0 =
N1∑
i=1

N2∑
j=1

1
2

( ∫
Si,j

1

β1(ϕn)2ds +
∫

Si,j
1 +Si,j

2

β2(W )2ds

+
∫

Si,j
2 +Si,j

3

β3(Mn)2ds +
∫

Si,j
3

β4(V n)2ds +
∑
JW

β5(W )2
)
. (56)

4.3 Potential energy of loads with NMM
In the NMM, the natural boundary conditions for the tractions at the boundaries are satisfied

by transferring the boundary tractions into the equivalent loads with respect to the generalized
DOFs. It is assumed that the thin plate is subject to a laterally distributed load and a given
concentrated force that are donated by q and P , respectively. The potential energy of the loads
can be expressed as

∏
P

=
∫∫

Ω

−qWdΩ +
∫

Si,j
2 +Si,j

3

Mnϕnds

−
∫

Si,j
3

V nWds −
∑
JP

PW, (57)

where JP is the position or point that the force P acted on.
Using Eqs. (8) and (34) in Eq. (57), we can obtain the following discrete form of Eq. (57):

∏∗
P

= DTFP , (58)

where

FP =
N1∑
i=1

N2∑
j=1

( ∫∫
Ωi,j

−q(Ti,jCi,j)TdΩ +
∫

Si,j
2 +Si,j

3

Mn(A1G1Ti,jCi,j)Tds

+
∫

Si,j
3

−V n(Ti,jCi,j)Tds +
∑
JP

−P (Ti,jCi,j)T
)
. (59)
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For simplicity, the total potential energy of the thin plate can be expressed as

∏∗
G

=
∏∗

U
+

∏∗
B

+
∏∗

P
. (60)

By minimizing the total potential energy, we obtain the following equilibrium equation:

(KU + KB)D = FB + FP . (61)

After solving D, by Eqs. (34) and (8), the expression of the displacement function for any
manifold element (i, j) can be expressed as

W = Ti,jCi,jD. (62)

With the higher-order continuation and compatibility of the displacement function, its par-
tial derivatives can be derived by the direct displacement derivation. For the polynomial cover
function, the Gauss integration scheme can be adopted for the rectangular integration domain,
and the Hammer or simplex integration scheme can be adopted for the irregular integration
domain that is divided into different triangulars[1,14].

5 Numerical example and analysis

5.1 Bending of thin plate with simply supported boundaries
A rectangular thin plate with four simply supported boundaries is shown in Fig. 3. The

dimensions and parameters used for the analysis are a = 6 m, b = 4m, the thickness of the thin
plate h = 1 × 10−2 m, the lateral distributed load q = 10kPa, Yong’s modulus E = 210GPa,
Poisson’s ratio μ = 0.3, and the penalty parameter β = 1.0 × 109. As depicted in Fig. 4,
the fixed-mesh mathematical covers are adopted, and the proposed rectangular mathematical
covers are big enough to cover the whole physical meshes. The divided shade region is a manifold
element. For the proposed numerical example, the theoretical solution of the displacement field
can be finally calculated as

W (x, y) =
∑

i=1,3,5,···

∑
j=1,3,5,···

16q

ijπ6D0( i2

a2 + j2

b2 )
2 sin

iπx

a
sin

jπy

b
, (63)

where D0 = Eh3

12(1−μ2) is the bending rigidity of the thin plate.

Fig. 3 Scheme and configuration of rectangu-
lar thin plate bending

Fig. 4 Mathematical covers and manifold el-
ements of rectangular thin plate
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5.2 Analysis of numerical results
The numerical results obtained from the proposed NMM are compared with the theoretical

solutions given in Eq. (63) in the following analysis. As listed in Table 1, at a given measure
point x = a/3, y = b/3, the numerical results and theoretical solutions of the displacement and
its several partial derivatives are given, and the relative error is used to indicate the accuracy
of the numerical calculation. In Table 1, the relative error of the numerical displacement W ′,
denoted by η, is defined as η = |W ′−W |

|W | × 100%. Let W,ij = ∂(i+j)W
∂xi∂yj be the theoretical solution

of any partial derivative of the displacement and W ′
,ij be the corresponding numerical solution.

As shown in Tables 1 and 2, we assume that η,ij is the relative error of W ′
,ij . Thus, we define

η,ij as η,ij = |W ′
,ij−W,ij |
|W,ij | × 100%. In Tables 1 and 2, various meshes are investigated to test the

convergence of the proposed method. It can be obviously seen that the errors of the calculated
displacement and its partial derivatives decrease rapidly as the element number increases. When
the element number increases to 9×9, the relative error of the displacement W ′ falls to 0.005%,
and the numerical result of the higher-order partial derivative W ′

,22 is only 0.047% away from
the theoretical solution. Actually, with the further increase of the element number, we can
obtain more accurate numerical results.

Table 1 Displacement and its low-order partial derivatives at given point x = a/3, y = b/3

Element
W ′

,ij

W ′/m η/% W ′
,11 η,11/% W ′

,20 η,20/% W ′
,02 η,02/%

2 × 2 0.797 52 0.530 0 0.104 421 13.880 0 –0.217 50 4.530 –0.489 38 0.890 0
3 × 3 0.796 08 0.240 0 0.091 475 0.240 0 –0.217 11 4.340 –0.488 49 0.710 0
4 × 4 0.794 28 0.016 0 0.092 167 0.520 0 –0.206 64 0.690 –0.484 01 0.210 0
5 × 5 0.794 11 0.005 0 0.091 847 0.170 0 –0.207 52 0.270 –0.485 41 0.076 0
7 × 7 0.794 18 0.003 8 0.091 646 0.052 0 –0.207 79 0.140 –0.484 89 0.031 0
9 × 9 0.794 19 0.005 0 0.091 689 0.005 5 –0.208 17 0.043 –0.485 08 0.008 2
W,ij 0.794 15 0.000 0 0.091 694 0.000 0 –0.208 08 0.000 –0.485 04 0.000 0

Table 2 Higher-order derivatives of displacement at given point x = a/3, y = b/3

Element
W ′

,ij

W ′
,12 η,12/% W ′

,21 η,21/% W ′
,22 η,22/%

2 × 2 –0.144 58 14.710 0 0.096 39 4.360 0.133 46 20.000
3 × 3 –0.123 00 2.410 0 0.094 01 1.790 0.133 22 4.000
4 × 4 –0.125 59 0.360 0 0.090 99 1.480 0.126 52 1.230
5 × 5 –0.126 32 0.220 0 0.093 47 1.200 0.130 54 1.900
7 × 7 –0.125 95 0.071 0 0.092 08 0.300 0.127 73 0.290
9 × 9 –0.126 05 0.007 9 0.092 39 0.032 0.128 16 0.047
W,ij –0.126 04 0.000 0 0.092 36 0.000 0.128 10 0.000

In Fig. 5, the numerical results of the displacement and its partial derivatives are plotted
along the direction of x = a/3. As illustrated in Fig. 5(a), we can acquire very accurate
numerical displacement with only 4 × 4 elements. By contrast, for the partial derivatives, we
need to adopt more elements to obtain the highly accurate numerical results (see Figs. 5(b)–
5(g)). In Tables 1 and 2 and Fig. 5, only a given measure point or a series of measure points
in a given direction are considered. Thus, it cannot fully indicate the global error within the
whole thin plate. To indicate the global error of the numerical calculation, a new error norm

of the displacement W ′, denoted by δ, is defined as δ =

s
NaP
k=1

(W ′−W )2s
NaP
k=1

(W ′)2
× 100%, where Na is the
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Fig. 5 Displacement and its partial derivatives of thin plate bending along direction of x = a/3

number of the measure points that are uniformly distributed along the x- and y-directions,
respectively. As listed in Table 3, we denote that δ,ij is the global error of W ′

,ij . Then, we
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define it in the same way as δ. For the proposed numerical example, we select Na = 21 × 21
within the whole thin plate. As enumerated in Table 3, when the element number increases,
the global errors of the displacement and its partial derivatives rapidly decrease. As shown in
Table 3, when the element number increases to 9 × 9, the global error of the displacement W ′

falls to 0.007 9%, and the global errors of the partial derivatives are relatively large, especially
for the higher-order mixed partial derivative δ,22. To obtain more desirable results of the partial
derivatives, we need to further increase the number of the elements.

The above numerical verification demonstrates that the results obtained from the proposed
NMM agree well with the theoretical solutions, and thus reveals the validity of the given method
for the numerical calculation.

Table 3 Global errors of displacement and its partial derivatives

Element
δ,ij/%

δ0 δ,20 δ,11 δ,02 δ,21 δ,12 δ,22

2 × 2 2.390 0 21.73 7.63 3.760 22.59 8.99 26.10
3 × 3 0.260 0 6.69 1.61 0.990 7.76 2.97 13.15
4 × 4 0.094 0 3.26 0.84 0.440 4.53 2.12 10.52
5 × 5 0.027 0 1.65 0.42 0.220 2.70 1.30 7.58
7 × 7 0.007 9 0.57 0.20 0.075 1.28 0.75 4.63
9 × 9 0.007 3 0.27 0.14 0.055 0.72 0.59 3.00

6 Conclusions

Based on the quartic uniform B-spline interpolation, a new 2D NMM is proposed in the
present paper. The analysis shows that the new manifold element has a simple structure and
possesses the higher-order continuation and polynomial consistency. The local support prop-
erty of the quartic uniform B-spline function makes the calculated global stiffness matrix with
good quality and overcomes the LD problem in the conventional NMM. Thus, it can enhance
the calculation accuracy and efficiency greatly. With the higher-order compatibility of the pro-
posed element, the proposed NMM is applied for the analysis of thin plate bending. The unified
manifold formulations for the thin plate subject to different loads and boundary conditions are
derived on the basis of the theorem of minimum potential energy. The numerical results demon-
strate that the proposed NMM has high interpolation accuracy for the global cover function
and its higher-order partial derivatives. The calculated results are in good agreement with the
theoretical solutions.
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